Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2012, Vol. 6 Issue (3) : 246-252    https://doi.org/10.1007/s11705-012-1299-9
RESEARCH ARTICLE
Nanostructured hollow spheres of hydroxyapatite: preparation and potential application in drug delivery
Xiaojing ZHANG1,2, Weixin ZHANG1,2(), Zeheng YANG1,2, Zhao ZHANG1,2
1. School of Chemical Engineering, Hefei University of Technology, Hefei 230009, China; 2. Anhui Key Laboratory of Controllable Chemical Reaction & Material Chemical Engineering, Hefei 230009, China
 Download: PDF(304 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A solvothermal method has been successfully used to prepare nanostructured hydroxyapatite (HA) hollow spheres with average diameters of about 500 nm and shell thicknesses of about 100 nm in a glycerin/water mixed solvent. Transmission electron microscopy (TEM) and field-emission scanning electron microscopy (FESEM) images show that the shells of the HA hollow spheres are actually composed of nanosheets with thicknesses of about 10 nm. By tuning the glycerin/water volume ratio, two other kinds of HA solid spheres with average diameters of about 6 or 20 μm were assembled from nanoflakes. The properties of the different kinds of spheres as drug delivery carriers were evaluated. Ibuprofen (IBU) was chosen as the model drug to load into the HA samples. The nanostructured HA samples showed a slow and sustained release of IBU. The HA hollow spheres exhibited a higher drug loading capacity and more favorable release properties than the HA solid spheres and thus are very promising for controlled drug release applications.

Keywords hydroxyapatite      hollow spheres      synthesis      drug release     
Corresponding Author(s): ZHANG Weixin,Email:wxzhang@hfut.edu.cn   
Issue Date: 05 September 2012
 Cite this article:   
Xiaojing ZHANG,Weixin ZHANG,Zeheng YANG, et al. Nanostructured hollow spheres of hydroxyapatite: preparation and potential application in drug delivery[J]. Front Chem Sci Eng, 2012, 6(3): 246-252.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-012-1299-9
https://academic.hep.com.cn/fcse/EN/Y2012/V6/I3/246
Fig.1  XRD patterns of nanostructured HA samples prepared at different glycerin/water ratios: (a) 36∶ 4, (b) 20∶ 20, and (c) 0∶ 40
Fig.2  FESEM and TEM images of nanostructured HA samples prepared at different glycerin/water ratios: (a, b, c) 36∶ 4, (d, e, f) 20∶ 20 and (g, h, i) 0∶ 40
Fig.3  IBU release curves of drug-loaded HA samples prepared at different glycerin/water ratios and different drug loading concentrations in SBF: (a) 36∶ 4, 50 mg/mL, (b) 20∶ 20, 50 mg/mL, (c) 0∶ 40, 50 mg/mL, (d) 36∶ 4, 20 mg/mL, (e) 20∶ 20, 20 mg/mL and (f) 0∶ 40, 20 mg/mL
Fig.4  FTIR spectra of the samples: (a) IBU, (b) HA sample prepared at a glycerin/water ratio of 36∶ 4 (sample 1) and (c) HA sample prepared at a glycerin/water ratio of 36∶ 4 (sample 1) loaded with a drug concentration of 50 mg/mL
Fig.5  Nitrogen adsorption-desorption isotherms of nanostructured HA samples prepared at different glycerin/water ratios: (a) 36∶ 4 (sample 1), (b) 0∶ 40 (sample 3)
1 Ma M Y, Zhu Y J, Li L, Cao S W. Nanostructured porous hollow ellipsoidal capsules of hydroxyapatite and calcium silicate: preparation and application in drug delivery. Journal of Materials Chemistry , 2008, 18(23): 2722–2727
doi: 10.1039/b800389k
2 Uskokovi? V, Uskokovi? D P. Nanosized hydroxyapatite and other calcium phosphates: chemistry of formation and application as drug and gene delivery agents. Journal of Biomedical Materials Research Part B: Applied Biomaterials , 2011, 96(1): 152–191
doi: 10.1002/jbm.b.31746 pmid:21061364
3 Zhang H G, Zhu Q S, Wang Y. Morphologically controlled synthesis of hydroxyapatite with partial substitution of fluorine. Chemistry of Materials , 2005, 17(23): 5824–5830
doi: 10.1021/cm051357a
4 Tseng Y H, Mou C Y, Chan J C. Solid-state NMR study of the transformation of octacalcium phosphate to hydroxyapatite: a mechanistic model for central dark line formation. Journal of the American Chemical Society , 2006, 128(21): 6909–6918
doi: 10.1021/ja060336u pmid:16719471
5 Cao X Y, Wen F, Bian W, Cao Y, Pang S J, Zhang W K. Preparation and comparison study of hydroxyapatite and Eu-hydroxyapatite. Frontiers of Materials Science in China , 2009, 3(3): 255–258
doi: 10.1007/s11706-009-0043-y
6 Jagadeesan D, Deepak C, Siva K, Inamdar M S, Eswaramoorthy M. Carbon Spheres Assisted Synthesis of Porous Bioactive Glass Containing Hydroxycarbonate Apatite Nanocrystals: a Material with High in Vitro Bioactivity. Journal of Physical Chemistry C , 2008, 112(19): 7379–7384
doi: 10.1021/jp800850m
7 Zhu D M, Wang F, Gao C L, Xu Z. Construction of PS/PNIPAM core-shell particles and hollow spheres by using hydrophobic interaction and thermosensitive phase separation. Frontiers of Chemical Engineering in China , 2008, 2(3): 253–256
doi: 10.1007/s11705-008-0049-5
8 L?chelt U, Wagner E. Invading target cells: multifunctional polymer conjugates as therapeutic nucleic acid carriers. Frontiers of Chemical Science and Engineering β, 2011, 5(3): 275–286
doi: 10.1007/s11705-011-1203-z
9 Almirall A, Larrecq G, Delgado J A, Martínez S, Planell J A, Ginebra M P. Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an α-TCP paste. Biomaterials , 2004, 25(17): 3671–3680
doi: 10.1016/j.biomaterials.2003.10.066 pmid:15020142
10 Ma M G, Zhu J F. Solvothermal synthesis and characterization of hierarchically nanostructured hydroxyapatite hollow spheres. European Journal of Inorganic Chemistry , 2009, 36: 5522–5526
11 Sun R X, Lu Y P, Chen K Z. Preparation and characterization of hollow hydroxyapatite microspheres by spray drying method. Materials Science and Engineering: C , 2009, 29(4): 1088–1092
doi: 10.1016/j.msec.2008.08.010
12 Shum H C, Bandyopadhyay A, Bose S, Weitz D A. Double emulsion droplets as microreactors for synthesis of mesoporous. Chemistry of Materials , 2009, 21(22): 5548–5555
doi: 10.1021/cm9028935
13 Sun R X, Chen K Z, Lu Y P. Fabrication and dissolution behavior of hollow hydroxyapatite microspheres intended for controlled drug release. Materials Research Bulletin , 2009, 44(10): 1939–1942
doi: 10.1016/j.materresbull.2009.06.015
14 Cheng X K, He Q J, Li J Q, Huang Z L, Chi R A. Control of pore size of the bubble-template porous carbonated hydroxyapatite microsphere by adjustable pressure. Crystal Growth & Design , 2009, 9(6): 2770–2775
doi: 10.1021/cg801421a
15 Cheng X K, Huang Z L, Li J Q, Liu Y, Chen C L, Chi R A, Hu Y H. Self-assembled growth and pore size control of the bubble-template porous carbonated hydroxyapatite microsphere. Crystal Growth & Design , 2010, 10(3): 1180–1188
doi: 10.1021/cg901088c
16 Jiang H Z, Stupp S I. Dip-pen patterning and surface assembly of peptide amphiphiles. Langmuir , 2005, 21(12): 5242–5246
doi: 10.1021/la0501785 pmid:15924443
17 Zhang W X, Yang Z H, Liu Y, Tang S P, Han X Z, Chen M. Controlled synthesis of Mn3O4 nanocrystallites and MnOOH nanorods by a solvothermal method. Journal of Crystal Growth , 2004, 263(1-4): 394–399
doi: 10.1016/j.jcrysgro.2003.11.099
18 Steiner Z, Rapaport H, Oren Y, Kasher R. Effect of surface-exposed chemical groups on calcium-phosphate mineralization in water-treatment systems. Environmental Science & Technology , 2010, 44(20): 7937–7943
doi: 10.1021/es101773t pmid:20873736
19 Yang Z H, Zhao M, Florin N H, Harris A T. Synthesis and characterization of CaO nanopods for high temperature CO2 capture. Industrial & Engineering Chemistry Research , 2009, 48(24): 10765–10770
doi: 10.1021/ie901137s
20 Mizushima Y, Ikoma T, Tanaka J, Hoshi K, Ishihara T, Ogawa Y, Ueno A. Injectable porous hydroxyapatite microparticles as a new carrier for protein and lipophilic drugs. Journal of Controlled Release , 2006, 110(2): 260–265
doi: 10.1016/j.jconrel.2005.09.051 pmid:16313993
21 Ito M, Hidaka Y, Nakajima M, Yagasaki H, Kafrawy A H. Effect of hydroxyapatite content on physical properties and connective tissue reactions to a chitosan-hydroxyapatite composite membrane. Journal of Biomedical Materials Research , 1999, 45(3): 204–208
doi: 10.1002/(SICI)1097-4636(19990605)45:3<204::AID-JBM7>3.0.CO;2-4 pmid:10397977
22 Wang H X, Guan S K, Wang Y S, Liu H J, Wang H T, Wang L G, Ren C X, Zhu S J, Chen K S. In vivo degradation behavior of Ca-deficient hydroxyapatite coated Mg-Zn-Ca alloy for bone implant application. Colloids and Surfaces. B, Biointerfaces , 2011, 88(1): 254–259
doi: 10.1016/j.colsurfb.2011.06.040 pmid:21783346
23 Aoki H, Aoki H, Kutsuno T, Li W, Niwa M. An in vivo study on the reaction of hydroxyapatite-sol injected into blood. Journal of Materials Science. Materials in Medicine , 2000, 11(2): 67–72
doi: 10.1023/A:1008993814033 pmid:15348049
24 Zhang C M, Cheng Z Y, Yang P P, Xu Z H, Peng C, Li G G, Lin J. Architectures of strontium hydroxyapatite microspheres: solvothermal synthesis and luminescence properties. Langmuir , 2009, 25(23): 13591–13598
doi: 10.1021/la9019684 pmid:19670837
25 Yao A H, Ai F R, Liu X, Wang D P, Huang W H, Xu W. Preparation of hollow hydroxyapatite microspheres by the conversion of borate glass at near room temperature. Materials Research Bulletin , 2010, 45(1): 25–28
doi: 10.1016/j.materresbull.2009.09.009
26 Pon-On W, Meejoo S, Tang I M. Formation of hydroxyapatite crystallites using organic template of polyvinyl alcohol (PVA) and sodium dodecyl sulfate (SDS). Materials Chemistry and Physics , 2008, 112(2): 453–460
doi: 10.1016/j.matchemphys.2008.05.082
27 Porter A, Patel N, Brooks R, Best S, Rushton N, Bonfield W. Effect of carbonate substitution on the ultrastructural characteristics of hydroxyapatite implants. Journal of Materials Science. Materials in Medicine , 2005, 16(10): 899–907
doi: 10.1007/s10856-005-4424-1 pmid:16167098
28 Wu Y J, Bose S. Nanocrystalline hydroxyapatite: micelle templated synthesis and characterization. Langmuir , 2005, 21(8): 3232–3234
doi: 10.1021/la046754z pmid:15807558
29 Wang A J, Lu Y P, Zhu R F, Li S T, Xiao G Y, Zhao G F, Xu W H. Effect of sintering on porosity, phase, and surface morphology of spray dried hydroxyapatite microspheres. Journal of Journal of Biomedical MaterialsResearch. Part A , 2008, 87(2): 557–562
pmid:18306315
[1] Faraz Montazersadgh, Hao Zhang, Anas Alkayal, Benjamin Buckley, Ben W. Kolosz, Bing Xu, Jin Xuan. Electrolytic cell engineering and device optimization for electrosynthesis of e-biofuels via co-valorisation of bio-feedstocks and captured CO2[J]. Front. Chem. Sci. Eng., 2021, 15(1): 208-219.
[2] Lifeng Zhang, Yifei Song, Weiping Wu, Robert Bradley, Yue Hu, Yi Liu, Shouwu Guo. Fe2Mo3O8 nanoparticles self-assembling 3D mesoporous hollow spheres toward superior lithium storage properties[J]. Front. Chem. Sci. Eng., 2021, 15(1): 156-163.
[3] Yifei Wang, Shouying Huang, Xinsheng Teng, Hongyu Wang, Jian Wang, Qiao Zhao, Yue Wang, Xinbin Ma. Controllable Fe/HCS catalysts in the Fischer-Tropsch synthesis: Effects of crystallization time[J]. Front. Chem. Sci. Eng., 2020, 14(5): 802-812.
[4] Feichao Wu, Yanling Wang, Xiongfu Zhang. Flow synthesis of a novel zirconium-based UiO-66 nanofiltration membrane and its performance in the removal of p-nitrophenol from water[J]. Front. Chem. Sci. Eng., 2020, 14(4): 651-660.
[5] Yang Su, Liping Lü, Weifeng Shen, Shun’an Wei. An efficient technique for improving methanol yield using dual CO2 feeds and dry methane reforming[J]. Front. Chem. Sci. Eng., 2020, 14(4): 614-628.
[6] Rongxin Zhang, Peinan Zhong, Hamidreza Arandiyan, Yanan Guan, Jinmin Liu, Na Wang, Yilai Jiao, Xiaolei Fan. Using ultrasound to improve the sequential post-synthesis modification method for making mesoporous Y zeolites[J]. Front. Chem. Sci. Eng., 2020, 14(2): 275-287.
[7] Zhaoqi Ye, Hongbin Zhang, Yahong Zhang, Yi Tang. Seed-induced synthesis of functional MFI zeolite materials: Method development, crystallization mechanisms, and catalytic properties[J]. Front. Chem. Sci. Eng., 2020, 14(2): 143-158.
[8] Kasra Pirzadeh, Ali Asghar Ghoreyshi, Mostafa Rahimnejad, Maedeh Mohammadi. Optimization of electrochemically synthesized Cu3(BTC)2 by Taguchi method for CO2/N2 separation and data validation through artificial neural network modeling[J]. Front. Chem. Sci. Eng., 2020, 14(2): 233-247.
[9] Jianwei Lu, Lan Lan, Xiaoteng Terence Liu, Na Wang, Xiaolei Fan. Plasmonic Au nanoparticles supported on both sides of TiO2 hollow spheres for maximising photocatalytic activity under visible light[J]. Front. Chem. Sci. Eng., 2019, 13(4): 665-671.
[10] Bin Xu, Toshiro Kaneko, Toshiaki Kato. Improvement in growth yield of single-walled carbon nanotubes with narrow chirality distribution by pulse plasma CVD[J]. Front. Chem. Sci. Eng., 2019, 13(3): 485-492.
[11] Kadriye Özlem Hamaloğlu, Ebru Sağ, Çiğdem Kip, Erhan Şenlik, Berna Saraçoğlu Kaya, Ali Tuncel. Magnetic-porous microspheres with synergistic catalytic activity of small-sized gold nanoparticles and titania matrix[J]. Front. Chem. Sci. Eng., 2019, 13(3): 574-585.
[12] Long Cheng, Ruirui Zhang, Hongke Wu, Xinghai Liu, Tianming Xu. The synthesis of 6-(tert-butyl)-8-fluoro-2,3-dimethylquinoline carbonate derivatives and their antifungal activity against Pyricularia oryzae[J]. Front. Chem. Sci. Eng., 2019, 13(2): 369-376.
[13] Marcela Achimovičová, Erika Dutková, Erika Tóthová, Zdenka Bujňáková, Jaroslav Briančin, Satoshi Kitazono. Structural and optical properties of nanostructured copper sulfide semiconductor synthesized in an industrial mill[J]. Front. Chem. Sci. Eng., 2019, 13(1): 164-170.
[14] Peizhen Duan, Juan Shen, Guohong Zou, Xu Xia, Bo Jin. Biomimetic mineralization and cytocompatibility of nanorod hydroxyapatite/graphene oxide composites[J]. Front. Chem. Sci. Eng., 2018, 12(4): 798-805.
[15] Wen Zhao, Jiahua Xing, Tianming Xu, Weili Peng, Xinghai Liu. Synthesis and in vivo nematocidal evaluation of novel 3-(trifluoromethyl)-1H-pyrazole-4-carboxamide derivatives[J]. Front. Chem. Sci. Eng., 2017, 11(3): 363-368.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed