Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2022, Vol. 16 Issue (9) : 1377-1386    https://doi.org/10.1007/s11705-022-2157-z
RESEARCH ARTICLE
Biodegradable, superhydrophobic walnut wood membrane for the separation of oil/water mixtures
Tong Xing1, Changqing Dong1,2(), Xiaodong Wang3, Xiaoying Hu1, Changrui Liu3, Haiyang Lv3
1. National Engineering Laboratory for Biomass Power Generation Equipment, School of New Energy, North China Electric Power University, Beijing 102206, China
2. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
3. National Energy Biological Power Generation Group Corporation LTD, Beijing 100052, China
 Download: PDF(4463 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The preparation of environmentally friendly oil/water separation materials remains a great challenge. Freeze-drying of wood after lignin removal yields wood aerogels, which can be used as substrates to prepare fluorine-free environmentally friendly superhydrophobic materials, However, they are more suitable for absorption rather than filtration applications due to their poor strength. A study using cross-sections of pristine wood chips as substrates retains the original strength of wood, but the use of the cross-sectional of wood pieces limits their thickness, strength, and size. In this paper, a degradable fluorine-free superhydrophobic film (max. water contact angle of approximately 164.2°) with self-cleaning and abrasion resistance characteristics was prepared by a one-step method using pristine and activated walnut longitudinal section films as the substrate, with tetraethyl orthosilicate as a precursor and dodecyltriethoxysilane as a modifier. The tensile strength results show that superhydrophobic films with pristine or activated wood substrates maintained the strength of pristine wood and were 2.2 times stronger than the wood aerogel substrate. In addition, after cross-laminating the two samples, the films had the ability to separate oil and water by continuous filtration with high efficiency (98.5%) and flux (approximately 1.3 × 103 L∙m‒2∙h‒1). The method has potential for the large-scale fabrication of degradable superhydrophobic filtration separation membranes.

Keywords wood nanotechnology      superhydrophobic      biodegradable      surface modification      oil/water separation     
Corresponding Author(s): Changqing Dong   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Online First Date: 16 May 2022    Issue Date: 20 September 2022
 Cite this article:   
Tong Xing,Changqing Dong,Xiaodong Wang, et al. Biodegradable, superhydrophobic walnut wood membrane for the separation of oil/water mixtures[J]. Front. Chem. Sci. Eng., 2022, 16(9): 1377-1386.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2157-z
https://academic.hep.com.cn/fcse/EN/Y2022/V16/I9/1377
Fig.1  Macroscopic features and characterization of the microscopic structures of the wood samples: SEM images of longitudinal sections of (a) natural walnut wood, (b) WA, and (c) AW at different degrees of magnification.
Fig.2  Macroscopic features and characterization of the microscopic structures of the modified wood samples: SEM images of longitudinal sections of (a) PW substrates, (b) WA substrates, and (c) AW substrates at different degrees of magnification.
Fig.3  SEM-EDS images of (a) the PW and (b) modified PW for the elements C, O, and Si.
Fig.4  (a, b) FTIR spectra of pristine walnut wood, WA, and AW; (c–e) FTIR spectra of substrate and modified samples of pristine walnut wood, WA, and AW; (f) XPS spectra.
Fig.5  (a) Fm and (b) Rm histogram of samples PEG, PAG, and CS of PW, WA, and AW.
Fig.6  The effect of (a) time and (b) abrasion on contact angle for modified samples.
Fig.7  Effect of abrasion on contact angle on modified samples with sandpaper (240 mesh) served as an abrasion surface.
Fig.8  The contact angles of the droplet on modified samples before and after immersion in HCl solution (pH = 3 and 5), NaCl solution (pH = 7), and NaOH solution (pH = 9 and 11) for (a) 12 h and (b) 24 h.
Fig.9  The self-cleaning process before (a) and after (b) dripping water droplets on the samples: (i) PW, (ii) modified PW, and (iii) modified AW films.
Fig.10  The oil/water separation experiment: (a) separation process with the single superhydrophobic film (left) and two cross-placed superhydrophobic films (right), (b) circulation area of the pores, and (c) emulsions before and after separation.
1 L Wen, Y Tian, L Jiang. Bioinspired super-wettability from fundamental research to practical applications. Angewandte Chemie International Edition, 2015, 54( 11): 3387– 3399
https://doi.org/10.1002/anie.201409911
2 S Wang, K Liu, X Yao, L Jiang. Bioinspired surfaces with superwettability: new insight on theory, design, and applications. Chemical Reviews, 2015, 115( 16): 8230– 8293
https://doi.org/10.1021/cr400083y
3 M Liu, S Wang, L Jiang. Nature-inspired superwettability systems. Nature Reviews Materials, 2017, 2( 7): 1– 17
https://doi.org/10.1038/natrevmats.2017.36
4 X Yin, Z Wang, Y Shen, P Mu, G Zhu, J Li. Facile fabrication of superhydrophobic copper hydroxide coated mesh for effective separation of water-in-oil emulsions. Separation and Purification Technology, 2020, 230 : 115856
https://doi.org/10.1016/j.seppur.2019.115856
5 W Xu, J Song, J Sun, Y Lu, Z Yu. Rapid fabrication of large-area, corrosion-resistant superhydrophobic Mg alloy surfaces. ACS Applied Materials & Interfaces, 2011, 3( 11): 4404– 4414
https://doi.org/10.1021/am2010527
6 K K Varanasi, T Deng, J D Smith, M Hsu, N Bhate. Frost formation and ice adhesion on superhydrophobic surfaces. Applied Physics Letters, 2010, 97( 23): 234102
https://doi.org/10.1063/1.3524513
7 C Zhang, F Liang, W Zhang, H Liu, M Ge, Y Zhang, J Dai, H Wang, G Xing, Y Lai, Y Tang. Constructing mechanochemical durable and self-healing superhydrophobic surfaces. ACS Omega, 2020, 5( 2): 986– 994
https://doi.org/10.1021/acsomega.9b03912
8 J Zhang, S Seeger. Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption. Advanced Functional Materials, 2011, 21( 24): 4699– 4704
https://doi.org/10.1002/adfm.201101090
9 M Ge, C Cao, J Huang, X Zhang, Y Tang, X Zhou, K Zhang, Z Chen, Y Lai. Rational design of materials interface at nanoscale towards intelligent oil–water separation. Nanoscale Horizons, 2018, 3( 3): 235– 260
https://doi.org/10.1039/C7NH00185A
10 L Feng, Z Zhang, Z Mai, Y Ma, B Liu, L Jiang, D Zhu. A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angewandte Chemie, 2004, 116( 15): 2046– 2048
https://doi.org/10.1002/ange.200353381
11 L Li, Z Xu, W Sun, J Chen, C Dai, B Yan, H Zeng. Bio-inspired membrane with adaptable wettability for smart oil/water separation. Journal of Membrane Science, 2020, 598 : 117661
https://doi.org/10.1016/j.memsci.2019.117661
12 K J Lu, D Zhao, Y Chen, J Chang, T S Chung. Rheologically controlled design of nature-inspired superhydrophobic and self-cleaning membranes for clean water production. npj Clean Water, 2020, 3( 1): 1– 10
https://doi.org/10.1038/s41545-020-0078-2
13 W Zhang, Z Shi, F Zhang, X Liu, J Jin, L Jiang. Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux. Advanced Materials, 2013, 25( 14): 2071– 2076
https://doi.org/10.1002/adma.201204520
14 D Wang, Q Sun, M J Hokkanen, C Zhang, F Y Lin, Q Liu, S P Zhu, T Zhou, Q Chang, B He, Q Zhou, L Chen, Z Wang, R H A Ras, X Deng. Design of robust superhydrophobic surfaces. Nature, 2020, 582( 7810): 55– 59
https://doi.org/10.1038/s41586-020-2331-8
15 Y Peng, W Zhu, S Shen, L Feng, Y Deng. Strain-induced surface micro/nanosphere structure: a new technique to design mechanically robust superhydrophobic surfaces with rose petal-like morphology. Advanced Materials Interfaces, 2017, 4( 20): 1700497
https://doi.org/10.1002/admi.201700497
16 X Tian, T Verho, R H A Ras. Moving superhydrophobic surfaces toward real-world applications. Science, 2016, 352( 6282): 142– 143
https://doi.org/10.1126/science.aaf2073
17 S M Hussain, L K Braydich-Stolle, A M Schrand, R C Murdock, K O Yu, D M Mattie, J J Schlager, M Terrones. Toxicity evaluation for safe use of nanomaterials: recent achievements and technical challenges. Advanced Materials, 2009, 21( 16): 1549– 1559
https://doi.org/10.1002/adma.200801395
18 L A Berglund, I Burgert. Bioinspired wood nanotechnology for functional materials. Advanced Materials, 2018, 30( 19): 1704285
https://doi.org/10.1002/adma.201704285
19 F Jiang, T Li, Y Li, Y Zhang, A Gong, J Dai, E Hitz, W Luo, L Hu. Wood-based nanotechnologies toward sustainability. Advanced Materials, 2018, 30( 1): 1703453
https://doi.org/10.1002/adma.201703453
20 F Chen, A S Gong, M Zhu, G Chen, S D Lacey, F Jiang, Y Li, Y Wang, J Dai, Y Yao, J Song, B Liu, K Fu, S Das, L Hu. Mesoporous, three-dimensional wood membrane decorated with nanoparticles for highly efficient water treatment. ACS Nano, 2017, 11( 4): 4275– 4282
https://doi.org/10.1021/acsnano.7b01350
21 M Vidiella del Blanco, E J Fischer, E Cabane. Underwater superoleophobic wood cross sections for efficient oil/water separation. Advanced Materials Interfaces, 2017, 4( 21): 1700584
https://doi.org/10.1002/admi.201700584
22 K Wang, X Liu, Y Tan, W Zhang, S Zhang, J Li. Two-dimensional membrane and three-dimensional bulk aerogel materials via top-down wood nanotechnology for multibehavioral and reusable oil/water separation. Chemical Engineering Journal, 2019, 371 : 769– 780
https://doi.org/10.1016/j.cej.2019.04.108
23 Q Fu, F Ansari, Q Zhou, L A Berglund. Wood nanotechnology for strong, mesoporous, and hydrophobic biocomposites for selective separation of oil/water mixtures. ACS Nano, 2018, 12( 3): 2222– 2230
https://doi.org/10.1021/acsnano.8b00005
24 A Mulyadi, Z Zhang, Y Deng. Fluorine-free oil absorbents made from cellulose nanofibril aerogels. ACS Applied Materials & Interfaces, 2016, 8( 4): 2732– 2740
https://doi.org/10.1021/acsami.5b10985
25 X Bai, Y Shen, H Tian, Y Yang, H Feng, J Li. Facile fabrication of superhydrophobic wood slice for effective water-in-oil emulsion separation. Separation and Purification Technology, 2019, 210 : 402– 408
https://doi.org/10.1016/j.seppur.2018.08.010
26 X Wang, S Liu, H Chang, J Liu. Sol-gel deposition of TiO2 nanocoatings on wood surfaces with enhanced hydrophobicity and photostability. Wood and Fiber Science, 2014, 46( 1): 109– 117
27 M Liu, Y Qing, Y Wu, J Liang, S Luo. Facile fabrication of superhydrophobic surfaces on wood substrates via a one-step hydrothermal process. Applied Surface Science, 2015, 330 : 332– 338
https://doi.org/10.1016/j.apsusc.2015.01.024
28 H Chang, K Tu, X Wang, J Liu. Fabrication of mechanically durable superhydrophobic wood surfaces using polydimethylsiloxane and silica nanoparticles. RSC Advances, 2015, 5( 39): 30647– 30653
https://doi.org/10.1039/C5RA03070F
29 Y Wu, S Jia, Y Qing, S Luo, M Liu. A versatile and efficient method to fabricate durable superhydrophobic surfaces on wood, lignocellulosic fiber, glass, and metal substrates. Journal of Materials Chemistry A, 2016, 4( 37): 14111– 14121
https://doi.org/10.1039/C6TA05259B
30 C T Hsieh, B S Chang, J Y Lin. Improvement of water and oil repellency on wood substrates by using fluorinated silica nanocoating. Applied Surface Science, 2011, 257( 18): 7997– 8002
https://doi.org/10.1016/j.apsusc.2011.04.071
31 L Xie, Z Tang, L Jiang, V Breedveld, D W Hess. Creation of superhydrophobic wood surfaces by plasma etching and thin-film deposition. Surface and Coatings Technology, 2015, 281 : 125– 132
https://doi.org/10.1016/j.surfcoat.2015.09.052
32 B Unger, M Bücker, S Reinsch, T Hübert. Chemical aspects of wood modification by sol−gel-derived silica. Wood Science and Technology, 2013, 47( 1): 83– 104
https://doi.org/10.1007/s00226-012-0486-7
33 X Wang, Y Chai, J Liu. Formation of highly hydrophobic wood surfaces using silica nanoparticles modified with long-chain alkylsilane. Holzforschung, 2013, 67( 6): 667– 672
https://doi.org/10.1515/hf-2012-0153
34 P Ma, B Chen, M Di. Activation processes of wood fiber under freezing by NaOH/urea aqueous solution. Biomass Chemical Engineering, 2018, 52 : 16– 22
35 J Yong, F Chen, J Huo, Y Fang, Q Yang, H Bian, W Li, Y Wei, Y Dai, X Hou. Green, Biodegradable, underwater superoleophobic wood sheet for efficient oil/water separation. ACS Omega, 2018, 3( 2): 1395– 1402
https://doi.org/10.1021/acsomega.7b02064
36 Y Chen, X Lin, N Liu, Y Cao, F Lu, L Xu, L Feng. Magnetically recoverable efficient demulsifier for water-in-oil emulsions. ChemPhysChem, 2015, 16( 3): 595– 600
https://doi.org/10.1002/cphc.201402761
37 R Mi, T Li, D Dalgo, C Chen, Y Kuang, S He, X Zhao, W Xie, W Gan, J Zhu, J Srebric, R Yang, L Hu. A clear, strong, and thermally insulated transparent wood for energy efficient windows. Advanced Functional Materials, 2020, 30( 1): 1907511
https://doi.org/10.1002/adfm.201907511
38 K Tu, X Wang, L Kong, H Chang, J Liu. Fabrication of robust, damage-tolerant superhydrophobic coatings on naturally micro-grooved wood surfaces. RSC Advances, 2016, 6( 1): 701– 707
https://doi.org/10.1039/C5RA24407B
39 F Liu, S Wang, M Zhang, M Ma, C Wang, J Li. Improvement of mechanical robustness of the superhydrophobic wood surface by coating PVA/SiO2 composite polymer. Applied Surface Science, 2013, 280 : 686– 692
https://doi.org/10.1016/j.apsusc.2013.05.043
40 L Feng, S Li, Y Li, H Li, L Zhang, J Zhai, Y Song, B Liu, L Jiang, D Zhu. Super-hydrophobic surfaces: from natural to artificial. Advanced Materials, 2002, 14( 24): 1857– 1860
https://doi.org/10.1002/adma.200290020
41 O Faix, J H Böttcher. The influence of particle size and concentration in transmission and diffuse reflectance spectroscopy of wood. European Journal of Wood & Wood Products, 1992, 50( 6): 221– 226
https://doi.org/10.1007/BF02650312
42 C M Popescu, M C Popescu, C Vasile. Structural analysis of photodegraded lime wood by means of FT-IR and 2D IR correlation spectroscopy. International Journal of Biological Macromolecules, 2011, 48( 4): 667– 675
https://doi.org/10.1016/j.ijbiomac.2011.02.009
43 N Labbé, T G Rials, S S Kelley, Z M Cheng, J Y Kim, Y Li. FT-IR imaging and pyrolysis-molecular beam mass spectrometry: new tools to investigate wood tissues. Wood Science and Technology, 2005, 39( 1): 61– 76
https://doi.org/10.1007/s00226-004-0274-0
44 S Gao, X Dong, J Huang, S Li, Y Li, Z Chen, Y Lai. Rational construction of highly transparent superhydrophobic coatings based on a non-particle, fluorine-free and water-rich system for versatile oil−water separation. Chemical Engineering Journal, 2018, 333 : 621– 629
https://doi.org/10.1016/j.cej.2017.10.006
45 J K Hong, H R Kim, H H Park. The effect of sol viscosity on the sol-gel derived low density SiO2 xerogel film for intermetal dielectric application. Thin Solid Films, 1998, 332( 1): 449– 454
https://doi.org/10.1016/S0040-6090(98)01045-1
46 C Liu, S Wang, J Shi, C Wang. Fabrication of superhydrophobic wood surfaces via a solution-immersion process. Applied Surface Science, 2011, 258( 2): 761– 765
https://doi.org/10.1016/j.apsusc.2011.08.077
47 B Arkles G L Larson. Silicon Compounds: Silanes & Silicones. 3rd edition. Morrisville, PA: Gelest, Inc., 2013
48 T Zhu, Y Cheng, J Huang, J Xiong, M Ge, J Mao, Z Liu, X Dong, Z Chen, Y Lai. A transparent superhydrophobic coating with mechanochemical robustness for anti-icing, photocatalysis and self-cleaning. Chemical Engineering Journal, 2020, 399 : 125746
https://doi.org/10.1016/j.cej.2020.125746
49 J Li, Y Lu, Z Wu, Y Bao, R Xiao, H Yu, Y Chen. Durable, self-cleaning and superhydrophobic bamboo timber surfaces based on TiO2 films combined with fluoroalkylsilane. Ceramics International, 2016, 42( 8): 9621– 9629
https://doi.org/10.1016/j.ceramint.2016.03.047
[1] FCE-21091-of-XT_suppl_1 Download
[2] FCE-21091-of-XT_suppl_2 Video  
[3] FCE-21091-of-XT_suppl_3 Video  
[1] Meng Li, Yuanfeng Fang, Chun Liu, Mengmeng Zhou, Xiaomei Miao, Yongbing Pei, Yue Yan, Wenjun Xiao, Huayu Qiu, Lianbin Wu. Facile generation of highly durable thiol-functionalized polyhedral oligomeric silsesquioxane based superhydrophobic melamine foam[J]. Front. Chem. Sci. Eng., 2022, 16(8): 1247-1258.
[2] Pei Sean Goh, Kar Chun Wong, Tuck Whye Wong, Ahmad Fauzi Ismail. Surface-tailoring chlorine resistant materials and strategies for polyamide thin film composite reverse osmosis membranes[J]. Front. Chem. Sci. Eng., 2022, 16(5): 564-591.
[3] Fan Shu, Meng Wang, Jinbo Pang, Ping Yu. A free-standing superhydrophobic film for highly efficient removal of water from turbine oil[J]. Front. Chem. Sci. Eng., 2019, 13(2): 393-399.
[4] Lijuan Qiu, Ruiyang Zhang, Ying Zhang, Chengjin Li, Qian Zhang, Ying Zhou. Superhydrophobic, mechanically flexible and recyclable reduced graphene oxide wrapped sponge for highly efficient oil/water separation[J]. Front. Chem. Sci. Eng., 2018, 12(3): 390-399.
[5] Hong Xu, Yulin Dai, Honghai Cao, Jinglei Liu, Li Zhang, Mingjie Xu, Jun Cao, Peng Xu, Jianshu Liu. Tubes with coated and sintered porous surface for highly efficient heat exchangers[J]. Front. Chem. Sci. Eng., 2018, 12(3): 367-375.
[6] Jing YANG,Juan LV,Bin GAO,Li ZHANG,Dazhi YANG,Changcan SHI,Jintang GUO,Wenzhong LI,Yakai FENG. Modification of polycarbonateurethane surface with poly(ethylene glycol) monoacrylate and phosphorylcholine glyceraldehyde for anti-platelet adhesion[J]. Front. Chem. Sci. Eng., 2014, 8(2): 188-196.
[7] CHEN Hanjia, SHI Xuhua, ZHU Yafei, ZHANG Yi, XU Jiarui. Synthesis and characterization of macromolecular surface modifier PP--PEG for polypropylene[J]. Front. Chem. Sci. Eng., 2008, 2(1): 102-108.
[8] PENG Xuhui, LE Yuan, BIAN Shuguang, LI Woyuan, WU Wei, DAI Haitao, CHEN Jianfeng. Surface modification of titanium dioxide for electrophoretic particles[J]. Front. Chem. Sci. Eng., 2007, 1(4): 338-342.
[9] WANG Neng, DING Enyong, CHENG Rongshi. Surface modification of cellulose nanocrystals[J]. Front. Chem. Sci. Eng., 2007, 1(3): 228-232.
[10] CHEN Gufeng, ZHANG Yi, XU Jiarui, ZHU Yafei. Grafting of PEG400 onto the surface of LLDPE/SMA film[J]. Front. Chem. Sci. Eng., 2007, 1(2): 128-131.
[11] ZHANG Bo, XING Jianmin, LIU Huizhou. Preparation and application of magnetic microsphere carriers[J]. Front. Chem. Sci. Eng., 2007, 1(1): 96-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed