Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2023, Vol. 17 Issue (11) : 1649-1676    https://doi.org/10.1007/s11705-023-2324-x
REVIEW ARTICLE
Catalytic combustion of volatile organic compounds using perovskite oxides catalysts—a review
Shan Wang1,2, Ping Xiao2, Jie Yang2, Sónia A.C. Carabineiro3, Marek Wiśniewski4, Junjiang Zhu2(), Xinying Liu1,5()
1. Institute for the Development of Energy for African Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1710, South Africa
2. Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
3. LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
4. Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
5. Zhijiang College of Zhejiang University of Technology, Shaoxing 312030, China
 Download: PDF(8762 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

With the rapid development of industry, volatile organic compounds (VOCs) are gaining attention as a class of pollutants that need to be eliminated due to their adverse effects on the environment and human health. Catalytic combustion is the most popular technology used for the removal of VOCs as it can be adapted to different organic emissions under mild conditions. This review first introduces the hazards of VOCs, their treatment technologies, and summarizes the treatment mechanism issues. Next, the characteristics and catalytic performance of perovskite oxides as catalysts for VOC removal are expounded, with a special focus on lattice distortions and surface defects caused by metal doping and surface modifications, and on the treatment of different VOCs. The challenges and the prospects regarding the design of perovskite oxides catalysts for the catalytic combustion of VOCs are also discussed. This review provides a reference base for improving the performance of perovskite catalysts to treat VOCs.

Keywords perovskite oxides      volatile organic compounds      catalytic combustion      reaction mechanism     
Corresponding Author(s): Junjiang Zhu,Xinying Liu   
About author:

Peng Lei and Charity Ngina Mwangi contributed equally to this work.

Just Accepted Date: 15 May 2023   Online First Date: 03 July 2023    Issue Date: 25 October 2023
 Cite this article:   
Shan Wang,Ping Xiao,Jie Yang, et al. Catalytic combustion of volatile organic compounds using perovskite oxides catalysts—a review[J]. Front. Chem. Sci. Eng., 2023, 17(11): 1649-1676.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-023-2324-x
https://academic.hep.com.cn/fcse/EN/Y2023/V17/I11/1649
TypeVOC
AliphaticEthane, propane, tetrane, ethylene, propylene
AromaticBenzene, toluene, xylene, styrene
Halogenated hydrocarbonsDichloromethane, chloroform, carbon dichloride
AlcoholsMethyl alcohol, ethanol, 3-methylbutane-1, butanol
Aldehyde and ketoneHCHO, acetaldehyde, acetone, 2-butanone
Ether and esterDiethyl ether, cresol, phenol
Acid and anhydrideAcetic acid, propionic acid, butyrate acid
Tab.1  Common types of VOCs
Fig.1  Relationship between VOCs, O3 and PM2.5.
Fig.2  VOCs removal methods. Reprinted with permission from Ref. [25], copyright 2022, Springer.
Processing methodTemperature/°CConcentration/ (mg·Nm–3)Discharge rate/ (Nm3·h–1)
Adsorption recovery<45100–1.5 × 104<6 × 104
Condensate recovery<150104–105<104
Catalytic combustion<5001000–1/4 LEL<4 × 104
Incineration<7001000–1/4 LEL<4 × 104
Biological treatment<45<1000<1.2 × 105
Plasma<80<500<3 × 104
Tab.2  Conditions used in common VOCs control technologies [40]
Type of combustionInitiation temperature/°CTreatment temperature/°CTechnological characteristics
Direct combustion600–9001000Wide applications, simple process, not suitable for treating low concentration exhaust gases, with NOx, SOx generation
Thermal combustion600–900540–820Wide applications, simple process, high energy consumption, expensive equipment, NOx, SOx generation
Catalytic combustion100–400250–450Wide applications, cost savings, purification high efficiency, generating less NOx, SOx
Tab.3  Comparison of different combustion processes [50]
Fig.3  Crystal structure of (a) the ideal ABO3-type perovskite oxides, (b) Ruddlesden–Popper (RP) series of layered perovskite oxides (An + 1BnO3n + 1), (c) A-site ordered double perovskite oxides (AA’B2O6) and (d) B-site ordered double perovskite oxides (A2BB’O6). Reprinted with permission from Ref. [73], copyright 2020, Royal Society of Chemistry.
CatalystVOCsConversion temperature/°CRef.
Bulk LaMnO3Toluene (200 ppm)265 (T90)[84]
15% LaMnO3/Y2O3-ZrO2Toluene (1000 ppm)247 (T100)[85]
LaNiO3Toluene (5000 ppm)250 (T90)[86]
Hollow spherical LaCoO3Toluene (1000 ppm)237 (T90)[87]
La2CoMnO6Toluene (1000 ppm)300 (T100)[88]
Cobalt-enriched LaCoO3Toluene (1000 ppm)206 (T90)[89]
SmMnO3Toluene (1000 ppm)270 (T100)[90]
La0.6Sr0.4CoO3-δToluene (4400 ppm)240 (T90)[91]
8% CoOx/La0.6Sr0.4CoO3Toluene (1000 ppm)227 (T90)[92]
6.4% Au/La0.6Sr0.4MnO3Toluene (1000 ppm)170 (T90)[93]
Tab.4  Survey of literature data on the catalytic oxidation of toluene at low temperature
Fig.4  (a) Migration and transformation mechanism of surface reactive oxygen in SmMnO3. Used with permission from [90], copyright 2019 American Chemical Society; (b) Preparation route of γ-MnO2/SmMnO3 catalyst. Reprinted with permission from Ref. [99], copyright 2019, Elsevier.
Fig.5  Catalytic mechanism and main reactive oxygen species of Lan+1NinO3n+1 layered perovskites for catalytic oxidation of methane and toluene. Reprinted with permission from Ref. [86], copyright 2016, American Chemical Society.
Fig.6  (a) Vacancy formation energies, (b) O atom desorption energy, (c) propane adsorption energies, and (d) propane dissociation on La and the Co-exposed surface. Reprinted with permission from Ref. [130], copyright 2022, Elsevier.
Fig.7  La0.8Sr0.2CoO3 perovskite modified using the oxalic acid etching as catalyst for propane oxidation. Reprinted with permission from Ref. [133], copyright 2021, Elsevier.
VOCsConcentration /ppmCatalystConversion temperature/°CRef.
Methane200003DOM La0.6Sr0.4MnO3665 (T90)[117]
10000La0.8Sr0.2CoO3600 (T90)[144]
Propane2500LaCoO3-D43309 (T90)[130]
1000La2NiMnO6415 (T90)[145]
1000La0.6Pb0.2Mg0.2MnO3350 (T90)[146]
Toluene500sc-LaMnO3225 (T90)[101]
1000La0.9Ca0.1CoO3-CA202 (T90)[147]
10008%CoOx/3DOM-La0.6Sr0.4CoO3227 (T90)[148]
EA1000La0.6Sr0.4CoO2.78170 (T90)[116]
1000LaMnO3.12235 (T100)[116]
1800LaCoO3205 (T90)[149]
CB1000La0.8Sr0.2MnO3291 (T90)[150]
600Cu0.2Mn0.1Ce0.7Ox336 (T95)[151]
1000La0.8MnO3410 (T90)[150]
VC1000La0.8Mg0.2MnO3235 (T90)[152]
1000LaFe0.2Mn0.8O3232 (T90)[153]
Tab.5  Perovskite oxides catalysts for catalytic combustion of VOCs
Fig.8  Scheme of the proposed catalytic reaction mechanism. Reprinted with permission from Ref. [144], copyright 2021, American Chemical Society.
Fig.9  (a) The catalytic activity of toluene oxidation over Ag substituted LaCoO3 catalysts (250, 450 and 700 represent the calculation temperatures, in °C). Reprinted with permission from Ref. [168], copyright 2019, Elsevier. (b) Schematic diagram of La0.9CoO3–δ catalytic oxidation of toluene. Reprinted with permission from Ref. [169], copyright 2023, Elsevier.
Fig.10  (a) Schematic illustration of SMO synthesis; (b) toluene conversion versus reaction temperature over SMO-N, SMO-G and SMO-B; (c) Arrhenius plots of the three samples used for toluene oxidation; (d) effect of weight hourly space velocity on toluene oxidation over SMO-N; (e) CO2 yield from toluene, benzene and o-xylene oxidation versus reaction temperature over SMO-N. Reprinted with permission from Ref. [170], copyright 2018, American Chemical Society.
Fig.11  (a) Product distribution after 6 h on stream for several Rh/perovskite catalysts; (b) product distribution of the catalytic test and ethanol conversion during 24 h of reaction for the Rh/LaAlO3 0.3% catalyst (right). Reprinted with permission from Ref. [175], copyright 2021, Elsevier.
Fig.12  (a) Configuration of intermediates and reaction cycle of HCHO oxidation on an Ag-LMO catalyst. Reprinted with permission from Ref. [178], copyright 2022, Elsevier. (b) Reaction mechanism of HCHO oxidation on La1–x(Sr, Na, K)xMnO3. Reprinted with permission from Ref. [179], copyright 2021, Elsevier.
Fig.13  (a) Possible major reaction pathways in the plasma removal of EA. Reprinted with permission from Ref. [190], copyright 2017, Elsevier. (b) Mechanism proposed for the catalytic oxidation of EA. Reprinted with permission from Ref. [149], copyright 2022, Elsevier.
Fig.14  Reaction mechanism pathways proposed for 1,2-DCP catalytic oxidation over LaMnO3 perovskite under oxygenated conditions and inert conditions. Reprinted with permission from Ref. [196], copyright 2021, Elsevier.
Fig.15  (a) Reaction energy profile and structures of intermediates; (b) The reaction cycle for CH2Cl2 elimination on LaMnO3(010) catalyst. Reprinted with permission from Ref. [200], copyright 2021, Elsevier.
1 X Li, L Zhang, Z Yang, P Wang, Y Yan, J Ran. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: a review. Separation and Purification Technology, 2020, 235(18): 116213
https://doi.org/10.1016/j.seppur.2019.116213
2 A Randazzo, M Asensio-Ramos, G V Melián, S Venturi, E Padrón, P A Hernández, N M Pérez, F Tassi. Volatile organic compounds (VOCs) in solid waste landfill cover soil: chemical and isotopic composition vs. degradation processes. Science of the Total Environment, 2020, 726(15): 138326
https://doi.org/10.1016/j.scitotenv.2020.138326
3 Z Ajmal, Y Naciri, M Ahmad, A Hsini, A Bouziani, M Laabd, W Raza, A Murtaza, A Kumar, S Ullah, A G Al-Sehemi, A A Al-Ghamdi, A Qadeer, A Hayat, R Djellabi. Use of conductive polymer-supported oxide-based photocatalysts for efficient VOCs & SVOCs removal in gas/liquid phase. Journal of Environmental Chemical Engineering, 2022, 11(1): 108935
https://doi.org/10.1016/j.jece.2022.108935
4 M Ghavami, M Aghbolaghy, J Soltan, N Chen. Room temperature oxidation of acetone by ozone over alumina-supported manganese and cobalt mixed oxides. Frontiers of Chemical Science and Engineering, 2020, 14(6): 937–947
https://doi.org/10.1007/s11705-019-1900-6
5 M S Kamal, S A Razzak, M M Hossain. Catalytic oxidation of volatile organic compounds (VOCs)—a review. Atmospheric Environment, 2016, 140: 117–134
https://doi.org/10.1016/j.atmosenv.2016.05.031
6 L Zhou, B Zhang, Z Li, X Zhang, R Liu, J Yun. Amorphous-microcrystal combined manganese oxides for efficiently catalytic combustion of VOCs. Molecular Catalysis, 2020, 489: 110920
https://doi.org/10.1016/j.mcat.2020.110920
7 R Contarino, S Brighina, B Fallico, G Cirvilleri, L Parafati, C Restuccia. Volatile organic compounds (VOCs) produced by biocontrol yeasts. Food Microbiology, 2019, 82: 70–74
https://doi.org/10.1016/j.fm.2019.01.008
8 S Dolai, S K Bhunia, S S Beglaryan, S Kolusheva, L Zeiri, R Jelinek. Colorimetric polydiacetylene-aerogel detector for volatile organic compounds (VOCs). ACS Applied Materials & Interfaces, 2017, 9(3): 2891–2898
https://doi.org/10.1021/acsami.6b14469
9 M J Salar-García, V M Ortiz-Martínez, F J Hernández-Fernández, los Ríos A P de, J Quesada-Medina. Ionic liquid technology to recover volatile organic compounds (VOCs). Journal of Hazardous Materials, 2017, 321(5): 484–499
https://doi.org/10.1016/j.jhazmat.2016.09.040
10 W Zhang, G Li, H Yin, K Zhao, H Zhao, T An. Adsorption and desorption mechanism of aromatic VOCs onto porous carbon adsorbents for emission control and resource recovery: recent progress and challenges. Environmental Science: Nano, 2022, 9(1): 81–104
https://doi.org/10.1039/D1EN00929J
11 T Gelles, A Krishnamurthy, B Adebayo, A Rownaghi, F Rezaei. Abatement of gaseous volatile organic compounds: a material perspective. Catalysis Today, 2020, 350(15): 3–18
https://doi.org/10.1016/j.cattod.2019.06.017
12 X Wu, R Han, Q Liu, Y Su, S Lu, L Yang, C Song, N Ji, D Ma, X Lu. A review of confined-structure catalysts in the catalytic oxidation of VOCs: synthesis, characterization, and applications. Catalysis Science & Technology, 2021, 11(16): 5374–5387
https://doi.org/10.1039/D1CY00478F
13 C Hu, Q Zhu, Z Jiang, L Chen, R Wu. Catalytic combustion of dilute acetone over Cu-doped ceria catalysts. Chemical Engineering Journal, 2009, 152(2): 583–590
https://doi.org/10.1016/j.cej.2009.05.033
14 Y Han, Y Wang, F Chai, J Ma, L Li. Biofilters for the co-treatment of volatile organic compounds and odors in a domestic waste landfill site. Journal of Cleaner Production, 2020, 277(20): 124012
https://doi.org/10.1016/j.jclepro.2020.124012
15 N S Alharbi, B Hu, T Hayat, S O Rabah, A Alsaedi, L Zhuang, X Wang. Efficient elimination of environmental pollutants through sorption-reduction and photocatalytic degradation using nanomaterials. Frontiers of Chemical Science and Engineering, 2020, 14(6): 1124–1135
https://doi.org/10.1007/s11705-020-1923-z
16 J E Lee, Y S Ok, D C W Tsang, J Song, S Jung, Y Park. Recent advances in volatile organic compounds abatement by catalysis and catalytic hybrid processes: a critical review. Science of the Total Environment, 2020, 719(1): 137405
https://doi.org/10.1016/j.scitotenv.2020.137405
17 C Shrubsole, S Dimitroulopoulou, K Foxall, B Gadeberg, A Doutsi. IAQ guidelines for selected volatile organic compounds (VOCs) in the UK. Building and Environment, 2019, 165: 106382
https://doi.org/10.1016/j.buildenv.2019.106382
18 X Zhang, B Gao, J Fang, W Zou, L Dong, C Cao, J Zhang, Y Li, H Wang. Chemically activated hydrochar as an effective adsorbent for volatile organic compounds (VOCs). Chemosphere, 2019, 218: 680–686
https://doi.org/10.1016/j.chemosphere.2018.11.144
19 J Zhang, X Xu, S Zhao, X Meng, F Xiao. Recent advances of zeolites in catalytic oxidations of volatile organic compounds. Catalysis Today, 2022, 410(5): 56–67
20 X Huang, D Han, J Cheng, X Chen, Y Zhou, H Liao, W Dong, C Yuan. Characteristics and health risk assessment of volatile organic compounds (VOCs) in restaurants in Shanghai. Environmental Science and Pollution Research International, 2020, 27(1): 490–499
https://doi.org/10.1007/s11356-019-06881-6
21 W Liao, Z Liang, Y Yu, G Li, Y Li, T An. Pollution profiles, removal performance and health risk reduction of malodorous volatile organic compounds emitted from municipal leachate treating process. Journal of Cleaner Production, 2021, 315(15): 128141
https://doi.org/10.1016/j.jclepro.2021.128141
22 R Li, J Yuan, X Li, S Zhao, W Lu, H Wang, Y Zhao. Health risk assessment of volatile organic compounds (VOCs) emitted from landfill working surface via dispersion simulation enhanced by probability analysis. Environmental Pollution, 2023, 316(1): 120535
https://doi.org/10.1016/j.envpol.2022.120535
23 I Paciência, J Madureira, J Rufo, A Moreira, E Fernandes. A systematic review of evidence and implications of spatial and seasonal variations of volatile organic compounds (VOC) in indoor human environments. Journal of Toxicology and Environmental Health: Part B, 2016, 19(2): 47–64
https://doi.org/10.1080/10937404.2015.1134371
24 L Xuan, Y Ma, Y Xing, Q Meng, J Song, T Chen, H Wang, P Wang, Y Zhang, P Gao. Source, temporal variation and health risk of volatile organic compounds (VOCs) from urban traffic in harbin, China. Environmental Pollution, 2021, 270(1): 116074
https://doi.org/10.1016/j.envpol.2020.116074
25 X Li, Y Niu, H Su, Y Qi. Simple thermocatalytic oxidation degradation of VOCs. Catalysis Letters, 2022, 152(6): 1801–1818
https://doi.org/10.1007/s10562-021-03770-x
26 Y Zhang, J Qi, Y Sun, Z Zhu, C Wang, X Sun, J Li. Anchoring nanosized MOFs at the interface of porous millimeter beads and their enhanced adsorption mechanism for VOCs. Journal of Cleaner Production, 2022, 353(15): 131631
https://doi.org/10.1016/j.jclepro.2022.131631
27 X Shen, X Du, D Yang, J Ran, Z Yang, Y Chen. Influence of physical structures and chemical modification on VOCs adsorption characteristics of molecular sieves. Journal of Environmental Chemical Engineering, 2021, 9(6): 106729
https://doi.org/10.1016/j.jece.2021.106729
28 B Chen, Y Dai, X Ruan, Y Xi, G He. Integration of molecular dynamic simulation and free volume theory for modeling membrane VOC/gas separation. Frontiers of Chemical Science and Engineering, 2018, 12(2): 296–305
https://doi.org/10.1007/s11705-018-1701-3
29 A Cabanes, A Fullana. New methods to remove volatile organic compounds from post-consumer plastic waste. Science of the Total Environment, 2021, 758(1): 144066
https://doi.org/10.1016/j.scitotenv.2020.144066
30 Y Yan, M Wang, B Jin, J Yang, S Li. Performance evaluation and microbial community analysis of the biofilter for removing grease and volatile organic compounds in the kitchen exhaust fume. Bioresource Technology, 2021, 319: 124132
https://doi.org/10.1016/j.biortech.2020.124132
31 Gómez J I Salazar, H Lohmann, J Krassowski. Determination of volatile organic compounds from biowaste and co-fermentation biogas plants by single-sorbent adsorption. Chemosphere, 2016, 153: 48–57
https://doi.org/10.1016/j.chemosphere.2016.02.128
32 P Li, S Kim, J Jin, H C Do, J H Park. Efficient photodegradation of volatile organic compounds by iron-based metal-organic frameworks with high adsorption capacity. Applied Catalysis B: Environmental, 2020, 263: 118284
https://doi.org/10.1016/j.apcatb.2019.118284
33 L Zhu, D Shen, K Luo. A critical review on VOCs adsorption by different porous materials: species, mechanisms and modification methods. Journal of Hazardous Materials, 2020, 389(5): 122102
https://doi.org/10.1016/j.jhazmat.2020.122102
34 Y Yan, P Huang, H Zhang. Preparation and characterization of novel carbon molecular sieve membrane/PSSF composite by pyrolysis method for toluene adsorption. Frontiers of Chemical Science and Engineering, 2019, 13(4): 772–783
https://doi.org/10.1007/s11705-019-1827-y
35 L Bo, S Sun. Microwave-assisted catalytic oxidation of gaseous toluene with a Cu–Mn–Ce/cordierite honeycomb catalyst. Frontiers of Chemical Science and Engineering, 2019, 13(2): 385–392
https://doi.org/10.1007/s11705-018-1738-3
36 Y Wang, Y Dou, Z Wu, Y Tian, Y Xiong, J Zhao, D Fang, F Huang, Y Cheng, J Zhong. Ultrafast-laser-treated poly(3,4-ethylenedioxythiophene): poly (styrenesulfonate) electrodes with enhanced conductivity and transparency for semitransparent perovskite solar cells. Frontiers of Chemical Science and Engineering, 2023, 17(2): 206–216
https://doi.org/10.1007/s11705-022-2203-x
37 C Ye, T Fang, X Long, H Wang, S Chen, J Zhou. Non-thermal plasma synthesis of supported Cu–Mn–Ce mixed oxide catalyst towards highly improved catalytic performance for volatile organic compound oxidation. Environmental Science and Pollution Research International, 2022, 30(5): 11994–12004
https://doi.org/10.1007/s11356-022-23000-0
38 M Krichevskaya, S Preis, A Moiseev, N Pronina, J Deubener. Gas-phase photocatalytic oxidation of refractory VOCs mixtures: through the net of process limitations. Catalysis Today, 2017, 280(1): 93–98
https://doi.org/10.1016/j.cattod.2016.03.041
39 J Zhang, Y Hu, J Qin, Z Yang, M Fu. TiO2-UiO-66-NH2 nanocomposites as efficient photocatalysts for the oxidation of VOCs. Chemical Engineering Journal, 2020, 385(1): 123814
https://doi.org/10.1016/j.cej.2019.123814
40 Y Wang, L Ding, Q Shi, S Liu, L Qian, Z Yu, H Wang, J Lei, Z Gao, H Long, C Charles Xu. Volatile organic compounds (VOC) emissions control in iron ore sintering process: recent progress and future development. Chemical Engineering Journal, 2022, 448(15): 137601
https://doi.org/10.1016/j.cej.2022.137601
41 Q Wang, K L Yeung, M A Bañares. Ceria and its related materials for VOC catalytic combustion: a review. Catalysis Today, 2020, 356(1): 141–154
https://doi.org/10.1016/j.cattod.2019.05.016
42 C Lu, M Wey. Simultaneous removal of VOC and NO by activated carbon impregnated with transition metal catalysts in combustion flue gas. Fuel Processing Technology, 2007, 88(6): 557–567
https://doi.org/10.1016/j.fuproc.2007.01.004
43 J Hermia, S Vigneron. Catalytic incineration for odour abatement and VOC destruction. Catalysis Today, 1993, 17(1–2): 349–358
https://doi.org/10.1016/0920-5861(93)80038-3
44 M Abidi, A Hajjaji, A Bouzaza, K Trablesi, H Makhlouf, S Rtimi, A Assadi, B Bessais. Simultaneous removal of bacteria and volatile organic compounds on Cu2O-NPs decorated TiO2 nanotubes: competition effect and kinetic studies. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 400(1): 112722
https://doi.org/10.1016/j.jphotochem.2020.112722
45 S Kim, A Kirakosyan, J Choi, J H Kim. Detection of volatile organic compounds (VOCs), aliphatic amines, using highly fluorescent organic-inorganic hybrid perovskite nanoparticles. Dyes and Pigments, 2017, 147: 1–5
https://doi.org/10.1016/j.dyepig.2017.07.066
46 M A Campesi, C D Luzi, G F Barreto, O M Martínez. Evaluation of an adsorption system to concentrate VOC in air streams prior to catalytic incineration. Journal of Environmental Management, 2015, 154(1): 216–224
https://doi.org/10.1016/j.jenvman.2015.02.028
47 L Yang, Y Li, Y Sun, W Wang, Z Shao. Perovskite oxides in catalytic combustion of volatile organic compounds: recent advances and future prospects. Energy & Environmental Materials, 2021, 5(3): 751–776
https://doi.org/10.1002/eem2.12256
48 B M Ribeiro, J F Pinto, R S Suppino, L Marçola, R Landers, E Tomaz. Catalytic oxidation at pilot-scale: efficient degradation of volatile organic compounds in gas phase. Journal of Hazardous Materials, 2019, 365(5): 581–589
https://doi.org/10.1016/j.jhazmat.2018.11.030
49 C He, J Cheng, X Zhang, M Douthwaite, S Pattisson, Z Hao. Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources. Chemical Reviews, 2019, 119(7): 4471–4568
https://doi.org/10.1021/acs.chemrev.8b00408
50 K Li, X Luo. Research progress on catalytic combustion of volatile organic compounds in industrial waste gas. Catalysts, 2023, 13(2): 268
https://doi.org/10.3390/catal13020268
51 Y Hosono, H Saito, T Higo, K Watanabe, K Ito, H Tsuneki, S Maeda, K Hashimoto, Y Sekine. Co-CeO2 interaction induces the Mars-van Krevelen mechanism in dehydrogenation of ethane. Journal of Physical Chemistry C, 2021, 125(21): 11411–11418
https://doi.org/10.1021/acs.jpcc.1c02855
52 J Liu, X Li, R Li, Q Zhao, J Ke, H Xiao, L Wang, S Liu, M Tadé, S Wang. Facile synthesis of tube-shaped Mn-Ni-Ti solid solution and preferable Langmuir-Hinshelwood mechanism for selective catalytic reduction of NOx by NH3. Applied Catalysis A: General, 2018, 549(5): 289–301
https://doi.org/10.1016/j.apcata.2017.10.010
53 L Song, H Yue, K Ma, W Liu, W Tian, C Liu, S Tang, B Liang. FeSTi superacid catalyst for NH3-SCR with superior resistance to metal poisons in flue gas. ACS Sustainable Chemistry & Engineering, 2020, 8(45): 16878–16888
https://doi.org/10.1021/acssuschemeng.0c05940
54 K Toko, K Ito, H Saito, Y Hosono, K Murakami, S Misaki, T Higo, S Ogo, H Tsuneki, S Maeda, K Hashimoto, H Nakai, Y Sekine. Catalytic dehydrogenation of ethane over doped perovskite via the Mars-van Krevelen mechanism. Journal of Physical Chemistry C, 2020, 124(19): 10462–10469
https://doi.org/10.1021/acs.jpcc.0c00138
55 M Cheng, B Jiang, S Yao, J Han, S Zhao, X Tang, J Zhang, T Wang. Mechanism of NH3 selective catalytic reduction reaction for NOx removal from diesel engine exhaust and hydrothermal stability of Cu–Mn/zeolite catalysts. Journal of Physical Chemistry C, 2018, 122(1): 455–464
https://doi.org/10.1021/acs.jpcc.7b09339
56 S Yue, C Wu, K Li. A new insight on the NO-CO reaction at the electronic level: homogeneous, E–R, and L–H mechanisms. Journal of Molecular Modeling, 2022, 29(1): 26
https://doi.org/10.1007/s00894-022-05416-0
57 J Kong, T Yang, Z Rui, H Ji. Perovskite-based photocatalysts for organic contaminants removal: current status and future perspectives. Catalysis Today, 2019, 327(1): 47–63
https://doi.org/10.1016/j.cattod.2018.06.045
58 Z Fu, L Liu, Y Song, Q Ye, S Cheng, T Kang, H Dai. Catalytic oxidation of carbon monoxide, toluene, and ethyl acetate over the xPd/OMS-2 catalysts: effect of Pd loading. Frontiers of Chemical Science and Engineering, 2017, 11(2): 185–196
https://doi.org/10.1007/s11705-017-1631-5
59 A Rastegarpanah, F Meshkani, Y Liu, J Deng, L Jing, W Pei, K Zhang, Z Hou, Z Han, M Rezaei, H Dai. Toluene oxidation over the M–Al (M = Ce, La, Co, Ce–La, and Ce–Co) catalysts derived from the modified “One-Pot” evaporation-induced self-assembly method: effects of microwave or ultrasound irradiation and noble-metal loading on catalytic activity and stability. Industrial & Engineering Chemistry Research, 2020, 59(13): 5624–5635
https://doi.org/10.1021/acs.iecr.9b06306
60 S A C Carabineiro, X Chen, O Martynyuk, N Bogdanchikova, M Avalos-Borja, A Pestryakov, P B Tavares, J J M Órfão, M F R Pereira, J L Figueiredo. Gold supported on metal oxides for volatile organic compounds total oxidation. Catalysis Today, 2015, 244(15): 103–114
https://doi.org/10.1016/j.cattod.2014.06.034
61 H Yang, J Deng, S Xie, Y Jiang, H Dai, C T Au. Au/MnOx/3DOM SiO2: highly active catalysts for toluene oxidation. Applied Catalysis A: General, 2015, 507: 139–148
https://doi.org/10.1016/j.apcata.2015.09.043
62 B Z Lou, N Shakoor, M Adeel, P Zhang, L L Huang, Y W Zhao, W C Zhao, Y Q Jiang, Y K Rui. Catalytic oxidation of volatile organic compounds by non-noble metal catalyst: current advancement and future prospectives. Journal of Cleaner Production, 2022, 363(20): 132523
https://doi.org/10.1016/j.jclepro.2022.132523
63 R J H Voorhoeve, D W Jr Johnson, J P Remeika, P K Gallagher. Perovskite oxides: materials science in catalysis. Science, 1977, 195(4281): 827–833
https://doi.org/10.1126/science.195.4281.827
64 K S De, M R Balasubramanian. Cubic hypovanadate perovskite as an oxidation catalyst. Journal of Catalysis, 1983, 81(2): 482–484
https://doi.org/10.1016/0021-9517(83)90187-2
65 S Irusta, M P Pina, M Menéndez, J Santamaría. Development and application of perovskite‐based catalytic membrane reactors. Catalysis Letters, 1998, 54(1): 69–78
https://doi.org/10.1023/A:1019003216521
66 Y Sun, Z Liu, W Zhang, X Chu, Y Cong, K Huang, S Feng. Unfolding B–O–B bonds for an enhanced ORR performance in ABO3‐type perovskites. Small, 2019, 15(29): 1803513
https://doi.org/10.1002/smll.201803513
67 S Wang, X Xu, J Zhu, D Tang, Z Zhao. Effect of preparation method on physicochemical properties and catalytic performances of LaCoO3 perovskite for CO oxidation. Journal of Rare Earths, 2019, 37(9): 970–977
https://doi.org/10.1016/j.jre.2018.11.011
68 M Capdevila-Cortada. Describing perovskite catalysts. Nature Catalysis, 2018, 1(10): 737
https://doi.org/10.1038/s41929-018-0173-7
69 J Zhu, H Li, L Zhong, P Xiao, X Xu, X Yang, Z Zhao, J Li. Perovskite oxides: preparation, characterizations, and applications in heterogeneous catalysis. ACS Catalysis, 2014, 4(9): 2917–2940
https://doi.org/10.1021/cs500606g
70 T Jia, Z Zeng, H Q Lin, Y Duan, P Ohodnicki. First-principles study on the electronic, optical and thermodynamic properties of ABO3 (A = La, Sr, B = Fe, Co) perovskites. RSC Advances, 2017, 7(62): 38798–38804
https://doi.org/10.1039/C7RA06542F
71 Q Zhao, Y Zheng, C Song, Q Liu, N Ji, D Ma, X Lu. Novel monolithic catalysts derived from in-situ decoration of Co3O4 and hierarchical Co3O4@MnOx on Ni foam for VOC oxidation. Applied Catalysis B: Environmental, 2020, 265(15): 118552
https://doi.org/10.1016/j.apcatb.2019.118552
72 J G Lee, A B Naden, C D Savaniu, P A Connor, J L M Payne, J Skelton, A S Gibbs, J C Hui, S Parker, J T S Irvine. Use of interplay between A-site non-stoichiometry and hdroxide doping to deliver novel proton-conducting perovskite oxides. Advanced Energy Materials, 2021, 11(37): 2101337
https://doi.org/10.1002/aenm.202101337
73 Q Ji, L Bi, J Zhang, H Cao, X Zhao. The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction. Energy & Environmental Science, 2020, 13(5): 1408–1428
https://doi.org/10.1039/D0EE00092B
74 V M Goldschmidt. Die gesetze der krystallochemie. Naturwissenschaften, 1926, 14(21): 477–485
https://doi.org/10.1007/BF01507527
75 J Hwang, Z Feng, N Charles, X Wang, D Lee, K A Stoerzinger, S Muy, R R Rao, D Lee, R Jacobs, D Morgan, Y Shao-Horn. Tuning perovskite oxides by strain: electronic structure, properties, and functions in (electro)catalysis and ferroelectricity. Materials Today, 2019, 31: 100–118
https://doi.org/10.1016/j.mattod.2019.03.014
76 P R Neha, R Prasad, S V Singh. Singh S V. A review on catalytic oxidation of soot emitted from diesel fuelled engines. Journal of Environmental Chemical Engineering, 2020, 8(4): 103945
https://doi.org/10.1016/j.jece.2020.103945
77 Z Wu, L Wang, Y Hu, H Han, X Li, Y Wang. The preparation, characterization, and catalytic performance of porous fibrous LaFeO3 perovskite made from a sunflower seed shell template. Frontiers of Chemical Science and Engineering, 2020, 14(6): 967–975
https://doi.org/10.1007/s11705-020-1922-0
78 F Polo-Garzon, Z Wu. Acid-base catalysis over perovskites: a review. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(7): 2877–2894
https://doi.org/10.1039/C7TA10591F
79 Z Dai, D Li, Z Ao, S Wang, T An. Theoretical exploration of VOCs removal mechanism by carbon nanotubes through persulfate-based advanced oxidation processes: adsorption and catalytic oxidation. Journal of Hazardous Materials, 2021, 405(5): 124684
https://doi.org/10.1016/j.jhazmat.2020.124684
80 M Retuerto, F Calle-Vallejo, L Pascual, G Lumbeeck, M T Fernandez-Diaz, M Croft, J Gopalakrishnan, M A Peña, J Hadermann, M Greenblatt, S Rojas. La1.5Sr0.5NiMn0.5Ru0.5O6 double perovskite with enhanced ORR/OER bifunctional catalytic activity. ACS Applied Materials & Interfaces, 2019, 11(24): 21454–21464
https://doi.org/10.1021/acsami.9b02077
81 C Li, Y Wang, C Jin, J Lu, J Sun, R Yang. Prepation of perovskite oxides/(CoFe)P2 heterointerfaces to improve oxygen evolution activity of La0.8Sr1.2Co0.2Fe0.8O4+δ layered perovskite oxide. International Journal of Hydrogen Energy, 2020, 45(43): 22959–22964
https://doi.org/10.1016/j.ijhydene.2020.06.044
82 D R van der Vaart, E G Marchand, A Bagely-Pride. Thermal and catalytic incineration of volatile organic compounds. Critical Reviews in Environmental Science and Technology, 1994, 24(3): 203–236
https://doi.org/10.1080/10643389409388466
83 Y Zheng, Y Chen, E Wu, X Liu, B Huang, H Xue, C Cao, Y Luo, Q Qian, Q Chen. Amorphous boron dispersed in LaCoO3 with large oxygen vacancies for efficient catalytic propane oxidation. Chemistry, 2021, 27(14): 4738–4745
https://doi.org/10.1002/chem.202004848
84 Q Cheng, K Kang, Y Li, J Wang, Z Wang, D Selishchev, X Wang, G Zhang. Achieving efficient toluene mineralization over ordered porous LaMnO3 catalyst: the synergistic effect of high valence manganese and surface lattice oxygen. Applied Surface Science, 2023, 615(1): 156248
https://doi.org/10.1016/j.apsusc.2022.156248
85 A Giroir-Fendler, M Alves-Fortunato, M Richard, C Wang, J A Díaz, S Gil, C Zhang, F Can, N Bion, Y Guo. Synthesis of oxide supported LaMnO3 perovskites to enhance yields in toluene combustion. Applied Catalysis B: Environmental, 2016, 180: 29–37
https://doi.org/10.1016/j.apcatb.2015.06.005
86 Q Meng, W Wang, X Weng, Y Liu, H Wang, Z Wu. Active oxygen species in Lan+1NinO3n+1 layered perovskites for catalytic oxidation of toluene and methane. Journal of Physical Chemistry C, 2016, 120(6): 3259–3266
https://doi.org/10.1021/acs.jpcc.5b08703
87 X Weng, W Wang, Q Meng, Z Wu. An ultrafast approach for the syntheses of defective nanosized lanthanide perovskites for catalytic toluene oxidation. Catalysis Science & Technology, 2018, 8(17): 4364–4372
https://doi.org/10.1039/C8CY01000E
88 K Pan, G Pan, S Chong, M Chang. Removal of VOCs from gas streams with double perovskite-type catalysts. Journal of Environmental Sciences (China), 2018, 69: 205–216
https://doi.org/10.1016/j.jes.2017.10.012
89 H Chen, W Cui, D Li, Q Tian, J He, Q Liu, X Chen, M Cui, X Qiao, Z Zhang, J Tang, Z Fei. Selectively etching lanthanum to engineer surface cobalt-enriched LaCoO3 perovskite catalysts for toluene combustion. Industrial & Engineering Chemistry Research, 2020, 59(23): 10804–10812
https://doi.org/10.1021/acs.iecr.0c01182
90 L Liu, J Sun, J Ding, Y Zhang, J Jia, T Sun. Catalytic oxidation of VOCs over SmMnO3 perovskites: catalyst synthesis, change mechanism of active species, and degradation path of toluene. Inorganic Chemistry, 2019, 58(20): 14275–14283
https://doi.org/10.1021/acs.inorgchem.9b02518
91 S Rousseau, S Loridant, P Delichere, A Boreave, J P Deloume, Vernoux La. P1−xSrxCo1−yFeyO3 perovskites prepared by sol–gel method: characterization and relationships with catalytic properties for total oxidation of toluene. Applied Catalysis B: Environmental, 2009, 88(3): 438–447
https://doi.org/10.1016/j.apcatb.2008.10.022
92 Y Liu, H Dai, Y Du, J Deng, L Zhang, Z Zhao, C T Au. Controlled preparation and high catalytic performance of three-dimensionally ordered macroporous LaMnO3 with nanovoid skeletons for the combustion of toluene. Journal of Catalysis, 2012, 287: 149–160
https://doi.org/10.1016/j.jcat.2011.12.015
93 Y Jiang, S Xie, H Yang, J Deng, Y Liu, H Dai. Mn3O4-Au/3DOM La0.6Sr0.4CoO3: high-performance catalysts for toluene oxidation. Catalysis Today, 2017, 281(3): 437–446
https://doi.org/10.1016/j.cattod.2016.05.012
94 J Zhang, D Tan, Q Meng, X Weng, Z Wu. Structural modification of LaCoO3 perovskite for oxidation reactions: the synergistic effect of Ca2+ and Mg2+ co-substitution on phase formation and catalytic performance. Applied Catalysis B: Environmental, 2015, 172–173: 18–26
https://doi.org/10.1016/j.apcatb.2015.02.006
95 P Xiao, J Zhu, H Li, W Jiang, T Wang, Y Zhu, Y Zhao, J Li. Effect of textural structure on the catalytic performance of LaCoO3 for CO oxidation. ChemCatChem, 2014, 6(6): 1774–1781
https://doi.org/10.1002/cctc.201402064
96 Y Jing, N R Aluru. The role of A-site ion on proton diffusion in perovskite oxides (ABO3). Journal of Power Sources, 2020, 445(1): 227327
https://doi.org/10.1016/j.jpowsour.2019.227327
97 P Xiao, X Xu, J Zhu, Y Zhu. In situ generation of perovskite oxides and carbon composites: a facile, effective and generalized route to prepare catalysts with improved performance. Journal of Catalysis, 2020, 383: 88–96
https://doi.org/10.1016/j.jcat.2020.01.007
98 Y Sim, D Kwon, S An, J Ha, T S Oh, J C Jung. Catalytic behavior of ABO3 perovskites in the oxidative coupling of methane. Molecular Catalysis, 2020, 489: 110925
https://doi.org/10.1016/j.mcat.2020.110925
99 L Liu, J Li, H Zhang, L Li, P Zhou, X Meng, M Guo, J Jia, T Sun. In situ fabrication of highly active γ-MnO2/SmMnO3 catalyst for deep catalytic oxidation of gaseous benzene, ethylbenzene, toluene, and o-xylene. Journal of Hazardous Materials, 2019, 362(15): 178–186
https://doi.org/10.1016/j.jhazmat.2018.09.012
100 H Huang, Y Liu, W Tang, Y Chen. Catalytic activity of nanometer La1−xSrxCoO3 (x = 0, 0.2) perovskites towards VOCs combustion. Catalysis Communications, 2008, 9(1): 55–59
https://doi.org/10.1016/j.catcom.2007.05.004
101 Y Liu, H Dai, J Deng, L Zhang, Z Zhao, X Li, Y Wang, S Xie, H Yang, G Guo. Controlled generation of uniform spherical LaMnO3, LaCoO3, Mn2O3, and Co3O4 nanoparticles and their high catalytic performance for carbon monoxide and toluene oxidation. Inorganic Chemistry, 2013, 52(15): 8665–8676
https://doi.org/10.1021/ic400832h
102 Y Liu, H Dai, Y Du, J Deng, L Zhang, Z Zhao. Lysine-aided PMMA-templating preparation and high performance of three-dimensionally ordered macroporous LaMnO3 with mesoporous walls for the catalytic combustion of toluene. Applied Catalysis B: Environmental, 2012, 119–120(30): 20–31
https://doi.org/10.1016/j.apcatb.2012.02.010
103 R Pereñíguez, J L Hueso, J P Holgado, F Gaillard, A Caballero. Reactivity of LaNi1−yCoyO3−δ perovskite systems in the deep oxidation of toluene. Catalysis Letters, 2009, 131(1): 164–169
https://doi.org/10.1007/s10562-009-9968-0
104 Y Ding, S Wang, L Zhang, Z Chen, M Wang, S Wang. A facile method to promote LaMnO3 perovskite catalyst for combustion of methane. Catalysis Communications, 2017, 97: 88–92
https://doi.org/10.1016/j.catcom.2017.04.022
105 Y Zhou, H Lu, H Zhang, Y Chen. Catalytic properties of LaBO3 perovskite catalysts in VOCs combustion. China Environmental Science, 2012, 32: 1772–1777 (in Chinese)
106 M Wu, S Chen, W Xiang. Oxygen vacancy induced performance enhancement of toluene catalytic oxidation using LaFeO3 perovskite oxides. Chemical Engineering Journal, 2020, 387: 124101
https://doi.org/10.1016/j.cej.2020.124101
107 T Oshima, T Yokoi, M Eguchi, K Maeda. Synthesis and photocatalytic activity of K2CaNaNb3O10, a new Ruddlesden-Popper phase layered perovskite. Dalton Transactions, 2017, 46(32): 10594–10601
https://doi.org/10.1039/C6DT04872B
108 S Liu, C Sun, J Chen, J Xiao, J Luo. A high-performance Ruddlesden-Popper perovskite for bifunctional oxygen electrocatalysis. ACS Catalysis, 2020, 10(22): 13437–13444
https://doi.org/10.1021/acscatal.0c02838
109 X Du, G Zou, X Wang. Low-temperature synthesis of Ruddlesden-Popper type layered perovskite LaxCa3−xMn2O7 for methane combustion. Catalysis Surveys from Asia, 2015, 19(1): 17–24
https://doi.org/10.1007/s10563-014-9178-7
110 M Wu, H Li, S Ma, S Chen, W Xiang. Boosting the surface oxygen activity for high performance iron-based perovskite oxide. Science of the Total Environment, 2021, 795(15): 148904
https://doi.org/10.1016/j.scitotenv.2021.148904
111 E A Pogue, J Bond, C Imperato, J B S Abraham, N Drichko, T M McQueen. A gold(I) oxide double perovskite: Ba2AuIO6. Journal of the American Chemical Society, 2021, 143(45): 19033–19042
https://doi.org/10.1021/jacs.1c08241
112 U Kumar, S Upadhyay, P A Alvi. Study of reaction mechanism, structural, optical and oxygen vacancy-controlled luminescence properties of Eu-modified Sr2SnO4 Ruddlesden popper oxide. Physica B: Condensed Matter, 2021, 604(1): 412708
https://doi.org/10.1016/j.physb.2020.412708
113 A Schön, J P Dacquin, C Dujardin, P Granger. Catalytic activity and thermal stability of LaFe1−xCuxO3 and La2CuO4 perovskite solids in three-way-catalysis. Topics in Catalysis, 2017, 60(3): 300–306
https://doi.org/10.1007/s11244-016-0615-x
114 X Du, G Zou, Y Zhang, X Wang. A novel strategy for low-temperature synthesis of Ruddlesden-Popper type layered perovskite La3Mn2O7+δ for methane combustion. Journal of Materials Chemistry A, 2013, 1(29): 8411–8416
https://doi.org/10.1039/c3ta11129f
115 Y Wang, Y Xue, C Zhao, D Zhao, F Liu, K Wang, D D Dionysiou. Catalytic combustion of toluene with La0.8Ce0.2MnO3 supported on CeO2 with different morphologies. Chemical Engineering Journal, 2016, 300(15): 300–305
https://doi.org/10.1016/j.cej.2016.04.007
116 J Niu, J Deng, W Liu, L Zhang, G Wang, H Dai, H He, X Zi. Nanosized perovskite-type oxides La1−xSrxMO3−δ (M = Co, Mn; x = 0, 0.4) for the catalytic removal of ethylacetate. Catalysis Today, 2007, 126(3): 420–429
https://doi.org/10.1016/j.cattod.2007.06.027
117 H Arandiyan, H Dai, J Deng, Y Liu, B Bai, Y Wang, X Li, S Xie, J Li. Three-dimensionally ordered macroporous La0.6Sr0.4MnO3 with high surface areas: active catalysts for the combustion of methane. Journal of Catalysis, 2013, 307: 327–339
https://doi.org/10.1016/j.jcat.2013.07.013
118 H A Pérez, C A López, L E Cadús, F N Agüero. Catalytic feasibility of Ce-doped LaCoO3 systems for chlorobenzene oxidation: an analysis of synthesis method. Journal of Rare Earths, 2021, 40(6): 897–905
https://doi.org/10.1016/j.jre.2021.06.004
119 F He, J Chen, S Liu, Z Huang, G Wei, G Wang, Y Cao, K Zhao. La1–xSrxFeO3 perovskite-type oxides for chemical-looping steam methane reforming: identification of the surface elements and redox cyclic performance. International Journal of Hydrogen Energy, 2019, 44(21): 10265–10276
https://doi.org/10.1016/j.ijhydene.2019.03.002
120 M Liu, X Yang, Z Tian, H Wang, L Yin, J Chen, Q Guan, H Yang, Q Zhang. Insights into the role of strontium in catalytic combustion of toluene over La1−xSrxCoO3 perovskite catalysts. Physical Chemistry Chemical Physics, 2022, 24(6): 3686–3694
https://doi.org/10.1039/D1CP04224F
121 C Zhang, C Wang, W Zhan, Y Guo, Y Guo, G Lu, A Baylet, A Giroir-Fendler. Catalytic oxidation of vinyl chloride emission over LaMnO3 and LaB0.2Mn0.8O3 (B = Co, Ni, Fe) catalysts. Applied Catalysis B: Environmental, 2013, 129: 509–516
https://doi.org/10.1016/j.apcatb.2012.09.056
122 J Shao, G Zeng, Y Li. Effect of Zn substitution to a LaNiO3−δ perovskite structured catalyst in ethanol steam reforming. International Journal of Hydrogen Energy, 2017, 42(27): 17362–17375
https://doi.org/10.1016/j.ijhydene.2017.04.066
123 F Zhang, X Zhang, G Jiang, N Li, Z Hao, S Qu. H2S selective catalytic oxidation over Ce substituted La1−xCexFeO3 perovskite oxides catalyst. Chemical Engineering Journal, 2018, 348(15): 831–839
https://doi.org/10.1016/j.cej.2018.05.050
124 S Gao, N Liu, J Liu, W Chen, X Liang, Y Yuan. Synthesis of higher alcohols by CO hydrogenation over catalysts derived from LaCo1–xMnxO3 perovskites: effect of the partial substitution of Co by Mn. Fuel, 2020, 261(1): 116415
https://doi.org/10.1016/j.fuel.2019.116415
125 J Seguel, E Leal, X Zarate, M Saavedra-Torres, E Schott, de León J N Díaz, E Blanco, N Escalona, G Pecchi, C Sepúlveda. Conversion of levulinic acid over Ag substituted LaCoO3 perovskite. Fuel, 2021, 301(1): 121071
https://doi.org/10.1016/j.fuel.2021.121071
126 Y Liu, M Siron, D Lu, J Yang, R dos Reis, F Cui, M Gao, M Lai, J Lin, Q Kong, T Lei, J Kang, J Jin, J Ciston, P Yang. Self-assembly of two-dimensional perovskite nanosheet building blocks into ordered Ruddlesden-Popper perovskite phase. Journal of the American Chemical Society, 2019, 141(33): 13028–13032
https://doi.org/10.1021/jacs.9b06889
127 H Arandiyan, Y Wang, H Sun, M Rezaei, H Dai. Ordered meso- and macroporous perovskite oxide catalysts for emerging applications. Chemical Communications, 2018, 54(50): 6484–6502
https://doi.org/10.1039/C8CC01239C
128 L Zhao, Y Huang, J Zhang, L Jiang, Y Wang. Al2O3-modified CuO-CeO2 catalyst for simultaneous removal of NO and toluene at wide temperature range. Chemical Engineering Journal, 2020, 397(1): 125419
https://doi.org/10.1016/j.cej.2020.125419
129 Y Liu, J Deng, S Xie, Z Wang, H Dai. Catalytic removal of volatile organic compounds using ordered porous transition metal oxide and supported noble metal catalysts. Chinese Journal of Catalysis, 2016, 37(8): 1193–1205
https://doi.org/10.1016/S1872-2067(16)62457-9
130 C Feng, Q Gao, G Xiong, Y Chen, Y Pan, Z Fei, Y Li, Y Lu, C Liu, Y Liu. Defect engineering technique for the fabrication of LaCoO3 perovskite catalyst via urea treatment for total oxidation of propane. Applied Catalysis B: Environmental, 2022, 304: 121005
https://doi.org/10.1016/j.apcatb.2021.121005
131 L Dai, X Lu, G Chu, C He, W Zhan, G Zhou. Surface tuning of LaCoO3 perovskite by acid etching to enhance its catalytic performance. Rare Metals, 2021, 40(3): 555–562
https://doi.org/10.1007/s12598-019-01360-w
132 Q Yang, D Wang, C Wang, X Li, K Li, Y Peng, J Li. Facile surface improvement method for LaCoO3 for toluene oxidation. Catalysis Science & Technology, 2018, 8(12): 3166–3173
https://doi.org/10.1039/C8CY00765A
133 J Yang, L Shi, L Li, Y Fang, C Pan, Y Zhu, Z Liang, S Hoang, Z Li, Y Guo. Surface modification of macroporous La0.8Sr0.2CoO3 perovskite oxides integrated monolithic catalysts for improved propane oxidation. Catalysis Today, 2021, 376(15): 168–176
https://doi.org/10.1016/j.cattod.2020.06.043
134 H Zhang, X Gao, B Gong, S Shao, C Tu, J Pan, Y Wang, Q Dai, Y Guo, X Wang. Catalytic combustion of CVOCs over MoOx/CeO2 catalysts. Applied Catalysis B: Environmental, 2022, 310(15): 121240
https://doi.org/10.1016/j.apcatb.2022.121240
135 D Lee, J Tan, K H Chae, B Jeong, A Soon, S J Ahn, J Kim, J Moon. Chemically driven enhancement of oxygen reduction electrocatalysis in supported perovskite oxides. Journal of Physical Chemistry Letters, 2017, 8(1): 235–242
https://doi.org/10.1021/acs.jpclett.6b02503
136 X Feng, Z Qu, H Gao. Premixed lean methane/air combustion in a catalytic porous foam burner supported with perovskite LaMn0.4Co0.6O3 catalyst with different support materials and pore densities. Fuel Processing Technology, 2016, 150: 117–125
https://doi.org/10.1016/j.fuproc.2016.05.009
137 B Gao, J Deng, Y Liu, Z Zhao, X Li, Y Wang, H Dai. Mesoporous LaFeO3 catalysts for the oxidation of toluene and carbon monoxide. Chinese Journal of Catalysis, 2013, 34(12): 2223–2229
https://doi.org/10.1016/S1872-2067(12)60689-5
138 Y Wang, S Xie, J Deng, S Deng, H Wang, H Yan, H Dai. Morphologically controlled synthesis of porous spherical and cubic LaMnO3 with high activity for the catalytic removal of toluene. ACS Applied Materials & Interfaces, 2014, 6(20): 17394–17401
https://doi.org/10.1021/am500489x
139 J Huang, K Wang, X Huang, J Huang. Deep oxidation of benzene over LaCoO3 catalysts synthesized via a salt-assisted sol-gel process. Molecular Catalysis, 2020, 493: 111073
https://doi.org/10.1016/j.mcat.2020.111073
140 Y Luo, J Zuo, D Lin, Q Qian, Y Zheng, X Feng, B Huang, Q Chen. Anchoring Pt on surface/bulk of LaCoO3 nanotubes via one step of coaxial electrospinning for efficient total propane oxidation. Molecular Catalysis, 2019, 475: 110504
https://doi.org/10.1016/j.mcat.2019.110504
141 Y Zheng, X Feng, D Lin, E Wu, Y Luo, Y You, B Huang, Q Qian, Q Chen. Insights into the low-temperature synthesis of LaCoO3 derived from Co(CH3COO)2 via electrospinning for catalytic propane oxidation. Chinese Journal of Chemistry, 2020, 38(2): 144–150
https://doi.org/10.1002/cjoc.201900393
142 M Li, C Zhang, L Fan, Y Lian, X Niu, Y Zhu. Enhanced catalytic oxidation of toluene over manganese oxide modified by lanthanum with a coral-like hierarchical structure nanosphere. ACS Applied Materials & Interfaces, 2021, 13(8): 10089–10100
https://doi.org/10.1021/acsami.0c22297
143 N Miniajluk, J Trawczyński, M Zawadzki. Properties and catalytic performance for propane combustion of LaMnO3 prepared under microwave-assisted glycothermal conditions: effect of solvent diols. Applied Catalysis A: General, 2017, 531: 119–128
https://doi.org/10.1016/j.apcata.2016.10.026
144 J Yang, S Hu, L Shi, S Hoang, W Yang, Y Fang, Z Liang, C Pan, Y Zhu, L Li, J Wu, J Hu, Y Guo. Oxygen vacancies and Lewis acid sites synergistically promoted catalytic methane combustion over perovskite oxides. Environmental Science & Technology, 2021, 55(13): 9243–9254
https://doi.org/10.1021/acs.est.1c00511
145 H Roozbahani, S Maghsoodi, B Raei, A S Kootenaei, Z Azizi. Effects of catalyst preparation methods on the performance of La2MMnO6 (M = Co, Ni) double perovskites in catalytic combustion of propane. Korean Journal of Chemical Engineering, 2022, 39(3): 586–595
https://doi.org/10.1007/s11814-021-0930-1
146 C Doroftei, L Leontie. Synthesis and characterization of some nanostructured composite oxides for low temperature catalytic combustion of dilute propane. RSC Advances, 2017, 7(45): 27863–27871
https://doi.org/10.1039/C7RA03916F
147 H Chen, G Wei, X Liang, P Liu, Y Xi, J Zhu. Facile surface improvement of LaCoO3 perovskite with high activity and water resistance towards toluene oxidation: Ca substitution and citric acid etching. Catalysis Science & Technology, 2020, 10(17): 5829–5839
https://doi.org/10.1039/D0CY01150A
148 X Li, H Dai, J Deng, Y Liu, Z Zhao, Y Wang, H Yang, C T Au. In situ PMMA-templating preparation and excellent catalytic performance of Co3O4/3DOM La0.6Sr0.4CoO3 for toluene combustion. Applied Catalysis A: General, 2013, 458(10): 11–20
https://doi.org/10.1016/j.apcata.2013.03.022
149 S Wang, J Zhu, S A C Carabineiro, P Xiao, Y Zhu. Selective etching of in-situ formed La2O3 particles to prepare porous LaCoO3 perovskite for catalytic combustion of ethyl acetate. Applied Catalysis A: General, 2022, 635: 118554
https://doi.org/10.1016/j.apcata.2022.118554
150 Y Lu, Q Dai, X Wang. Catalytic combustion of chlorobenzene on modified LaMnO3 catalysts. Catalysis Communications, 2014, 54: 114–117
https://doi.org/10.1016/j.catcom.2014.05.018
151 C He, Y Yu, Q Shen, J Chen, N Qiao. Catalytic behavior and synergistic effect of nanostructured mesoporous CuO-MnOx-CeO2 catalysts for chlorobenzene destruction. Applied Surface Science, 2014, 297: 59–69
https://doi.org/10.1016/j.apsusc.2014.01.076
152 C Zhang, W Hua, C Wang, Y Guo, Y Guo, G Lu, A Baylet, A Giroir-Fendler. The effect of A-site substitution by Sr, Mg and Ce on the catalytic performance of LaMnO3 catalysts for the oxidation of vinyl chloride emission. Applied Catalysis B: Environmental, 2013, 134–135: 310–315
https://doi.org/10.1016/j.apcatb.2013.01.031
153 C Zhang, C Wang, S Gil, A Boreave, L Retailleau, Y Guo, J L Valverde, A Giroir-Fendler. Catalytic oxidation of 1,2-dichloropropane over supported LaMnOx oxides catalysts. Applied Catalysis B: Environmental, 2017, 201: 552–560
https://doi.org/10.1016/j.apcatb.2016.08.038
154 E Cetin, M Odabasi, R Seyfioglu. Ambient volatile organic compound (VOC) concentrations around a petrochemical complex and a petroleum refinery. Science of the Total Environment, 2003, 312(1): 103–112
https://doi.org/10.1016/S0048-9697(03)00197-9
155 R Liu, J Chen, G Li, T An. Using an integrated decontamination technique to remove VOCs and attenuate health risks from an e-waste dismantling workshop. Chemical Engineering Journal, 2017, 318(15): 57–63
https://doi.org/10.1016/j.cej.2016.05.004
156 Z Shayegan, F Haghighat, C S Lee. Surface fluorinated Ce-doped TiO2 nanostructure photocatalyst: a trap and remove strategy to enhance the VOC removal from indoor air environment. Chemical Engineering Journal, 2020, 401(1): 125932
https://doi.org/10.1016/j.cej.2020.125932
157 Z Zhang, Z Kong, H Liu, Y Chen. Mayenite supported perovskite monoliths for catalytic combustion of methyl methacrylate. Frontiers of Chemical Science and Engineering, 2014, 8(1): 87–94
https://doi.org/10.1007/s11705-014-1410-5
158 S Stanchovska, P Markov, K Tenchev, R Stoyanova, E Zhecheva, A Naydenov. Preparation and characterization of palladium containing nickel-iron-cobalt perovskite catalysts for the complete oxidation of C1–C6 alkanes. Reaction Kinetics, Mechanisms and Catalysis, 2017, 122(2): 931–942
https://doi.org/10.1007/s11144-017-1278-8
159 H Chang, E Bjørgum, O Mihai, J Yang, H L Lein, T Grande, S Raaen, Y Zhu, A Holmen, D Chen. Effects of oxygen mobility in La-Fe-based perovskites on the catalytic activity and selectivity of methane oxidation. ACS Catalysis, 2020, 10(6): 3707–3719
https://doi.org/10.1021/acscatal.9b05154
160 C Zhang, K Zeng, C Wang, X Liu, G Wu, Z Wang, D Wang. LaMnO3 perovskites via a facile nickel substitution strategy for boosting propane combustion performance. Ceramics International, 2020, 46(5): 6652–6662
https://doi.org/10.1016/j.ceramint.2019.11.153
161 R Zhang, P Li, R Xiao, N Liu, B Chen. Insight into the mechanism of catalytic combustion of acrylonitrile over Cu-doped perovskites by an experimental and theoretical study. Applied Catalysis B: Environmental, 2016, 196: 142–154
https://doi.org/10.1016/j.apcatb.2016.05.025
162 Z Bao, V Fung, J Moon, Z D Hood, M Rochow, J Kammert, F Polo-Garzon, Z Wu. Revealing the interplay between “intelligent behavior” and surface reconstruction of non-precious metal doped SrTiO3 catalysts during methane combustion. Catalysis Today, 2023, 416: 113672
https://doi.org/10.1016/j.cattod.2022.03.012
163 L Fan, M Li, C Zhang, A Ismail, B Hu, Y Zhu. Effect of Cu/Co ratio in CuaCo1−aOx (a = 0.1, 0.2, 0.4, 0.6) flower structure on its surface properties and catalytic performance for toluene oxidation. Journal of Colloid and Interface Science, 2021, 599: 404–415
https://doi.org/10.1016/j.jcis.2021.04.058
164 K H Kim, J E Szulejko, N Raza, V Kumar, K Vikrant, D C W Tsang, N S Bolan, Y S Ok, A Khan. Identifying the best materials for the removal of airborne toluene based on performance metrics—a critical review. Journal of Cleaner Production, 2019, 241(20): 118408
https://doi.org/10.1016/j.jclepro.2019.118408
165 M Li, W Zhang, X Zhang, Y Lian, X Niu, Y Zhu. Influences of different surface oxygen species on oxidation of toluene and/or benzene and their reaction pathways over Cu-Mn metal oxides. Journal of Colloid and Interface Science, 2023, 630: 301–316
https://doi.org/10.1016/j.jcis.2022.10.107
166 C Lv, J Zhang, L Yan, H Chen, M Hu. Boosting sulfur tolerance and catalytic performance in toluene combustion via enhanced-mechanism of Ce-Fe dopants incorporation of LaCoO3 perovskite. Journal of Environmental Chemical Engineering, 2022, 10(5): 108372
https://doi.org/10.1016/j.jece.2022.108372
167 H Yi, L Miao, J Xu, S Zhao, X Xie, C Du, T Tang, X Tang. Palladium particles supported on porous CeMnO3 perovskite for catalytic oxidation of benzene. Colloids and Surfaces A, 2021, 623(20): 126687
https://doi.org/10.1016/j.colsurfa.2021.126687
168 H Chen, G Wei, X Liang, P Liu, H He, Y Xi, J Zhu. The distinct effects of substitution and deposition of Ag in perovskite LaCoO3 on the thermally catalytic oxidation of toluene. Applied Surface Science, 2019, 489(30): 905–912
https://doi.org/10.1016/j.apsusc.2019.06.009
169 A Zhao, Y Ren, H Wang, Z Qu. Enhancement of toluene oxidation performance over La1–xCoO3–δ perovskite by lanthanum non-stoichiometry. Journal of Environmental Sciences (China), 2023, 127: 811–823
https://doi.org/10.1016/j.jes.2022.06.042
170 L Liu, H Zhang, J Jia, T Sun, M Sun. Direct molten polymerization synthesis of highly active samarium manganese perovskites with different morphologies for VOC removal. Inorganic Chemistry, 2018, 57(14): 8451–8457
https://doi.org/10.1021/acs.inorgchem.8b01125
171 J Yang, L Li, X Yang, S Song, J Li, F Jing, W Chu. Enhanced catalytic performances of in situ-assembled LaMnO3/δ-MnO2 hetero-structures for toluene combustion. Catalysis Today, 2019, 327(1): 19–27
https://doi.org/10.1016/j.cattod.2018.07.040
172 S Azalim, M Franco, R Brahmi, J M Giraudon, J F Lamonier. Removal of oxygenated volatile organic compounds by catalytic oxidation over Zr-Ce-Mn catalysts. Journal of Hazardous Materials, 2011, 188(1): 422–427
https://doi.org/10.1016/j.jhazmat.2011.01.135
173 X Huang, C Wang, B Zhu, L Lin, L He. Exploration of sources of OVOCs in various atmospheres in southern China. Environmental Pollution, 2019, 249: 831–842
https://doi.org/10.1016/j.envpol.2019.03.106
174 P S Belzunce, L E Cadús, F G Durán. Obtaining stable suspensions for washcoating in microchannels: study of the variables involved and their effects on the catalyst. Chemical Engineering and Processing, 2019, 146: 107666
https://doi.org/10.1016/j.cep.2019.107666
175 A H Martínez, E Lopez, L E Cadús, F N Agüero. Elucidation of the role of support in Rh/perovskite catalysts used in ethanol steam reforming reaction. Catalysis Today, 2021, 372(15): 59–69
https://doi.org/10.1016/j.cattod.2020.12.013
176 M Guo, K Li, H Zhang, X Min, X Hu, W Guo, J Jia, T Sun. Enhanced catalytic activity of oxygenated VOC deep oxidation on highly active in-situ generated GdMn2O5/GdMnO3 catalysts. Journal of Colloid and Interface Science, 2020, 578(15): 229–241
https://doi.org/10.1016/j.jcis.2020.05.095
177 S A Shipilovskikh, A E Rubtsov, A V Malkov. Oxidative dehomologation of aldehydes with oxygen as a terminal oxidant. Organic Letters, 2017, 19(24): 6760–6762
https://doi.org/10.1021/acs.orglett.7b03512
178 J Ding, J Liu, Y Yang, L Zhao, Y Yu. Understanding A-site tuning effect on formaldehyde catalytic oxidation over La-Mn perovskite catalysts. Journal of Hazardous Materials, 2022, 422(15): 126931
https://doi.org/10.1016/j.jhazmat.2021.126931
179 Y Xu, J Dhainaut, J P Dacquin, A S Mamede, M Marinova, J F Lamonier, H Vezin, H Zhang, S Royer. La1–x(Sr, Na, K)xMnO3 perovskites for HCHO oxidation: the role of oxygen species on the catalytic mechanism. Applied Catalysis B: Environmental, 2021, 287(15): 119955
https://doi.org/10.1016/j.apcatb.2021.119955
180 Y Xu, J Dhainaut, G Rochard, J P Dacquin, A S Mamede, J M Giraudon, J F Lamonier, H Zhang, S Royer. Hierarchical porous ε-MnO2 from perovskite precursor: application to the formaldehyde total oxidation. Chemical Engineering Journal, 2020, 388(15): 124146
https://doi.org/10.1016/j.cej.2020.124146
181 J Li, Y Shi, X Fu, J Huang, Y Zhang, S Deng, F Zhang. Hierarchical ZSM-5 based on fly ash for the low-temperature purification of odorous volatile organic compound in cooking fumes. Reaction Kinetics, Mechanisms and Catalysis, 2019, 128(1): 289–314
https://doi.org/10.1007/s11144-019-01633-6
182 J Li, Y Shi, X Fu, Y Shu, J Huang, J Zhu, G Tian, J Hu. Active oxygen species and oxidation mechanism over Ce-doped LaMn0.8Ni0.2O3/hierarchical ZSM-5 in pentanal oxidation. Journal of Rare Earths, 2021, 39(9): 1062–1072
https://doi.org/10.1016/j.jre.2020.11.011
183 X Huang, B Zhang, S Xia, Y Han, C Wang, G Yu, N Feng. Sources of oxygenated volatile organic compounds (OVOCs) in urban atmospheres in north and south china. Environmental Pollution, 2020, 261: 114152
https://doi.org/10.1016/j.envpol.2020.114152
184 R Zhu, B Liu, S Wang, X Huang, R L Schuarca, W He, V J Cybulskis, J Q Bond. Understanding the mechanism(s) of ketone oxidation on VOx/γ-Al2O3. Journal of Catalysis, 2021, 404: 109–127
https://doi.org/10.1016/j.jcat.2021.09.003
185 X Mu, H Ding, W Pan, Q Zhou, W Du, K Qiu, J Ma, K Zhang. Research progress in catalytic oxidation of volatile organic compound acetone. Journal of Environmental Chemical Engineering, 2021, 9(4): 105650
https://doi.org/10.1016/j.jece.2021.105650
186 S Li, D Wang, X Wu, Y Chen. Recent advance on VOCs oxidation over layered double hydroxides derived mixed metal oxides. Chinese Journal of Catalysis, 2020, 41(4): 550–560
https://doi.org/10.1016/S1872-2067(19)63446-7
187 N Rezlescu, E Rezlescu, P D Popa, C Doroftei, M Ignat. Partial substitution of manganese with cerium in SrMnO3 nano-perovskite catalyst. Effect of the modification on the catalytic combustion of dilute acetone. Materials Chemistry and Physics, 2016, 182: 332–337
https://doi.org/10.1016/j.matchemphys.2016.07.040
188 Y Cai, X Zhu, W Hu, C Zheng, Y Yang, M Chen, X Gao. Plasma-catalytic decomposition of ethyl acetate over LaMO3 (M = Mn, Fe, and Co) perovskite catalysts. Journal of Industrial and Engineering Chemistry, 2019, 70(25): 447–452
https://doi.org/10.1016/j.jiec.2018.11.007
189 Y Qin, F Shen, T Zhu, W Hong, X Liu. Catalytic oxidation of ethyl acetate over LaBO3 (B = Co, Mn, Ni, Fe) perovskites supported silver catalysts. RSC Advances, 2018, 8(58): 33425–33431
https://doi.org/10.1039/C8RA06933F
190 X Zhu, S Zhang, Y Yang, C Zheng, J Zhou, X Gao, X Tu. Enhanced performance for plasma-catalytic oxidation of ethyl acetate over La1−xCexCoO3+δ catalysts. Applied Catalysis B: Environmental, 2017, 213: 97–105
https://doi.org/10.1016/j.apcatb.2017.04.066
191 A Ikhlaq, B Kasprzyk-Hordern. Catalytic ozonation of chlorinated VOCs on ZSM-5 zeolites and alumina: formation of chlorides. Applied Catalysis B: Environmental, 2017, 200: 274–282
https://doi.org/10.1016/j.apcatb.2016.07.019
192 J Zhao, W Xi, C Tu, Q Dai, X Wang. Catalytic oxidation of chlorinated VOCs over Ru/TixSn1–x catalysts. Applied Catalysis B: Environmental, 2020, 263: 118237
https://doi.org/10.1016/j.apcatb.2019.118237
193 Rivas B De, R López-Fonseca, M Á Gutiérrez-Ortiz, J I Gutiérrez-Ortiz. Combustion of chlorinated VOCs using κ-CeZrO4 catalysts. Catalysis Today, 2011, 176(1): 470–473
https://doi.org/10.1016/j.cattod.2010.10.044
194 P Yang, Z Shi, S Yang, R Zhou. High catalytic performances of CeO2-CrOx catalysts for chlorinated VOCs elimination. Chemical Engineering Science, 2015, 126(14): 361–369
https://doi.org/10.1016/j.ces.2014.12.051
195 W Wang, Q Meng, Y Xue, X Weng, P Sun, Z Wu. Lanthanide perovskite catalysts for oxidation of chloroaromatics: secondary pollution and modifications. Journal of Catalysis, 2018, 366: 213–222
https://doi.org/10.1016/j.jcat.2018.07.022
196 C Zhang, H Cao, C Wang, M He, W Zhan, Y Guo. Catalytic mechanism and pathways of 1,2-dichloropropane oxidation over LaMnO3 perovskite: an experimental and DFT study. Journal of Hazardous Materials, 2021, 402(15): 123473
https://doi.org/10.1016/j.jhazmat.2020.123473
197 X Weng, Q Meng, J Liu, W Jiang, S Pattisson, Z Wu. Catalytic oxidation of chlorinated organics over lanthanide perovskites: effects of phosphoric acid etching and water vapor on chlorine desorption behavior. Environmental Science & Technology, 2019, 53(2): 884–893
https://doi.org/10.1021/acs.est.8b04582
198 C He, K Pan, M Chang. Catalytic oxidation of trichloroethylene from gas streams by perovskite-type catalysts. Environmental Science and Pollution Research International, 2018, 25(12): 11584–11594
https://doi.org/10.1007/s11356-018-1440-5
199 K Pan, C He, M Chang. Oxidation of TCE by combining perovskite-type catalyst with DBD. IEEE Transactions on Plasma Science, 2019, 47(2): 1152–1163
https://doi.org/10.1109/TPS.2018.2883339
200 J Ding, J Liu, Y Yang, Z Wang, Y Yu. Reaction mechanism of dichloromethane oxidation on LaMnO3 perovskite. Chemosphere, 2021, 277: 130194
https://doi.org/10.1016/j.chemosphere.2021.130194
[1] Xingling Zhao, Jun Xu, Feng Deng. Solid-state NMR for metal-containing zeolites: from active sites to reaction mechanism[J]. Front. Chem. Sci. Eng., 2020, 14(2): 159-187.
[2] You Han, Dandan Jiang, Jinli Zhang, Wei Li, Zhongxue Gan, Junjie Gu. Development, applications and challenges of ReaxFF reactive force field in molecular simulations[J]. Front. Chem. Sci. Eng., 2016, 10(1): 16-38.
[3] Zekai ZHANG, Zhijian KONG, Huayan LIU, Yinfei CHEN. Mayenite supported perovskite monoliths for catalytic combustion of methyl methacrylate[J]. Front Chem Sci Eng, 2014, 8(1): 87-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed