Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (1) : 9    https://doi.org/10.1007/s11705-023-2378-9
RESEARCH ARTICLE
Cobalt-nanoparticle catalysts derived from zeolitic imidazolate framework@MXene composites for efficient oxidative self-coupling of benzylamines
Jie Chen, Mingyuan Jian, Deqiong Xie, Kecan Dou, Deli Chen, Weidong Zhu(), Fumin Zhang()
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
 Download: PDF(7095 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this study, we synthesize a catalyst comprising cobalt nanoparticles supported on MXene by pyrolyzing a composite in a N2 environment. Specifically, the composite comprises a bimetallic Zn/Co zeolitic imidazole framework grown in situ on the outer surface of MXene. The catalytic efficiency of the catalyst is tested for the self-coupling of 4-methoxybenzylamine to produce value-added imine, where atmospheric oxygen (1 atm) is used as the oxidant. Based on the results, the catalyst displayed impressive catalytic activity, achieving 95.4% yield of the desired imine at 383 K for 8 h. Furthermore, the catalyst showed recyclability and tolerance toward benzylamine substrates with various functional groups. The outstanding performance of the catalyst is primarily attributed to the synergetic catalytic effect between the cobalt nanoparticles and MXene support, while also benefiting from the three-dimensional porous structure. Additionally, a preliminary investigation of potential reaction mechanisms is conducted.

Keywords MXene      sacrificial template      oxidative self-coupling      Co nanoparticles      imine     
Corresponding Author(s): Weidong Zhu,Fumin Zhang   
Just Accepted Date: 31 October 2023   Issue Date: 27 December 2023
 Cite this article:   
Jie Chen,Mingyuan Jian,Deqiong Xie, et al. Cobalt-nanoparticle catalysts derived from zeolitic imidazolate framework@MXene composites for efficient oxidative self-coupling of benzylamines[J]. Front. Chem. Sci. Eng., 2024, 18(1): 9.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-023-2378-9
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I1/9
  Scheme1 Group of Co-NPs/NC catalysts, supported on MXene, synthesized through the pyrolysis of the ZnCo-ZIF@MXene core–shell composite. These catalysts were utilized in the oxidative self-coupling of benzylamine to imine, where oxygen acted as the only oxidant.
Fig.1  XRD patterns of (a) Ti3C2 MXene, (b) ZnCo(19∶1)-ZIF@MXene and Co-NPs(8.6)/NC@MXene.
Fig.2  SEM images of (a) Ti3C2 MXene, (b) ZnCo(19∶1)-ZIF@MXene, and (c) Co-NPs(8.6)/NC@MXene; (d) TEM, (e) HAADF-STEM, and (f) HRTEM images of Co-NPs(8.6)/NC@MXene.
Fig.3  (a) N2 adsorption-desorption isotherms and pore-size distribution (embedded); (b) Raman spectrum and XPS spectra of (c) N 1s and (d) Co 2p in Co-NPs(8.6)/NC@MXene.
Entry Catalyst Conv./%b) Sel./%b)
1 Blank 3.2 100.0
2 MXene 13.4 96.3
3 NC@MXene 15.7 98.6
4 Co-NPs(8.6)/NC@MXene 97.4 97.9
5 Co-NPs(16.2)/NC@MXene 32.5 99.9
6 Co-NPs(21.1)/NC@MXene 19.0 99.9
7 Co NC 72.2 99.9
Tab.1  Oxidative self-coupling of 4-methoxybenzylamine to N-(4-methoxybenzylidene)-N-(4-methoxybenzyl)amine using various investigated catalystsa)
Fig.4  (a) Effect of the removal of Co-NPs(8.6)/NC@MXene during the oxidative self-coupling reaction; (b) recycling results; (c, d) kinetic studies of the oxidative self-coupling of 4-methoxybenzylamine over Co-NPs(8.6)/NC@MXene.
Fig.5  Reaction pathways for the oxidative self-coupling of dibenzylamine to N-benzylidenebutylamine.
Fig.6  Plot of conversion and product selectivity with respect to the reaction time for the oxidation of dibenzylamine. Reaction conditions: dibenzylamine (0.5 mmol), Co-NPs(8.6)/NC@MXene (15 mg), n-decane (3 mL), 1 atm O2, and 383 K.
Fig.7  Proposed reaction pathways for the oxidative self-coupling of amine to imine over Co-NPs(8.6)/NC@MXene.
Entry Substrate Product Time/h Yield/%b)
1 8 97.1
2 8 95.4
3 12 83.5
4 12 93.6
5 12 94.5
6 16 95.2
7 16 94.8
8 16 95.3
9 18 90.3
10 20 81.2
11 8 92.5
12 16 90.3
13 16 72.0
14 24 52.6
15 24 34.9
16 24 0.0
Tab.2  Self-coupling of various amines to imines catalyzed over Co-NPs(8.6)/NC@MXenea)
1 T C Nugent , M El-Shazly . Chiral amine synthesis–recent developments and trends for enamide reduction, reductive amination, and imine reduction. Advanced Synthesis & Catalysis, 2010, 352(5): 753–819
https://doi.org/10.1002/adsc.200900719
2 Y Zhai , M Chu , C Xie , F Huang , C Zhang , Y Zhang , H Liu , H Wang , Y Gao . Synergetic effect of B and O dopants for aerobic oxidative coupling of amines to imines. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 17410–17418
https://doi.org/10.1021/acssuschemeng.8b05217
3 A K Chakraborti , S Bhagat , S Rudrawar . Magnesium perchlorate as an efficient catalyst for the synthesis of imines and phenylhydrazones. Tetrahedron Letters, 2004, 45(41): 7641–7644
https://doi.org/10.1016/j.tetlet.2004.08.097
4 L Zhang , W Wang , A Wang , Y Cui , X Yang , Y Huang , X Liu , W Liu , J Y Son , H Oji . et al.. Aerobic oxidative coupling of alcohols and amines over Au-Pd/resin in water: Au/Pd molar ratios switch the reaction pathways to amides or imines. Green Chemistry, 2013, 15(10): 2680–2684
https://doi.org/10.1039/c3gc41117f
5 E Zhang , H Tian , S Xu , X Yu , Q Xu . Iron-catalyzed direct synthesis of imines from amines or alcohols and amines via aerobic oxidative reactions under air. Organic Letters, 2013, 15(11): 2704–2707
https://doi.org/10.1021/ol4010118
6 H Naeimi , F Salimi , K Rabiei . Mild and convenient one pot synthesis of Schiff bases in the presence of P2O5/Al2O3 as new catalyst under solvent-free conditions. Journal of Molecular Catalysis A Chemical, 2006, 260(1-2): 100–104
https://doi.org/10.1016/j.molcata.2006.06.055
7 R D Patil , S Adimurthy . Copper-catalyzed aerobic oxidation of amines to imines under neat conditions with low catalyst loading. Advanced Synthesis & Catalysis, 2011, 353(10): 1695–1700
https://doi.org/10.1002/adsc.201100100
8 S Furukawa , Y Ohno , T Shishido , K Teramura , T Tanaka . Selective amine oxidation using Nb2O5 photocatalyst and O2. ACS Catalysis, 2011, 1(10): 1150–1153
https://doi.org/10.1021/cs200318n
9 H Liu , Z Guo , H Lv , X Liu , Y Che , Y Mei , R Bai , Y Chi , H Xing . Visible-light-driven self-coupling and oxidative dehydrogenation of amines to imines via a Mn(II)-based coordination polymer. Inorganic Chemistry Frontiers, 2020, 7(4): 1016–1025
https://doi.org/10.1039/C9QI01396B
10 C P Dong , A Uematsu , S Kumazawa , Y Yamamoto , S Kodama , A Nomoto , M Ueshima , A Ogawa . 2,4,6-Trihydroxybenzoic acid-catalyzed oxidative Ugi reactions with molecular oxygen via homo- and cross-coupling of amines. Journal of Organic Chemistry, 2019, 84(18): 11562–11571
https://doi.org/10.1021/acs.joc.9b01422
11 J Yu , Q Liu , W Qiao , D Lv , Y Li , C Liu , Y Yu , Y Li , H Niemantsverdriet , B Zhang . et al.. Catalytic role of metal nanoparticles in selectivity control over photodehydrogenative coupling of primary amines to imines and secondary amines. ACS Catalysis, 2021, 11(11): 6656–6661
https://doi.org/10.1021/acscatal.1c01519
12 P Bai , X Tong , Y Gao , P Guo . Oxygen-free water-promoted selective photocatalytic oxidative coupling of amines. Catalysis Science & Technology, 2019, 9(20): 5803–5811
https://doi.org/10.1039/C9CY01311C
13 J Yang , C Y Mou . Ordered mesoporous Au/TiO2 nanospheres for solvent-free visible-light-driven plasmonic oxidative coupling reactions of amines. Applied Catalysis B: Environmental, 2018, 231: 283–291
https://doi.org/10.1016/j.apcatb.2018.02.054
14 A Guðmundsson , S Manna , J E Bäckvall . Iron(II)-catalyzed aerobic biomimetic oxidation of amines using a hybrid hydroquinone/cobalt catalyst as electron transfer mediator. Angewandte Chemie International Edition, 2021, 60(21): 11819–11823
https://doi.org/10.1002/anie.202102681
15 Y Fu , M Zheng , Q Li , L Zhang , S Wang , V V Kondratiev , B Jiang . Interfacial engineering by creating Cu-based ternary heterostructures on C3N4 tubes towards enhanced photocatalytic oxidative coupling of benzylamines. RSC Advances, 2020, 10(47): 28059–28065
https://doi.org/10.1039/D0RA03164J
16 J Bag , S Barman , K Pal . Metal ion (NiII vs CoII)-mediated unusual amine-imine interconversion in conjugated amine-ene-imine ligand: synthesis, structure, and characterization. Inorganic Chemistry, 2020, 59(3): 1863–1870
https://doi.org/10.1021/acs.inorgchem.9b03033
17 S Hazra , P Pilania , M Deb , A K Kushawaha , A J Elias . Aerobic oxidation of primary amines to imines in water using a cobalt complex as recyclable catalyst under mild conditions. Chemistry, 2018, 24(59): 15766–15771
https://doi.org/10.1002/chem.201803251
18 C Zhang , P Zhao , Z Zhang , J Zhang , P Yang , P Gao , J Gao , D Liu . Co–N–C supported on SiO2: a facile, efficient catalyst for aerobic oxidation of amines to imines. RSC Advances, 2017, 7(75): 47366–47372
https://doi.org/10.1039/C7RA09516C
19 Y Jian , D Qu , L Guo , Y Zhu , C Su , H Feng , G Zhang , J Zhang , W Wu , M S Yao . The prior rules of designing Ti3C2Tx MXene-based gas sensors. Frontiers of Chemical Science and Engineering, 2021, 15(3): 505–517
https://doi.org/10.1007/s11705-020-2013-y
20 J F Zhang , H Y Cao , H B Wang . Research progress of novel two-dimensional material MXene. Journal of Inorganic Materials, 2017, 32(6): 561–570
https://doi.org/10.15541/jim20160479
21 T Rasheed . MXenes as an emerging class of two-dimensional materials for advanced energy storage devices. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2022, 10(9): 4558–4584
https://doi.org/10.1039/D1TA10083A
22 L Bharali , J Kalita , S Sankar Dhar . Several fundamental aspects of MXene: synthesis and their applications. ChemistrySelect, 2023, 8(30): e202301486
https://doi.org/10.1002/slct.202301486
23 R E Ustad , S S Kundale , K A Rokade , S L Patil , V D Chavan , K D Kadam , H S Patil , S P Patil , R K Kamat , D K Kim . et al.. Recent progress in energy, environment, and electronic applications of MXene nanomaterials. Nanoscale, 2023, 15(23): 9891–9926
https://doi.org/10.1039/D2NR06162G
24 Y Dai , H Fang , Z Lu , Z Yang , Y Wei . Toughening of vinyl ester resins by two-dimensional MXene nanosheets. Frontiers of Chemical Science and Engineering, 2022, 16(11): 1651–1658
https://doi.org/10.1007/s11705-022-2208-5
25 A Sherryna , M Tahir . Role of surface morphology and terminating groups in titanium carbide MXenes (Ti3C2Tx) cocatalysts with engineering aspects for modulating solar hydrogen production: a critical review. Chemical Engineering Journal, 2022, 433: 134573
https://doi.org/10.1016/j.cej.2022.134573
26 V H Nguyen , B S Nguyen , C Hu , C C Nguyen , D L T Nguyen , M T Nguyen Dinh , D N Vo , Q T Trinh , M Shokouhimehr , A Hasani . et al.. Novel architecture titanium carbide (Ti3C2Tx) MXene cocatalysts toward photocatalytic hydrogen production: a mini-review. Nanomaterials (Basel, Switzerland), 2020, 10(4): 602
https://doi.org/10.3390/nano10040602
27 A Liu , X Liang , X Ren , W Guan , M Gao , Y Yang , Q Yang , L Gao , Y Li , T Ma . Recent progress in MXene-based materials: potential high-performance electrocatalysts. Advanced Functional Materials, 2020, 30(38): 2003437
https://doi.org/10.1002/adfm.202003437
28 R Tang , S Xiong , D Gong , Y Deng , Y Wang , L Su , C Ding , L Yang , C Liao . Ti3C2 2D MXene: recent progress and perspectives in photocatalysis. ACS Applied Materials & Interfaces, 2020, 12(51): 56663–56680
https://doi.org/10.1021/acsami.0c12905
29 W X Huang , Z P Li , D D Li , Z H Hu , C Wu , K L Lv , Q Li . Ti3C2 MXene: recent progress in its fundamentals, synthesis, and applications. Rare Metals, 2022, 41(10): 3268–3300
https://doi.org/10.1007/s12598-022-02058-2
30 A Ali Khan , M Tahir , N Khan . Recent developments in titanium carbide (Ti3C2)-based layered double hydroxide (LDH) nanocomposites for energy storage and conversion applications: a minireview and perspectives. Energy & Fuels, 2022, 36(17): 9821–9843
https://doi.org/10.1021/acs.energyfuels.2c01752
31 X Chen , Z Shi , Y Tian , P Lin , D Wu , X Li , B Dong , W Xu , X Fang . Two-dimensional Ti3C2 MXene-based nanostructures for emerging optoelectronic applications. Materials Horizons, 2021, 8(11): 2929–2963
https://doi.org/10.1039/D1MH00986A
32 L Shi , C Wu , Y Wang , Y Dou , D Yuan , H Li , H Huang , Y Zhang , I D Gates , X Sun . et al.. Rational design of coordination bond connected metal organic frameworks/MXene hybrids for efficient solar water splitting. Advanced Functional Materials, 2022, 32(30): 2202571
https://doi.org/10.1002/adfm.202202571
33 Y Zhang , Z Zhao , C Luo , X Wu , W Chen . Toward understanded the electrochemical capacitance mechanism of MXene by intercalation of inorganic ions and organic macromolecular ions. Applied Surface Science, 2022, 578: 152030
https://doi.org/10.1016/j.apsusc.2021.152030
34 R Bian , R Lin , G Wang , G Lu , W Zhi , S Xiang , T Wang , P S Clegg , D Cai , W Huang . 3D assembly of Ti3C2-MXene directed by water/oil interfaces. Nanoscale, 2018, 10(8): 3621–3625
https://doi.org/10.1039/C7NR07346A
35 Y Wen , T E Rufford , X Chen , N Li , M Lyu , L Dai , L Wang . Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy, 2017, 38: 368–376
https://doi.org/10.1016/j.nanoen.2017.06.009
36 J Ran , G Gao , F T Li , T Y Ma , A Du , S Z Qiao . Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nature Communications, 2017, 8(1): 13907
https://doi.org/10.1038/ncomms13907
37 S H Overbury , A I Kolesnikov , G M Brown , Z Zhang , G S Nair , R L Sacci , R Lotfi , A C T van Duin , M Naguib . Complexity of intercalation in MXenes: destabilization of urea by two-dimensional titanium carbide. Journal of the American Chemical Society, 2018, 140(32): 10305–10314
https://doi.org/10.1021/jacs.8b05913
38 C Liu , Y Bai , W Li , F Yang , G Zhang , H Pang . In situ growth of three-dimensional MXene/metal-organic framework composites for high-performance supercapacitors. Angewandte Chemie International Edition, 2022, 61(11): e202116282
https://doi.org/10.1002/anie.202116282
39 L Jiao , G Wan , R Zhang , H Zhou , S H Yu , H L Jiang . From metal-organic frameworks to single–atom Fe implanted N-doped porous carbons: efficient oxygen reduction in both alkaline and acidic media. Angewandte Chemie International Edition, 2018, 57(28): 8525–8529
https://doi.org/10.1002/anie.201803262
40 D Ji , L Fan , L Li , S Peng , D Yu , J Song , S Ramakrishna , S Guo . Atomically transition metals on self-supported porous carbon flake arrays as binder-free air cathode for wearable zinc-air batteries. Advanced Materials, 2019, 31(16): 1808267
https://doi.org/10.1002/adma.201808267
41 Y Wu , X Qiu , F Liang , Q Zhang , A Koo , Y Dai , Y Lei , X Sun . A metal-organic framework-derived bifunctional catalyst for hybrid sodium-air batteries. Applied Catalysis B: Environmental, 2019, 241: 407–414
https://doi.org/10.1016/j.apcatb.2018.09.063
42 Y Wang , H Yuan , F Liu , T Hu . Metal alkoxide-derived Co@NC/NCNS as a highly efficient bifunctional oxygen electrocatalyst. Chemical Communications, 2021, 57(24): 2994–2997
https://doi.org/10.1039/D1CC00431J
43 L Al-Hmoud , C W Jones . Reaction pathways over copper and cerium oxide catalysts for direct synthesis of imines from amines under aerobic conditions. Journal of Catalysis, 2013, 301: 116–124
https://doi.org/10.1016/j.jcat.2013.01.027
44 Q Xu , B Feng , C Ye , Y Fu , D L Chen , F Zhang , J Zhang , W Zhu . Atomically dispersed vanadium sites anchored on N-doped porous carbon for the efficient oxidative coupling of amines to imines. ACS Applied Materials & Interfaces, 2021, 13(13): 15168–15177
https://doi.org/10.1021/acsami.0c22453
45 S Shubhashish , H S Khanna , L A Achola , A S Amin , W S Willis , S L Suib . Selective oxidative coupling of amines using mesoporous MoOx catalysts. ACS Applied Nano Materials, 2021, 4(2): 2086–2097
https://doi.org/10.1021/acsanm.0c03386
46 J Chen , M Jian , L Zhuang , W Lin , Y Fu , D L Chen , W Zhu , G Chen , F Zhang . Enhancing the efficiency of benzylamine oxidative coupling over N-doped porous carbon-supported CeO2 and ZrO2 nanoparticles. New Journal of Chemistry, 2023, 47(38): 17790–17798
https://doi.org/10.1039/D3NJ03410K
47 R D Patil , S Adimurthy . Copper(0)-catalyzed aerobic oxidative synthesis of imines from amines under solvent-free conditions. RSC Advances, 2012, 2(12): 5119–5122
https://doi.org/10.1039/c2ra20339a
48 X Lang , H Ji , C Chen , W Ma , J Zhao . Selective formation of imines by aerobic photocatalytic oxidation of amines on TiO2. Angewandte Chemie International Edition, 2011, 50(17): 3934–3937
https://doi.org/10.1002/anie.201007056
[1] FCE-23057-OF-CJ_suppl_1 Download
[1] Lu Zhang, Jixing Liu, Deqi Huang, Wenfeng Zhang, Linjie Lu, Mingqing Hua, Hui Liu, Huifang Cheng, Huaming Li, Wenshuai Zhu. Engineering the electronic and geometric structure of VOx/BN@TiO2 heterostructure for efficient aerobic oxidative desulfurization[J]. Front. Chem. Sci. Eng., 2023, 17(3): 276-287.
[2] Qing-Hui Kong, Xian-Wei Lv, Jin-Tao Ren, Hao-Yu Wang, Xin-Lian Song, Feng Xu, Zhong-Yong Yuan. “Charging” the cigarette butt: heteroatomic porous carbon nanosheets with edge-induced topological defects for enhanced oxygen evolution performance[J]. Front. Chem. Sci. Eng., 2023, 17(11): 1755-1764.
[3] Pengcheng Deng, Shiyi Feng, Canhui Lu, Zehang Zhou. Dual cross-linked MXene/cellulose nanofiber/nickel alginate film with improved mechanical properties and electromagnetic interference shielding performance[J]. Front. Chem. Sci. Eng., 2023, 17(10): 1460-1469.
[4] Pengcheng Hu, Ruimin Chai, Ping Wang, Jinke Yang, Shufeng Zhou. Enhanced electrochemical performance of CoNiSx@Ti3C2Tx electrode material through in-situ doping of cobalt element[J]. Front. Chem. Sci. Eng., 2023, 17(10): 1440-1449.
[5] Juan Shen, Fang Cao, Siqi Liu, Congjun Wang, Rigui Chen, Ke Chen. Effective and selective adsorption of uranyl ions by porous polyethylenimine-functionalized carboxylated chitosan/oxidized activated charcoal composite[J]. Front. Chem. Sci. Eng., 2022, 16(3): 408-419.
[6] Yurun Dai, Heng Fang, Zong Lu, Zhuohong Yang, Yanying Wei. Toughening of vinyl ester resins by two-dimensional MXene nanosheets[J]. Front. Chem. Sci. Eng., 2022, 16(11): 1651-1658.
[7] Yiyi Fan, Jinyong Li, Saidi Wang, Xiuxia Meng, Yun Jin, Naitao Yang, Bo Meng, Jiaquan Li, Shaomin Liu. Nickel(II) ion-intercalated MXene membranes for enhanced H2/CO2 separation[J]. Front. Chem. Sci. Eng., 2021, 15(4): 882-891.
[8] Kai Qu, Kang Huang, Zhi Xu. Recent progress in the design and fabrication of MXene-based membranes[J]. Front. Chem. Sci. Eng., 2021, 15(4): 820-836.
[9] Yingying Jian, Danyao Qu, Lihao Guo, Yujin Zhu, Chen Su, Huanran Feng, Guangjian Zhang, Jia Zhang, Weiwei Wu, Ming-Shui Yao. The prior rules of designing Ti3C2Tx MXene-based gas sensors[J]. Front. Chem. Sci. Eng., 2021, 15(3): 505-517.
[10] Wenxin Xu, Xin Zhao, Jiali Tang, Chao Zhang, Yu Gao, Shin-ichi Sasaki, Hitoshi Tamiaki, Aijun Li, Xiao-Feng Wang. Synthesis of Chl@Ti3C2 composites as an anode material for lithium storage[J]. Front. Chem. Sci. Eng., 2021, 15(3): 709-716.
[11] Xiaoyan Deng, Luxing Wang, Qihui Xiu, Ying Wang, Hong Han, Dongmei Dai, Yongji Xu, Hongtao Gao, Xien Liu. Adsorption performance and physicochemical mechanism of MnO2-polyethylenimine-tannic acid composites for the removal of Cu(II) and Cr(VI) from aqueous solution[J]. Front. Chem. Sci. Eng., 2021, 15(3): 538-551.
[12] Zhe Yang, Xiaoyu Huang, Jianqiang Wang, Chuyang Y. Tang. Novel polyethyleneimine/TMC-based nanofiltration membrane prepared on a polydopamine coated substrate[J]. Front. Chem. Sci. Eng., 2018, 12(2): 273-282.
[13] WEN Lixiong, WANG Qing, ZHENG Tianyuan, CHEN Jianfeng. Effects of polyethylenimine on the dispersibility of hollow silica nanoparticles[J]. Front. Chem. Sci. Eng., 2007, 1(3): 277-282.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed