Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2022, Vol. 16 Issue (11) : 1651-1658    https://doi.org/10.1007/s11705-022-2208-5
RESEARCH ARTICLE
Toughening of vinyl ester resins by two-dimensional MXene nanosheets
Yurun Dai1, Heng Fang2(), Zong Lu1, Zhuohong Yang2, Yanying Wei1()
1. School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
2. Key Laboratory for Bio-based Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
 Download: PDF(4728 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Two-dimensional nanosheets are highly effective tougheners for vinyl ester resins. The toughening effect is related to the high specific surface area and unique two-dimensional planar structure of the nanosheets. In this study, a coupling agent γ-(2,3-epoxypropoxy) propytrimethoxysilane (Kh-560) was used to modify MXene nanosheets (M-MXene) for use in toughening vinyl ester resin. The mechanical properties, including the tensile strength, flexural strength, Young’s modulus and elongation, of neat vinyl ester resin and vinyl ester resin modified with MXene and M-MXene were investigated. The results showed that modification significantly improved the mechanical properties of the vinyl ester resin. The tensile and flexural strengths of the MXene-nanosheet-modified vinyl ester resin were 27.20% and 25.32% higher, respectively, than those of the neat vinyl ester resin. The coupling agent improved the interfacial compatibility between the MXene nanosheets and vinyl ester resin, which resulted in the tensile and flexural strengths of the M-MXene-nanosheet-modified vinyl ester resin being 52.57% and 54.60% higher, respectively, than those of the neat vinyl ester resin for a loading quantity of nanosheets of only 0.04 wt %, which is economically viable. The main mechanisms by which the nanosheets toughen the resin are crack deflection and crack pinning.

Keywords MXene nanosheets      2D material      vinyl ester resin      modification      coupling agent     
Corresponding Author(s): Heng Fang,Yanying Wei   
Online First Date: 03 November 2022    Issue Date: 13 December 2022
 Cite this article:   
Yurun Dai,Heng Fang,Zong Lu, et al. Toughening of vinyl ester resins by two-dimensional MXene nanosheets[J]. Front. Chem. Sci. Eng., 2022, 16(11): 1651-1658.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2208-5
https://academic.hep.com.cn/fcse/EN/Y2022/V16/I11/1651
Fig.1  Preparation process of the MXene nanosheets and nanosheets/resin composites.
Fig.2  SEM images of (a) the MXene nanosheets in low magnification and (b) the MXene nanosheets in high magnification.
Fig.3  The SEM images and elemental distribution results of (a) the MXene nanosheets and (b) the M-MXene nanosheets.
Fig.4  Infrared spectra results of the MXene and M-MXene nanosheets.
Fig.5  Tensile toughness (σt) of the MXene/M-MXene modified VER composites. (a) Tensile strength and (b) tensile elongation for the MXene modified VER composites, (c) tensile strength and (d) tensile elongation for the M-MXene modified VER composites.
Fig.6  Tensile modulus (Et) of the MXene/M-MXene modified VER composites.
Fig.7  Flexural strength of (a) the MXene modified VER composites and (b) the M-MXene modified VER composites and (c) flexural modulus of the MXene/M-MXene modified VER composites.
Fig.8  Representative SEM image of the failed compact tension sample of the neat VER (a) in low magnification and (b) in high magnification. Yellow arrow indicates the direction that crack propagates.
Fig.9  Representative SEM images of the failed compact tension samples of the MXene modified resin samples with loading amount of (a) 0.016 wt %, (c) 0.024 wt %, (e) 0.032 wt %, (g) 0.040 wt %, (i) 0.048 wt % and M-MXene modified resin samples with loading amount of (b) 0.016 wt %, (d) 0.024 wt %, (f) 0.032 wt %, (h) 0.040 wt %, (j) 0.048 wt %. Yellow arrows indicate the direction that crack propagates.
Fig.10  A brief schematic of possible mechanism that MXene nanosheets toughens VER. (a) crack propagation path of neat VER; (b) crack propagation path of MXene nanosheets modified VER.
1 J S Arrieta, E Richaud, B Fayolle, F Nizeyimana. Thermal oxidation of vinyl ester and unsaturated polyester resins. Polymer Degradation & Stability, 2016, 129: 142–155
https://doi.org/10.1016/j.polymdegradstab.2016.04.003
2 B K Kandola, J R Ebdon, C Zhou. Development of vinyl ester resins with improved flame retardant properties for structural marine applications. Reactive & Functional Polymers, 2018, 129: 111–122
https://doi.org/10.1016/j.reactfunctpolym.2017.08.006
3 L Cano, D H Builes, A Tercjak, S Carrasco-Hernandez, J Gutierrez, A Tercjak. Quantitative nanomechanical property mapping of epoxy thermosetting system modified with poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) triblock copolymer. Polymer Testing, 2017, 57: 38–41
https://doi.org/10.1016/j.polymertesting.2016.11.009
4 X F Liu, X Luo, B W Liu, H Y Zhong, D M Guo, R Yang, L Chen, Y Z Wang. Toughening epoxy resin using a liquid crystalline elastomer for versatile application. ACS Applied Polymer Materials, 2019, 1(9): 2291–2301
https://doi.org/10.1021/acsapm.9b00319
5 R Januszewski, M Dutkiewicz, M Nowicki, M Szołyga, I Kownacki. Synthesis and properties of epoxy resin modified with novel reactive liquid rubber-based systems. Industrial & Engineering Chemistry Research, 2021, 60(5): 2178–2186
https://doi.org/10.1021/acs.iecr.0c05781
6 E J Robinette, S Ziaee, G R Palmese. Toughening of vinyl ester resin using butadiene-acrylonitrile rubber modifiers. Polymer, 2004, 45(18): 6143–6154
https://doi.org/10.1016/j.polymer.2004.07.003
7 D Zhang, D Jia, X Huang. Bisphenol—a epoxy resin reinforced and toughened by hyperbranched epoxy resin. Frontiers of Chemical Science and Engineering, 2007, 1(4): 349–354
8 R Francis, D K Baby. Toughening of Epoxy Thermoset with polystyrene-block-polyglycolic acid star copolymer: nanostructure-mechanical property correlation. Industrial & Engineering Chemistry Research, 2014, 53(46): 17945–17951
https://doi.org/10.1021/ie5025003
9 C B Qu, T Wu, G W Huang, N Li, M Li, J L Ma, Y Liu, H M Xiao. Improving cryogenic mechanical properties of carbon fiber reinforced composites based on epoxy resin toughened by hydroxyl-terminated polyurethane. Composites Part B: Engineering, 2021, 210: 108569
https://doi.org/10.1016/j.compositesb.2020.108569
10 M S Goyat, A Hooda, T K Gupta, K Kumar, S Halder, P K Ghosh, B S Dehiya. Role of non-functionalized oxide nanoparticles on mechanical properties and toughening mechanisms of epoxy nanocomposites. Ceramics International, 2021, 16(47): 22316–22344
https://doi.org/10.1016/j.ceramint.2021.05.083
11 J N Yang, Y X Xu, C Su, S B Nie, Z Y Li. Synthesis of hierarchical nanohybrid CNT@Ni-PS and its applications in enhancing the tribological, curing and thermal properties of epoxy nanocomposites. Frontiers of Chemical Science and Engineering, 2021, 15(5): 1281–1295
https://doi.org/10.1007/s11705-020-2007-9
12 R P Singh, M Zhang, D Chan. Toughening of a brittle thermosetting polymer: effects of reinforcement particle size and volume fraction. Journal of Materials Science, 2002, 37(4): 781–788
https://doi.org/10.1023/A:1013844015493
13 M S Goyat, S Rana, S Halder, P K Ghosh. Facile fabrication of epoxy-TiO2 nanocomposites: a critical analysis of TiO2 impact on mechanical properties and toughening mechanisms. Ultrasonics Sonochemistry. Ultrasonics Sonochemistry, 2018, 40: 861–873
https://doi.org/10.1016/j.ultsonch.2017.07.040
14 J Y Yang, H X Wang, X H Liu, S Y Fu, P G Song. A nano-TiO2/regenerated cellulose biohybrid enables simultaneously improved strength and toughness of solid epoxy resins. Composites Science and Technology, 2021, 212: 108884
https://doi.org/10.1016/j.compscitech.2021.108884
15 M Zhang, R P Singh. Mechanical reinforcement of unsaturated polyester by Al2O3 nanoparticles. Materials Letters, 2004, 58(3–4): 408–412
https://doi.org/10.1016/S0167-577X(03)00512-3
16 M Naguib, V N Mochalin, M W Barsoum, Y Gogotsi. 25th anniversary article: MXenes: a new family of two-dimensional materials. Advanced Materials, 2014, 26(7): 992–1005
https://doi.org/10.1002/adma.201304138
17 B An, M Li, J Wang, C Li. Shape/size controlling syntheses, properties and applications of two-dimensional noble metal nanocrystals. Frontiers of Chemical Science and Engineering, 2016, 10(3): 360–382
https://doi.org/10.1007/s11705-016-1576-0
18 M A Rafiee, J Rafiee, I Srivastava, Z Wang, H H Song, Z Z Yu, N Koratkar. Fracture and fatigue in graphene nanocomposites. Small, 2010, 6(2): 179–183
https://doi.org/10.1002/smll.200901480
19 S Y He, N D Petkovich, K W Liu, Y Q Qian, C W Macosko, A Stein. Unsaturated polyester resin toughening with very low loadings of GO derivatives. Polymer, 2017, 110: 149–157
https://doi.org/10.1016/j.polymer.2016.12.057
20 T Q Li, S Y He, A Stein, L F Francis, F S Bates. Synergistic toughening of epoxy modified by graphene and block copolymer micelles. Macromolecules, 2016, 49(24): 9507–9520
https://doi.org/10.1021/acs.macromol.6b01964
21 S Y He, Y Q Qian, K W Liu, C W Macosko, A Stein. Effects of inorganic fillers on toughening of vinyl dster resins by modified graphene oxide. Industrial & Engineering Chemistry Research, 2018, 57(13): 4592–4599
https://doi.org/10.1021/acs.iecr.8b00362
22 W Wang, Y Wei, J Fan, J Cai, Z Lu, L Ding, H Wang. Recent progress of two-dimensional nanosheet membranes and composite membranes for separation applications. Frontiers of Chemical Science and Engineering, 2021, 15(4): 793–819
https://doi.org/10.1007/s11705-020-2016-8
23 K Qu, K Huang, Z Xu. Recent progress in the design and fabrication of MXene-based membranes. Frontiers of Chemical Science and Engineering, 2021, 15(4): 820–836
https://doi.org/10.1007/s11705-020-1997-7
24 M Dun, J Hao, W Wang, G Wang, H Cheng. Sisal fiber reinforced high density polyethylene pre-preg for potential application in filament winding. Composites Part B: Engineering, 2019, 159: 369–377
https://doi.org/10.1016/j.compositesb.2018.09.090
25 Z K Douaihy, I Telegeiev, H Nasrallah, O Lebedev, P Bazin, A Vimont, J F Chailan, A Fahs, M EL-Roz. EL-Roz M. Synthesis of silica-polymer core-shell hybrid materials with enhanced mechanical properties using a new bifunctional silane-based photoinitiator as coupling agent. Materials Today. Communications, 2021, 27: 102248
https://doi.org/10.1016/j.mtcomm.2021.102248
26 F Ahangaran, A H Navarchian. Recent advances in chemical surface modification of metal oxide nanoparticles with silane coupling agents: a review. Advances in Colloid and Interface Science, 2020, 286: 102298
https://doi.org/10.1016/j.cis.2020.102298
27 Z Lu, Y Wu, L Ding, Y Y Wei, H H Wang. A lamellar MXene (Ti3C2Tx)/PSS composite membrane for fast and selective lithium-ion separation. Angewandte Chemie International Edition, 2021, 60(41): 22265–22269
https://doi.org/10.1002/anie.202108801
28 J J Deng, Z Lu, L Ding, Z K Li, Y Y Wei, J Caro, H H Wang. Fast electrophoretic preparation of large-area two-dimensional titanium carbide membranes for ion sieving. Chemical Engineering Journal, 2021, 408: 127806
https://doi.org/10.1016/j.cej.2020.127806
29 Z Lu, Y Y Wei, J J Deng, L Ding, Z K Li, H H Wang. Self-crosslinked MXene (Ti3C2Tx) membranes with good antiswelling property for monovalent metal ion exclusion. ACS Nano, 2019, 13(9): 10535–10544
https://doi.org/10.1021/acsnano.9b04612
30 L Ding, L B Li, Y C Liu, Y Wu, Z Lu, J J Deng, Y Y Wei, J Caro, H H Wang. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. Nature Sustainability, 2020, 3(4): 296–302
https://doi.org/10.1038/s41893-020-0474-0
31 R M Silverstein, G C Bassler, T C Morrill. Spectrometric Identification of Organic Compounds. 4th ed. New York: John Wiley & Sons, 1981,
32 S Y He, Y Q Qian, K W Liu, C W Macosko, A Stein. Modified-graphene-oxide-containing styrene masterbatches for thermosets. Industrial & Engineering Chemistry Research, 2017, 56(40): 11443–11450
https://doi.org/10.1021/acs.iecr.7b02583
33 V M F Evora, A Shukla. Fabrication, characterization, and dynamic behavior of polyester/TiO2 nanocomposites. Materials Science and Engineering A, 2003, 361(1–2): 358–366
https://doi.org/10.1016/S0921-5093(03)00536-7
34 L C Tang, H Zhang, S Sprenger, L Ye, Z Zhang. Fracture mechanisms of epoxy-based ternary composites filled with rigid-soft particles. Composites Science and Technology, 2012, 72(5): 558–565
https://doi.org/10.1016/j.compscitech.2011.12.015
35 T Liu, W C Tjiu, Y Tong, C He, S S Goh, T S Chung. Morphology and fracture behavior of intercalated epoxy/clay nanocomposites. Journal of Applied Polymer Science, 2010, 94(3): 1236–1244
https://doi.org/10.1002/app.21033
[1] Tong Xing, Changqing Dong, Xiaodong Wang, Xiaoying Hu, Changrui Liu, Haiyang Lv. Biodegradable, superhydrophobic walnut wood membrane for the separation of oil/water mixtures[J]. Front. Chem. Sci. Eng., 2022, 16(9): 1377-1386.
[2] Siamak Javanbakht, Tahereh Nasiriani, Hassan Farhid, Mohammad Taghi Nazeri, Ahmad Shaabani. Sustainable functionalization and modification of materials via multicomponent reactions in water[J]. Front. Chem. Sci. Eng., 2022, 16(9): 1318-1344.
[3] Pei Sean Goh, Kar Chun Wong, Tuck Whye Wong, Ahmad Fauzi Ismail. Surface-tailoring chlorine resistant materials and strategies for polyamide thin film composite reverse osmosis membranes[J]. Front. Chem. Sci. Eng., 2022, 16(5): 564-591.
[4] Fan Yang, Junhui Huang, Lijun Deng, Yanqiu Zhang, Guodong Dang, Lu Shao. Hydrophilic modification of poly(aryl sulfone) membrane materials toward highly-efficient environmental remediation[J]. Front. Chem. Sci. Eng., 2022, 16(5): 614-633.
[5] Rusen Zhou, Xiaoxiang Wang, Renwu Zhou, Janith Weerasinghe, Tianqi Zhang, Yanbin Xin, Hao Wang, Patrick Cullen, Hongxia Wang, Kostya (Ken) Ostrikov. Non-thermal plasma enhances performances of biochar in wastewater treatment and energy storage applications[J]. Front. Chem. Sci. Eng., 2022, 16(4): 475-483.
[6] Zihan Liu, Yang Luo, Lianchao Ning, Yong Liu, Ming Zhang. Highly hydrophobic oil−water separation membrane: reutilization of waste reverse osmosis membrane[J]. Front. Chem. Sci. Eng., 2022, 16(11): 1606-1615.
[7] Yusheng Xie, Jie Zhang, Liu Yang, Qingxin Chen, Quan Hao, Liang Zhang, Hongyan Sun. A dual-function chemical probe for detecting erasers of lysine lipoylation[J]. Front. Chem. Sci. Eng., 2022, 16(1): 121-127.
[8] Hui Shang, Chong Guo, Pengfei Ye, Wenhui Zhang. Synthesis of boron modified CoMo/Al2O3 catalyst under different heating methods and its gasoline hydrodesulfurization performance[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1088-1098.
[9] Wei Wang, Yanying Wei, Jiang Fan, Jiahao Cai, Zong Lu, Li Ding, Haihui Wang. Recent progress of two-dimensional nanosheet membranes and composite membranes for separation applications[J]. Front. Chem. Sci. Eng., 2021, 15(4): 793-819.
[10] Kai Qu, Kang Huang, Zhi Xu. Recent progress in the design and fabrication of MXene-based membranes[J]. Front. Chem. Sci. Eng., 2021, 15(4): 820-836.
[11] You Han, Yulian Wang, Tengzhou Ma, Wei Li, Jinli Zhang, Minhua Zhang. Mechanistic understanding of Cu-based bimetallic catalysts[J]. Front. Chem. Sci. Eng., 2020, 14(5): 689-748.
[12] Hong Xu, Yulin Dai, Honghai Cao, Jinglei Liu, Li Zhang, Mingjie Xu, Jun Cao, Peng Xu, Jianshu Liu. Tubes with coated and sintered porous surface for highly efficient heat exchangers[J]. Front. Chem. Sci. Eng., 2018, 12(3): 367-375.
[13] Peyman P. Selakjani, Majid Peyravi, Mohsen Jahanshahi, Hamzeh Hoseinpour, Ali S. Rad, Soodabeh Khalili. Strengthening of polysulfone membranes using hybrid mixtures of micro- and nano-scale modifiers[J]. Front. Chem. Sci. Eng., 2018, 12(1): 174-183.
[14] Jumin Hao, Xiaoguang Meng. Recent advances in SERS detection of perchlorate[J]. Front. Chem. Sci. Eng., 2017, 11(3): 448-464.
[15] Chengyun Huang,Steven E. Rokita. DNA alkylation promoted by an electron-rich quinone methide intermediate[J]. Front. Chem. Sci. Eng., 2016, 10(2): 213-221.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed