Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (3) : 25    https://doi.org/10.1007/s11705-024-2388-2
Insight into the selective separation of CO2 from biomass pyrolysis gas over metal-incorporated nitrogen-doped carbon materials: a first-principles study
Li Zhao, Xinru Liu, Zihao Ye, Bin Hu(), Haoyu Wang, Ji Liu, Bing Zhang, Qiang Lu()
National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing 102206, China
 Download: PDF(11622 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The composition of biomass pyrolysis gas is complex, and the selective separation of its components is crucial for its further utilization. Metal-incorporated nitrogen-doped materials exhibit enormous potential, whereas the relevant adsorption mechanism is still unclear. Herein, 16 metal-incorporated nitrogen-doped carbon materials were designed based on the density functional theory calculation, and the adsorption mechanism of pyrolysis gas components H2, CO, CO2, CH4, and C2H6 was explored. The results indicate that metal-incorporated nitrogen-doped carbon materials generally have better adsorption effects on CO and CO2 than on H2, CH4, and C2H6. Transition metal Mo- and alkaline earth metal Mg- and Ca-incorporated nitrogen-doped carbon materials show the potential to separate CO and CO2. The mixed adsorption results of CO2 and CO further indicate that when the CO2 ratio is significantly higher than that of CO, the saturated adsorption of CO2 will precede that of CO. Overall, the three metal-incorporated nitrogen-doped carbon materials can selectively separate CO2, and the alkaline earth metal Mg-incorporated nitrogen-doped carbon material has the best performance. This study provides theoretical guidance for the design of carbon capture materials and lays the foundation for the efficient utilization of biomass pyrolysis gas.

Keywords CO2 capture      biomass pyrolysis gas      selective adsorption      carbon materials      first-principles     
Corresponding Author(s): Bin Hu,Qiang Lu   
Just Accepted Date: 12 December 2023   Issue Date: 18 January 2024
 Cite this article:   
Li Zhao,Xinru Liu,Zihao Ye, et al. Insight into the selective separation of CO2 from biomass pyrolysis gas over metal-incorporated nitrogen-doped carbon materials: a first-principles study[J]. Front. Chem. Sci. Eng., 2024, 18(3): 25.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2388-2
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I3/25
Fig.1  ESP diagrams of M-N3Gs incorporated by typical 3d (Cr, Mn, Fe, Co, Ni, Cu) and 4d (Mo, Ru, Rh, Pd) transition metals. The blue color represents nucleophilicity, while the red color represents electrophilicity.
Fig.2  Diagram of adsorption energies for H2, CO, CO2, CH4, and C2H6 over M-N3Gs (M = Cu, Co, Ru, Rh, Pd, Fe, Ni, Cr, Mn, and Mo). The yellow plane divides the diagram into two parts, namely, the physical adsorption (below 0.4 eV) and chemical adsorption (above 0.4 eV).
Fig.3  Adsorption configurations and CDD diagrams of (a) H2, (b) CO, (c) CO2, (d) CH4, and (e) C2H6 over Mo-N3G.
AdsorbateMg
H2/Mo-N3G?0.5527|e|1.5234|e|
CO/Mo-N3G?0.6051|e|1.5176|e|
CO2/Mo-N3G?0.7406|e|1.5807|e|
CH4/Mo-N3G?0.0079|e|1.2567|e|
C2H6/Mo-N3G?0.0499|e|1.2618|e|
Tab.1  Bader charge transfer of H2, CO, CO2, CH4, and C2H6 over Mo-N3G
Fig.4  COHP diagrams for the adsorption of (a) H2, (b) CO, (c) CO2, (d) CH4, and (e) C2H6 over Mo-N3G.
Fig.5  Diagram of adsorption energies for H2, CO, CO2, CH4, and C2H6 over M-N3Gs (M = Mg, Sr, Ca, Na, K, and Rb). The yellow plane divides the diagram into two parts, namely, the physical adsorption (below 0.4 eV) and the chemical adsorption (above 0.4 eV).
Fig.6  Adsorption configurations and CDD diagrams of (a) H2, (b) CO, (c) CO2, (d) CH4, and (e) C2H6 over Mg-N3G (with isosurface = 0.00012 e·Bohr?3).
AdsorbateMg
H2/Mg-N3G?0.0052|e|0.3756|e|
CO/Mg-N3G?0.3980|e|0.3764|e|
CO2/Mg-N3G?0.4760|e|0.3987|e|
CH4/Mg-N3G0.0086|e|0.3688|e|
C2H6/Mg-N3G?0.0993|e|0.0939|e|
Tab.2  Bader charge transfer of H2, CO, CO2, CH4, and C2H6 over Mg-N3G
Fig.7  COHP diagrams of (a) H2, (b) CO, (c) CO2, (d) CH4, and (e) C2H6 adsorption over Mg-N3G.
AdsorbateMg
H2/Ca-N3G0.0027|e|?0.0002|e|
CO/Ca-N3G?0.3675|e|0.0429|e|
CO2/Ca-N3G?0.4610|e|0.0829|e|
CH4/Ca-N3G0.0096|e|0.0017|e|
C2H6/Ca-N3G0.0078|e|?0.0017|e|
Tab.3  Bader charge transfer of H2, CO, CO2, CH4, and C2H6 over Ca-N3G
Fig.8  Adsorption configurations and CDD diagrams of (a) H2, (b) CO, (c) CO2, (d) CH4, and (e) C2H6 over Ca-N3G (with isosurface = 0.00012 e·Bohr?3).
Fig.9  Schematic diagram of outer orbitals for the interaction between metal atoms and gas molecules: (a) transition metal; (b) alkali and alkaline earth metals.
CO2:CO = 1:2CO2:CO = 1:1CO2:CO = 2:1CO2:CO = 3:2
CO2ICOHPO–Mo = ?2.57776 eVCO2ICOHPO–Mo = ?2.96162 eVCO2 (2.19 ?)ICOHPO–Mo = ?0.03562 eVCO2 (2.02 ?)ICOHPC–Mo = ?1.03080 eV
ICOHPC–Mo = ?0.03176 eVICOHPC–Mo = ?0.01599 eVICOHPC–Mo = ?0.96878 eVCO2 (2.17 ?)ICOHPC–Mo = ?0.00563 eV
CO (1.98 ?)ICOHPC–Mo = ?0.13694 eVCOICOHPC–Mo = ?0.13187 eVCO2 (2.12 ?)ICOHPO–Mo = ?0.26017 eVCO2 (3.75 ?)ICOHPC–Mo = ?0.02559 eV
CO (2.02 ?)ICOHPC–Mo = ?0.00892 eVICOHPO–Mo = ?0.02932 eVICOHPC–Mo = ?1.05358 eVCO (3.70 ?)ICOHPC–Mo = ?0.10086 eV
COICOHPC–Mo = ?0.19773 eVCO (4.02 ?)ICOHPC–Mo = ?0.02329 eV
Tab.4  ICOHP of CO2 and CO co-adsorbed over Mo-N3G with the mixing ratio of 1:2, 1:1, 2:1, and 3:2a)
Fig.10  The geometric configurations and CDD diagrams of CO2 and CO molecules co-adsorbed over Mo-N3G.
1 B Hu , Z Zhang , W Xie , J Liu , Y Li , W Zhang , H Fu , Q Lu . Advances on the fast pyrolysis of biomass for the selective preparation of phenolic compounds. Fuel Processing Technology, 2022, 237: 107465
https://doi.org/10.1016/j.fuproc.2022.107465
2 V J Bruckman , J Pumpanen . Biochar use in global forests: opportunities and challenges. Developments in Soil Science, 2019, 36: 427–453
https://doi.org/10.1016/B978-0-444-63998-1.00017-3
3 M Heidari , A Dutta , B Acharya , S Mahmud . A review of the current knowledge and challenges of hydrothermal carbonization for biomass conversion. Journal of the Energy Institute, 2019, 92(6): 1779–1799
https://doi.org/10.1016/j.joei.2018.12.003
4 A K Vuppaladadiyam , Vuppaladadiyam S S Varsha , V S Sikarwar , E Ahmad , K K Pant , M S , A Pandey , S Bhattacharya , A Sarmah , S Y Leu . et al.. A critical review on biomass pyrolysis: reaction mechanisms, process modeling and potential challenges. Journal of the Energy Institute, 2023, 108: 101236
https://doi.org/10.1016/j.joei.2023.101236
5 F Montazersadgh , H Zhang , A Alkayal , B Buckley , B W Kolosz , B Xu , J Xuan . Electrolytic cell engineering and device optimization for electrosynthesis of e-biofuels via co-valorisation of bio-feedstocks and captured CO2. Frontiers of Chemical Science and Engineering, 2021, 15(1): 208–219
https://doi.org/10.1007/s11705-020-1945-6
6 S Wan , Y Wang . A review on ex situ catalytic fast pyrolysis of biomass. Frontiers of Chemical Science and Engineering, 2014, 8(3): 280–294
https://doi.org/10.1007/s11705-014-1436-8
7 M J Nobarzad , M Tahmasebpoor , M Heidari , C Pevida . Theoretical and experimental study on the fluidity performance of hard-to-fluidize carbon nanotubes-based CO2 capture sorbents. Frontiers of Chemical Science and Engineering, 2022, 16(10): 1460–1475
https://doi.org/10.1007/s11705-022-2159-x
8 Z Qie , L Wang , F Sun , H Xiang , H Wang , J Gao , G Zhao , X Fan . Tuning porosity of coal-derived activated carbons for CO2 adsorption. Frontiers of Chemical Science and Engineering, 2022, 16(9): 1345–1354
https://doi.org/10.1007/s11705-022-2155-1
9 E Mehrvarz , A A Ghoreyshi , M Jahanshahi . Surface modification of broom sorghum-based activated carbon via functionalization with triethylenetetramine and urea for CO2 capture enhancement. Frontiers of Chemical Science and Engineering, 2017, 11(2): 252–265
https://doi.org/10.1007/s11705-017-1630-6
10 J Bai , J Huang , Q Yu , M Demir , E Akgul , B N Altay , X Hu , L Wang . Fabrication of coconut shell-derived porous carbons for CO2 adsorption application. Frontiers of Chemical Science and Engineering, 2023, 17(8): 1122–1130
https://doi.org/10.1007/s11705-022-2292-6
11 D Wu , J Liu , Y Yang , Y Zheng . Nitrogen/oxygen Co-doped porous carbon derived from biomass for low-pressure CO2 capture. Industrial & Engineering Chemistry Research, 2020, 59(31): 14055–14063
https://doi.org/10.1021/acs.iecr.0c00006
12 H Hamyali , F Nosratinia , A Rashidi , M Ardjmand . Anthracite coal-derived activated carbon as an effectiveness adsorbent for superior gas adsorption and CO2/N2 and CO2/CH4 selectivity: experimental and DFT study. Journal of Environmental Chemical Engineering, 2022, 10(1): 107007
https://doi.org/10.1016/j.jece.2021.107007
13 I D Mackie , G A DiLabio . CO2 adsorption by nitrogen-doped carbon nanotubes predicted by density-functional theory with dispersion-correcting potentials. Physical Chemistry Chemical Physics, 2011, 13(7): 2780–2787
https://doi.org/10.1039/C0CP01537G
14 J Zhang , D Huang , J Shao , X Zhang , H Yang , S Zhang , H Chen . Activation-free synthesis of nitrogen-doped biochar for enhanced adsorption of CO2. Journal of Cleaner Production, 2022, 355: 131642
https://doi.org/10.1016/j.jclepro.2022.131642
15 N H M H Tehrani , M S Alivand , D M Maklavany , A Rashidi , M Samipoorgiri , A Seif , Z Yousefian . Novel asphaltene-derived nanoporous carbon with N-S-rich micro-mesoporous structure for superior gas adsorption: experimental and DFT study. Chemical Engineering Journal, 2019, 358: 1126–1138
https://doi.org/10.1016/j.cej.2018.10.115
16 I Choudhuri , N Patra , A Mahata , R Ahuja , B Pathak . B–N@graphene: highly sensitive and selective gas sensor. Journal of Physical Chemistry C, 2015, 119(44): 24827–24836
https://doi.org/10.1021/acs.jpcc.5b07359
17 X Li , Q Xue , D He , L Zhu , Y Du , W Xing , T Zhang . Sulfur–nitrogen codoped graphite slit-pore for enhancing selective carbon dioxide adsorption: insights from molecular simulations. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 8815–8823
https://doi.org/10.1021/acssuschemeng.7b01612
18 M Abe , K Kawashima , K Kozawa , H Sakai , K Kaneko . Amination of activated carbon and adsorption characteristics of its aminated surface. Langmuir, 2000, 16(11): 5059–5063
https://doi.org/10.1021/la990976t
19 B Hu , X Liu , H Chen , J Liu , Y Wu , L Zhao , B Zhang , Q Lu . The selective adsorption mechanism of CO2 from biomass pyrolysis gas on N-doped carbon materials with an electric field: a first-principles study. Journal of the Energy Institute, 2023, 109: 101301
20 Y Wang , X Hu , T Guo , J Hao , C Si , Q Guo . Efficient CO2 adsorption and mechanism on nitrogen-doped porous carbons. Frontiers of Chemical Science and Engineering, 2021, 15(3): 493–504
https://doi.org/10.1007/s11705-020-1967-0
21 Y C Lin , P Y Teng , C H Yeh , M Koshino , P W Chiu , K Suenaga . Structural and chemical dynamics of pyridinic-nitrogen defects in graphene. Nano Letters, 2015, 15(11): 7408–7413
https://doi.org/10.1021/acs.nanolett.5b02831
22 Q Li , X Li , G Zhang , J Jiang . Cooperative spin transition of monodispersed FeN3 sites within graphene induced by CO adsorption. Journal of the American Chemical Society, 2018, 140(45): 15149–15152
https://doi.org/10.1021/jacs.8b07816
23 F Montejo-Alvaro , J A Martinez-Espinosa , H Rojas-Chavez , D C Navarro-Ibarra , H Cruz-Martinez , D I Medina . CO2 adsorption over 3d transition-metal nanoclusters supported on pyridinic N3-doped graphene: a DFT investigation. Materials, 2022, 15(17): 6136
https://doi.org/10.3390/ma15176136
24 P Poldorn , Y Wongnongwa , T Mudchimo , S Jungsuttiwong . Theoretical insights into catalytic CO2 hydrogenation over single-atom (Fe or Ni) incorporated nitrogen-doped graphene. Journal of CO2 Utilization, 2021, 48: 101532
25 C Zhao , H Wu . A first-principles study on the interaction of biogas with noble metal (Rh, Pt, Pd) decorated nitrogen doped graphene as a gas sensor: a DFT study. Applied Surface Science, 2018, 435: 1199–1212
https://doi.org/10.1016/j.apsusc.2017.11.146
26 T Xie , P Wang , C Tian , G Zhao , J Jia , C He , C Zhao , H Wu . The investigation of adsorption behavior of gas molecules on FeN3-doped graphene. Journal of Sensors, 2022, 2022: 1–8
https://doi.org/10.1155/2022/9306741
27 Z Lou , W Li , H Yuan , Y Hou , H Yang , H Wang . Structural rule of N-coordinated single-atom catalysts for electrochemical CO2 reduction. Journal of Materials Chemistry A, 2022, 10(7): 3585–3594
https://doi.org/10.1039/D1TA09015A
28 G Kresse , J Furthmüller . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B: Condensed Matter, 1996, 54(16): 11169–11186
https://doi.org/10.1103/PhysRevB.54.11169
29 J P Perdew , K Burke , M Ernzerhof . Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868
https://doi.org/10.1103/PhysRevLett.77.3865
30 G Kresse , D Joubert . From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B: Condensed Matter, 1999, 59(3): 1758–1775
https://doi.org/10.1103/PhysRevB.59.1758
31 K Aledealat , B Aladerah , A Obeidat . Magnetic properties of transition-metal atomic monolayer in nickel supercell: density functional theory and monte carlo simulation. Journal of Magnetism and Magnetic Materials, 2022, 564: 170173
https://doi.org/10.1016/j.jmmm.2022.170173
32 L Gong , D Zhang , C Lin , Y Zhu , Y Shen , J Zhang , X Han , L Zhang , Z Xia . Catalytic mechanisms and design principles for single-atom catalysts in highly efficient CO2 conversion. Advanced Energy Materials, 2019, 9(44): 1902625
https://doi.org/10.1002/aenm.201902625
33 C Lin , L Zhang , Z Zhao , Z Xia . Design principles for covalent organic frameworks as efficient electrocatalysts in clean energy conversion and green oxidizer production. Advanced Materials, 2017, 29(17): 1606635
https://doi.org/10.1002/adma.201606635
34 I V Solovyev , P H Dederichs , V I Anisimov . Corrected atomic limit in the local-density approximation and the electronic structure of d impurities in Rb. Physical Review B: Condensed Matter, 1994, 50(23): 16861–16871
https://doi.org/10.1103/PhysRevB.50.16861
35 J K NørskovF StudtF Abild-PedersenT Bligaard. Fundamental Concepts in Heterogeneous Catalysis, 1st ed. Hoboken: John Wiley & Sons, 2014, 119–122
36 T L M Pham , S Nachimuthu , J L Kuo , J C Jiang . A DFT study of ethane activation on IrO2(110) surface by precursor-mediated mechanism. Applied Catalysis A, General, 2017, 541: 8–14
https://doi.org/10.1016/j.apcata.2017.04.018
37 A P Richards , D Haycock , J Frandsen , T H Fletcher . A review of coal heating value correlations with application to coal char, tar, and other fuels. Fuel, 2021, 283: 118942
https://doi.org/10.1016/j.fuel.2020.118942
38 G Lopez , J Alvarez , M Amutio , N M Mkhize , B Danon , der Gryp P van , J F Görgens , J Bilbao , M Olazar . Waste truck-tyre processing by flash pyrolysis in a conical spouted bed reactor. Energy Conversion and Management, 2017, 142: 523–532
https://doi.org/10.1016/j.enconman.2017.03.051
39 S Li , S Xu , S Liu , C Yang , Q Lu . Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas. Fuel Processing Technology, 2004, 85(8–10): 1201–1211
https://doi.org/10.1016/j.fuproc.2003.11.043
40 X Shi , J Wang . A comparative investigation into the formation behaviors of char, liquids and gases during pyrolysis of pinewood and lignocellulosic components. Bioresource Technology, 2014, 170: 262–269
https://doi.org/10.1016/j.biortech.2014.07.110
41 H Wang , X Wang , Y Cui , Z Xue , Y Ba . Slow pyrolysis polygeneration of bamboo (Phyllostachys pubescens): product yield prediction and biochar formation mechanism. Bioresource Technology, 2018, 263: 444–449
https://doi.org/10.1016/j.biortech.2018.05.040
[1] FCE-23067-OF-ZL_suppl_1 Download
[1] Dang Duc Viet, Doan Thi Thao, Khuong Duy Anh, Toshiki Tsubota. Autohydrolysis treatment of bamboo and potassium oxalate (K2C2O4) activation of bamboo product for CO2 capture utilization[J]. Front. Chem. Sci. Eng., 2024, 18(4): 41-.
[2] Sijia Xing, Sixiang Zhai, Lei Chen, Huabin Yang, Zhong-Yong Yuan. Insights into carbon-based materials for catalytic dehydrogenation of low-carbon alkanes and ethylbenzene[J]. Front. Chem. Sci. Eng., 2023, 17(11): 1623-1648.
[3] Jianlin Li, Ti Wang, Pei Liu, Zheng Li. Dynamic modelling and simulation of a post-combustion CO2 capture process for coal-fired power plants[J]. Front. Chem. Sci. Eng., 2022, 16(2): 198-209.
[4] Mahsa Javidi Nobarzad, Maryam Tahmasebpoor, Mohammad Heidari, Covadonga Pevida. Theoretical and experimental study on the fluidity performance of hard-to-fluidize carbon nanotubes-based CO2 capture sorbents[J]. Front. Chem. Sci. Eng., 2022, 16(10): 1460-1475.
[5] Huan Wang, Guo Du, Jiaqing Jia, Shaohua Chen, Zhipeng Su, Rui Chen, Tiehong Chen. Hierarchically porous zeolites synthesized with carbon materials as templates[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1444-1461.
[6] Sanaa Hafeez, Tayeba Safdar, Elena Pallari, George Manos, Elsa Aristodemou, Zhien Zhang, S. M. Al-Salem, Achilleas Constantinou. CO2 capture using membrane contactors: a systematic literature review[J]. Front. Chem. Sci. Eng., 2021, 15(4): 720-754.
[7] Zhihong Xu, Tao Jiang, Hao Zhang, Yujun Zhao, Xinbin Ma, Shengping Wang. Efficient MgO-doped CaO sorbent pellets for high temperature CO2 capture[J]. Front. Chem. Sci. Eng., 2021, 15(3): 698-708.
[8] Gongkui Xiao, Penny Xiao, Andrew Hoadley, Paul Webley. Integrated adsorption and absorption process for post-combustion CO2 capture[J]. Front. Chem. Sci. Eng., 2021, 15(3): 483-492.
[9] Chenkai Gu, Yang Liu, Weizhou Wang, Jing Liu, Jianbo Hu. Effects of functional groups for CO2 capture using metal organic frameworks[J]. Front. Chem. Sci. Eng., 2021, 15(2): 437-449.
[10] Yujie Ban, Meng Zhao, Weishen Yang. Metal-organic framework-based CO2 capture: from precise material design to high-efficiency membranes[J]. Front. Chem. Sci. Eng., 2020, 14(2): 188-215.
[11] Giorgia De Guido, Matteo Compagnoni, Laura A. Pellegrini, Ilenia Rossetti. Mature versus emerging technologies for CO2 capture in power plants: Key open issues in post-combustion amine scrubbing and in chemical looping combustion[J]. Front. Chem. Sci. Eng., 2018, 12(2): 315-325.
[12] Stefania Moioli, Laura A. Pellegrini, Paolo Vergani, Fabio Brignoli. Study of the robustness of a low-temperature dual-pressure process for removal of CO2 from natural gas[J]. Front. Chem. Sci. Eng., 2018, 12(2): 209-225.
[13] Huimei Yu, Xiaoxing Wang, Zhu Shu, Mamoru Fujii, Chunshan Song. Al2O3 and CeO2-promoted MgO sorbents for CO2 capture at moderate temperatures[J]. Front. Chem. Sci. Eng., 2018, 12(1): 83-93.
[14] Tianjie Liu, Hao Fan, Yanxia Xu, Xingfu Song, Jianguo Yu. Effects of metal ions on the morphology of calcium sulfate hemihydrate whiskers by hydrothermal method[J]. Front. Chem. Sci. Eng., 2017, 11(4): 545-553.
[15] Elaheh Mehrvarz, Ali A. Ghoreyshi, Mohsen Jahanshahi. Surface modification of broom sorghum-based activated carbon via functionalization with triethylenetetramine and urea for CO2capture enhancement[J]. Front. Chem. Sci. Eng., 2017, 11(2): 252-265.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed