|
|
Flame-retardant, recyclable, and hydrothermally degradable epoxy resins and their degradation products for high-strength adhesives |
Yue-Rong Zhang, Zhen Qin, Song Gu, Jia-Xin Zhao, Xian-Yue Xiang, Chuan Liu, Yu-Zhong Wang, Li Chen( ) |
The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (Ministry of Education), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China |
|
|
Abstract To date, sustainable thermosetting polymers and their composites have emerged to address recyclability issues. However, achieving mild degradation of these polymers compromises their comprehensive properties such as flame retardancy and glass transition temperature (Tg). Moreover, the reuse of degradation products after recycling for upcycling remains a significant challenge. This study introduces phosphorus-containing anhydride into tetraglycidyl methylene diphenylamine via a facile anhydride-epoxy curing equilibrium with triethanolamine as a transesterification modifier to successfully prepare flame-retardant, malleable, reprocessable, and easily hydrothermally degradable epoxy vitrimers and recyclable carbon fiber-reinforced epoxy composites (CFRECs). The composite exhibited excellent flame retardancy and a high Tg of 192 °C, while the presence of stoichiometric primary hydroxyl groups along the ester-bonding crosslinks enabled environmentally friendly degradation (in H2O) at 200 °C without any external catalyst. Under mild degradation conditions, the fibers of the composite material were successfully recycled without being damaged, and the degradation products were reused to create a recyclable adhesive with a peel strength of 3.5 MPa. This work presents a method to produce flame retardants and sustainable CFRECs for maximizing the value of degradation products, offering a new upcycling method for high-end applications.
|
Keywords
epoxy vitrimer
carbon fiber composites
flame retardancy
upcycling
|
Corresponding Author(s):
Li Chen
|
Just Accepted Date: 28 June 2024
Issue Date: 13 September 2024
|
|
1 |
E H Discekici , A H St Amant , S N Nguyen , I H Lee , C J Hawker , J Read de Alaniz . Endo and exo Diels-Alder adducts: temperature-tunable building blocks for selective chemical functionalization. Journal of the American Chemical Society, 2018, 140: 5009–5013
https://doi.org/10.1021/jacs.8b01544
|
2 |
K Yu , Q Shi , M L Dunn , T J Wang , H J Qi . Carbon fiber reinforced thermoset composite with near 100% recyclability. Advanced Functional Materials, 2016, 26(33): 6098–6106
https://doi.org/10.1002/adfm.201602056
|
3 |
I Vollmer , M J F Jenks , M C P Roelands , R J White , T van Harmelen , P de Wild , G P van der Laan , F Meirer , J T F Keurentjes , B M Weckhuysen . Beyond mechanical recycling: giving new life to plastic waste. Angewandte Chemie International Edition, 2020, 59(36): 15402–15423
https://doi.org/10.1002/anie.201915651
|
4 |
A Chao , I Negulescu , D H Zhang . Dynamic covalent polymer networks based on degenerative lmine bond exchange: tuning the malleability and self-healing properties by solvent. Macromolecules, 2016, 49(17): 6277–6284
https://doi.org/10.1021/acs.macromol.6b01443
|
5 |
W Denissen , J M Winne , F E Du Prez . Vitrimers: permanent organic networks with glass-like fluidity. Chemical Science, 2016, 7(1): 30–38
https://doi.org/10.1039/C5SC02223A
|
6 |
D Montarnal , M Capelot , F Tournilhac , L Leibler . Silica-like malleable materials from permanent organic networks. Science, 2011, 334(6058): 965–968
https://doi.org/10.1126/science.1212648
|
7 |
Y Z Xu , S L Dai , L W Bi , J X Jiang , H B Zhang , Y X Chen . Catalyst-free self-healing bio-based vitrimer for a recyclable, reprocessable, and self-adhered carbon fiber reinforced composite. Chemical Engineering Journal, 2022, 429: 132518
https://doi.org/10.1016/j.cej.2021.132518
|
8 |
M Capelot , M M Unterlass , F Tournilhac , L Leibler . Catalytic control of the vitrimer glass transition. ACS Macro Letters, 2012, 1(7): 789–792
https://doi.org/10.1021/mz300239f
|
9 |
Y H Jin , Z P Lei , P Taynton , S F Huang , W Zhang . Malleable and recyclable thermosets: the next generation of plastics. Matter, 2019, 1(6): 1456–1493
https://doi.org/10.1016/j.matt.2019.09.004
|
10 |
C J Kloxin , C N Bowman . Covalent adaptable networks: smart, reconfigurable and responsive network systems. Chemical Society Reviews, 2013, 42(17): 7161–7173
https://doi.org/10.1039/C3CS60046G
|
11 |
X M Ding , L Chen , Y J Xu , X H Shi , X Luo , X Song , Y Z Wang . Robust epoxy vitrimer with simultaneous ultrahigh impact property, fire safety, and multipath recyclability via rigid-flexible imine networks. ACS Sustainable Chemistry & Engineering, 2023, 11(39): 14445–14456
https://doi.org/10.1021/acssuschemeng.3c03189
|
12 |
M Podgórski , B D Fairbanks , B E Kirkpatrick , M McBride , A Martinez , A Dobson , N J Bongiardina , C N Bowman . Covalent adaptable networks: toward stimuli-responsive dynamic thermosets through continuous development and improvements in covalent adaptable networks. Advanced Materials, 2020, 32(20): 2070158
https://doi.org/10.1002/adma.202070158
|
13 |
Y Y Liu , G L Liu , Y D Li , Y X Weng , J B Zeng . Biobased high-performance epoxy vitrimer with UV shielding for recyclable carbon fiber reinforced composites. ACS Sustainable Chemistry & Engineering, 2021, 9(12): 4638–4647
https://doi.org/10.1021/acssuschemeng.1c00231
|
14 |
T Liu , C Hao , L W Wang , Y Z Li , W C Liu , J N Xin , J W Zhang . Eugenol-derived biobased epoxy: shape memory, repairing, and recyclability. Macromolecules, 2017, 50(21): 8588–8597
https://doi.org/10.1021/acs.macromol.7b01889
|
15 |
T Liu , S Zhang , C Hao , C Verdi , W C Liu , H Liu , J W Zhang . Glycerol induced catalyst-free curing of epoxy and vitrimer preparation. Macromolecular Rapid Communications, 2019, 40(7): 1800889
https://doi.org/10.1002/marc.201800889
|
16 |
T Liu , B M Zhao , J W Zhang . Recent development of repairable, malleable and recyclable thermosetting polymers through dynamic transesterification. Polymer, 2020, 194: 122392
https://doi.org/10.1016/j.polymer.2020.122392
|
17 |
Y Yang , Y S Xu , Y Ji , Y Wei . Functional epoxy vitrimers and composites. Progress in Materials Science, 2021, 120: 100710
https://doi.org/10.1016/j.pmatsci.2020.100710
|
18 |
S Gu , Y F Xiao , S H Tan , B W Liu , D M Guo , Y Z Wang , L Chen . Neighboring molecular engineering in Diels-Alder chemistry enabling easily recyclable carbon fiber reinforced composites. Angewandte Chemie International Edition, 2023, 62(51): e202312638
https://doi.org/10.1002/anie.202312638
|
19 |
J H Chen , B W Liu , J H Lu , P Lu , Y L Tang , L Chen , Y Z Wang . Catalyst-free dynamic transesterification towards a high-performance and fire-safe epoxy vitrimer and its carbon fiber composite. Green Chemistry, 2022, 24(18): 6980–6988
https://doi.org/10.1039/D2GC01405J
|
20 |
J H Chen , Y R Zhang , Y Z Wang , L Chen . Reprocessable, malleable and intrinsically fire-safe epoxy resin with catalyst-free mixed carboxylate/phosphonate transesterification. Polymer, 2023, 281: 126083
https://doi.org/10.1016/j.polymer.2023.126083
|
21 |
X M Feng , J Z Fan , A Li , G Q Li . Multireusable thermoset with anomalous flame-triggered shape memory effect. ACS Applied Materials & Interfaces, 2019, 11(17): 16075–16086
https://doi.org/10.1021/acsami.9b03092
|
22 |
Q R Ren , S Gu , J H Liu , Y Z Wang , L Chen . Catalyst-free reprocessable, degradable and intrinsically flame-retardant epoxy vitrimer for carbon fiber reinforced composites. Polymer Degradation & Stability, 2023, 211: 110315
https://doi.org/10.1016/j.polymdegradstab.2023.110315
|
23 |
Y R Zhang , S Gu , Y Z Wang , L Chen . Intrinsically flame-retardant epoxy vitrimers with catalyst-free multi-reprocessability towards sustainable carbon fiber composites. Sustainable Materials and Technologies, 2024, 40: e00883
https://doi.org/10.1016/j.susmat.2024.e00883
|
24 |
J H Chen , J H Lu , X L Pu , L Chen , Y Z Wang . Recyclable, malleable and intrinsically flame-retardant epoxy resin with catalytic transesterification. Chemosphere, 2022, 294: 133778
https://doi.org/10.1016/j.chemosphere.2022.133778
|
25 |
C M Hamel , X Kuang , K J Chen , H J Qi . Reaction-diffusion model for thermosetting polymer dissolution through exchange reactions assisted by small-molecule solvents. Macromolecules, 2019, 52(10): 3636–3645
https://doi.org/10.1021/acs.macromol.9b00540
|
26 |
X Kuang , Y Y Zhou , Q Shi , T J Wang , H J Qi . Recycling of epoxy thermoset and composites via good solvent assisted and small molecules participated exchange reactions. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 9189–9197
https://doi.org/10.1021/acssuschemeng.8b01538
|
27 |
Z H Liu , Z Z Fang , N Zheng , K X Yang , Z Sun , S J Li , W Li , J J Wu , T Xie . Chemical upcycling of commodity thermoset polyurethane foams towards high-performance 3D photo-printing resins. Nature Chemistry, 2023, 15(12): 1773–1779
https://doi.org/10.1038/s41557-023-01308-9
|
28 |
T Liu , X L Guo , W C Liu , C Hao , L W Wang , W C Hiscox , C Y Liu , C Jin , J Xin , J W Zhang . Selective cleavage of ester linkages of anhydride-cured epoxy using a benign method and reuse of the decomposed polymer in new epoxy preparation. Green Chemistry, 2017, 19(18): 4364–4372
https://doi.org/10.1039/C7GC01737E
|
29 |
S Gu , S D Xu , J H Lu , X L Pu , Q R Ren , Y F Xiao , Y Z Wang , L Chen . Phosphonate-influenced Diels-Alder chemistry toward multi-path recyclable, fire safe thermoset and its carbon fiber composites. EcoMat, 2023, 5(9): e12388
https://doi.org/10.1002/eom2.12388
|
30 |
C N Ye , V S D Voet , R Folkersma , K Loos . Robust superamphiphilic membrane with a closed-loop life cycle. Advanced Materials, 2021, 33(15): 2008460
https://doi.org/10.1002/adma.202008460
|
31 |
W Denissen , M Droesbeke , R Nicolaÿ , L Leibler , J M Winne , Prez F E Du . Chemical control of the viscoelastic properties of vinylogous urethane vitrimers. Nature Communications, 2017, 8(1): 14857
https://doi.org/10.1038/ncomms14857
|
32 |
Z Y Ma , Y Wang , J Zhu , J R Yu , Z M Hu . Bio-based epoxy vitrimers: reprocessibility, controllable shape memory, and degradability. Journal of Polymer Science. Part A, Polymer Chemistry, 2017, 55(10): 1790–1799
https://doi.org/10.1002/pola.28544
|
33 |
M Delahaye , J M Winne , F E Du Prez . Internal catalysis in covalent adaptable networks: phthalate monoester transesterification as a versatile dynamic cross-linking chemistry. Journal of the American Chemical Society, 2019, 141(38): 15277–15287
https://doi.org/10.1021/jacs.9b07269
|
34 |
C Hao , T Liu , W C Liu , M E Fei , L Shao , W B Kuang , K L Simmons , J W Zhang . Recyclable CFRPs with extremely high Tg: hydrothermal recyclability in pure water and upcycling of the recyclates for new composite preparation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2022, 10(29): 15623–15633
https://doi.org/10.1039/D2TA03161B
|
35 |
C Hao , T Liu , S Zhang , W C Liu , Y F Shan , J W Zhang . Triethanolamine-mediated covalent adaptable epoxy network: excellent mechanical properties, fast repairing, and easy recycling. Macromolecules, 2020, 53(8): 3110–3118
https://doi.org/10.1021/acs.macromol.9b02243
|
36 |
F Van Lijsebetten , Y Spiesschaert , J M Winne , F E Du Prez . Reprocessing of covalent adaptable polyamide networks through internal catalysis and ring-size effects. Journal of the American Chemical Society, 2021, 143(38): 15834–15844
https://doi.org/10.1021/jacs.1c07360
|
37 |
J H Zhang , X Q Mi , S Y Chen , Z J Xu , D H Zhang , M H Miao , J S Wang . A bio-based hyperbranched flame retardant for epoxy resins. Chemical Engineering Journal, 2020, 381: 122719
https://doi.org/10.1016/j.cej.2019.122719
|
38 |
X F Liu , B W Liu , X Luo , D M Guo , H Y Zhong , L Chen , Y Z Wang . A novel phosphorus-containing semi-aromatic polyester toward flame retardancy and enhanced mechanical properties of epoxy resin. Chemical Engineering Journal, 2020, 380: 122471
https://doi.org/10.1016/j.cej.2019.122471
|
39 |
A L Zhang , J Z Zhang , L N Liu , J F Dai , X Y Lu , S Q Huo , M Hong , X H Liu , M Lynch , X S Zeng . et al.. Engineering phosphorus-containing lignin for epoxy biocomposites with enhanced thermal stability, fire retardancy and mechanical properties. Journal of Materials Science and Technology, 2023, 167: 82–93
https://doi.org/10.1016/j.jmst.2023.06.004
|
40 |
Z C Bai , T Huang , J H Shen , D Xie , J J Xu , J H Zhu , F Q Chen , W B Zhang , J F Dai , P A Song . Molecularly engineered polyphosphazene-derived for advanced polylactide biocomposites with robust toughness, flame retardancy, and UV resistance. Chemical Engineering Journal, 2024, 482: 148964
https://doi.org/10.1016/j.cej.2024.148964
|
41 |
S Q Huo , T Sai , S Y Ran , Z H Guo , Z P Fang , P A Song , H Wang . A hyperbranched P/N/B-containing oligomer as multifunctional flame retardant for epoxy resins. Composites. Part B, Engineering, 2022, 234: 109701
https://doi.org/10.1016/j.compositesb.2022.109701
|
42 |
S Q Huo , P A Song , B Yu , S Y Ran , V S Chevali , L Liu , Z P Fang , H Wang . Phosphorus-containing flame retardant epoxy thermosets: recent advances and future perspectives. Progress in Polymer Science, 2021, 114: 101366
https://doi.org/10.1016/j.progpolymsci.2021.101366
|
43 |
M M Velencoso , A Battig , J C Markwart , B Schartel , F R Wurm . Molecular firefighting-how modern phosphorus chemistry can help solve the challenge of flame retardancy. Angewandte Chemie International Edition, 2018, 57(33): 10450–10467
https://doi.org/10.1002/anie.201711735
|
44 |
L Zhang , Z Li , Q Q Bi , L Y Jiang , X D Zhang , E Tang , X M Cao , H F Li , J Hobson , D Y Wang . Strong yet tough epoxy with superior fire suppression enabled by bio-based phosphaphenanthrene towards in-situ formed Diels-Alder network. Composites. Part B, Engineering, 2023, 251: 110490
https://doi.org/10.1016/j.compositesb.2022.110490
|
45 |
Q ChenS Q HuoY X LuM M DingJ B FengG B HuangH XuZ Q SunZ Z WangP A Song. Heterostructured graphene@silica@iron phenylphosphinate for fire-retardant, strong, thermally conductive yet electrically insulated epoxy nanocomposites. Small, March 1, 2024, 2310724
|
46 |
S B Nie , Z Q Zhao , Y X Xu , W He , W L Zhai , J N Yang . A strategy to synthesize phosphorus-containing nickel phyllosilicate whiskers to enhance the flame retardancy of epoxy composites with excellent mechanical and dry-friction properties. Frontiers of Chemical Science and Engineering, 2024, 18(3): 28–35
https://doi.org/10.1007/s11705-024-2391-7
|
47 |
S B Nie , W He , Y X Xu , W L Zhai , H Zhang , J N Yang . Molybdenum disulfide@nickel phyllosilicate hybrid for improving the flame retardancy and wear resistance of epoxy composites. Frontiers of Chemical Science and Engineering, 2023, 17(12): 2114–2126
https://doi.org/10.1007/s11705-023-2357-1
|
48 |
X M Ding , L Chen , X Luo , F M He , Y F Xiao , Y Z Wang . Biomass-derived dynamic covalent epoxy thermoset with robust mechanical properties and facile malleability. Chinese Chemical Letters, 2022, 33(6): 3245–3248
https://doi.org/10.1016/j.cclet.2021.10.079
|
49 |
L Shao , Y C Chang , B M Zhao , X Y Yan , B J Bliss , M E Fei , C H Yu , J W Zhang . Bona fide upcycling strategy of anhydride cured epoxy and reutilization of decomposed dual monomers into multipurpose applications. Chemical Engineering Journal, 2023, 464: 142735
https://doi.org/10.1016/j.cej.2023.142735
|
50 |
P Y Li , S Q Ma , B B Wang , X W Xu , H Z Feng , Z Yu , T Yu , Y L Liu , J Zhu . Degradable benzyl cyclic acetal epoxy monomers with low viscosity: synthesis, structure-property relationships, application in recyclable carbon fiber composite. Composites Science and Technology, 2022, 219: 109243
https://doi.org/10.1016/j.compscitech.2021.109243
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|