Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (12) : 146    https://doi.org/10.1007/s11705-024-2497-y
Flame-retardant, recyclable, and hydrothermally degradable epoxy resins and their degradation products for high-strength adhesives
Yue-Rong Zhang, Zhen Qin, Song Gu, Jia-Xin Zhao, Xian-Yue Xiang, Chuan Liu, Yu-Zhong Wang, Li Chen()
The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (Ministry of Education), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
 Download: PDF(1217 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To date, sustainable thermosetting polymers and their composites have emerged to address recyclability issues. However, achieving mild degradation of these polymers compromises their comprehensive properties such as flame retardancy and glass transition temperature (Tg). Moreover, the reuse of degradation products after recycling for upcycling remains a significant challenge. This study introduces phosphorus-containing anhydride into tetraglycidyl methylene diphenylamine via a facile anhydride-epoxy curing equilibrium with triethanolamine as a transesterification modifier to successfully prepare flame-retardant, malleable, reprocessable, and easily hydrothermally degradable epoxy vitrimers and recyclable carbon fiber-reinforced epoxy composites (CFRECs). The composite exhibited excellent flame retardancy and a high Tg of 192 °C, while the presence of stoichiometric primary hydroxyl groups along the ester-bonding crosslinks enabled environmentally friendly degradation (in H2O) at 200 °C without any external catalyst. Under mild degradation conditions, the fibers of the composite material were successfully recycled without being damaged, and the degradation products were reused to create a recyclable adhesive with a peel strength of 3.5 MPa. This work presents a method to produce flame retardants and sustainable CFRECs for maximizing the value of degradation products, offering a new upcycling method for high-end applications.

Keywords epoxy vitrimer      carbon fiber composites      flame retardancy      upcycling     
Corresponding Author(s): Li Chen   
Just Accepted Date: 28 June 2024   Issue Date: 13 September 2024
 Cite this article:   
Li Chen,Yu-Zhong Wang,Chuan Liu, et al. Flame-retardant, recyclable, and hydrothermally degradable epoxy resins and their degradation products for high-strength adhesives[J]. Front. Chem. Sci. Eng., 2024, 18(12): 146.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2497-y
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I12/146
Fig.1  Chemical structures of DPI, TEOA, TGDDM, and MHHPA, and schematic diagram of the curing network.
Fig.2  (a) TG and (b) DTG curves of DT/TGDDM under a nitrogen atmosphere; (c) storage modulus and (d) tan δ versus temperature for D0T10/TGDDM and D25T10/TGDDM with different compositions.
Fig.3  UL-94 vertical burning and LOI tests of the DT/TGDDMs.
Fig.4  (a) HRR, (b) THR curves of DT/TGDDMs as a function of burning time, (c) tensile properties, and (d) flexural properties of DT/TGDDMs.
Fig.5  (a) Multiple shape memory behavior, (b) normalized stress relaxation curves of (c) Arrhenius analysis of the characteristic relaxation time lnτ versus 1000/T for D25T10/TGDDM.
Fig.6  (a) HRR, (b) THR curves of DT/TGDDM/CFs as a function of burning time, and (c) flexural strength and modulus of DT/TGDDM/CFs.
Fig.7  (a) The recycling process for D25T10/TGDDM/CF; (b) FTIR spectra of H2O before and after degradation.
Fig.8  (a), (b) SEM and (c) Raman spectra of the pristine and recycled D25T10/TGDDM/CFs; (d) tensile strength of the recycled CFs; (e) TG and DTG curves of the recycled CFs.
Fig.9  (a) Schematic diagram of the adhesion process, (b) adhesion test of DTP adhesive to different substrates, (c) adhesion strength of DTP adhesive to different substrates, for comparison, the adhesion strength of the commercially available 502 glue (aluminum sheet) was recorded, and (d) DTP cycling test of bonded wood sheets for 5 cycles.
1 E H Discekici , A H St Amant , S N Nguyen , I H Lee , C J Hawker , J Read de Alaniz . Endo and exo Diels-Alder adducts: temperature-tunable building blocks for selective chemical functionalization. Journal of the American Chemical Society, 2018, 140: 5009–5013
https://doi.org/10.1021/jacs.8b01544
2 K Yu , Q Shi , M L Dunn , T J Wang , H J Qi . Carbon fiber reinforced thermoset composite with near 100% recyclability. Advanced Functional Materials, 2016, 26(33): 6098–6106
https://doi.org/10.1002/adfm.201602056
3 I Vollmer , M J F Jenks , M C P Roelands , R J White , T van Harmelen , P de Wild , G P van der Laan , F Meirer , J T F Keurentjes , B M Weckhuysen . Beyond mechanical recycling: giving new life to plastic waste. Angewandte Chemie International Edition, 2020, 59(36): 15402–15423
https://doi.org/10.1002/anie.201915651
4 A Chao , I Negulescu , D H Zhang . Dynamic covalent polymer networks based on degenerative lmine bond exchange: tuning the malleability and self-healing properties by solvent. Macromolecules, 2016, 49(17): 6277–6284
https://doi.org/10.1021/acs.macromol.6b01443
5 W Denissen , J M Winne , F E Du Prez . Vitrimers: permanent organic networks with glass-like fluidity. Chemical Science, 2016, 7(1): 30–38
https://doi.org/10.1039/C5SC02223A
6 D Montarnal , M Capelot , F Tournilhac , L Leibler . Silica-like malleable materials from permanent organic networks. Science, 2011, 334(6058): 965–968
https://doi.org/10.1126/science.1212648
7 Y Z Xu , S L Dai , L W Bi , J X Jiang , H B Zhang , Y X Chen . Catalyst-free self-healing bio-based vitrimer for a recyclable, reprocessable, and self-adhered carbon fiber reinforced composite. Chemical Engineering Journal, 2022, 429: 132518
https://doi.org/10.1016/j.cej.2021.132518
8 M Capelot , M M Unterlass , F Tournilhac , L Leibler . Catalytic control of the vitrimer glass transition. ACS Macro Letters, 2012, 1(7): 789–792
https://doi.org/10.1021/mz300239f
9 Y H Jin , Z P Lei , P Taynton , S F Huang , W Zhang . Malleable and recyclable thermosets: the next generation of plastics. Matter, 2019, 1(6): 1456–1493
https://doi.org/10.1016/j.matt.2019.09.004
10 C J Kloxin , C N Bowman . Covalent adaptable networks: smart, reconfigurable and responsive network systems. Chemical Society Reviews, 2013, 42(17): 7161–7173
https://doi.org/10.1039/C3CS60046G
11 X M Ding , L Chen , Y J Xu , X H Shi , X Luo , X Song , Y Z Wang . Robust epoxy vitrimer with simultaneous ultrahigh impact property, fire safety, and multipath recyclability via rigid-flexible imine networks. ACS Sustainable Chemistry & Engineering, 2023, 11(39): 14445–14456
https://doi.org/10.1021/acssuschemeng.3c03189
12 M Podgórski , B D Fairbanks , B E Kirkpatrick , M McBride , A Martinez , A Dobson , N J Bongiardina , C N Bowman . Covalent adaptable networks: toward stimuli-responsive dynamic thermosets through continuous development and improvements in covalent adaptable networks. Advanced Materials, 2020, 32(20): 2070158
https://doi.org/10.1002/adma.202070158
13 Y Y Liu , G L Liu , Y D Li , Y X Weng , J B Zeng . Biobased high-performance epoxy vitrimer with UV shielding for recyclable carbon fiber reinforced composites. ACS Sustainable Chemistry & Engineering, 2021, 9(12): 4638–4647
https://doi.org/10.1021/acssuschemeng.1c00231
14 T Liu , C Hao , L W Wang , Y Z Li , W C Liu , J N Xin , J W Zhang . Eugenol-derived biobased epoxy: shape memory, repairing, and recyclability. Macromolecules, 2017, 50(21): 8588–8597
https://doi.org/10.1021/acs.macromol.7b01889
15 T Liu , S Zhang , C Hao , C Verdi , W C Liu , H Liu , J W Zhang . Glycerol induced catalyst-free curing of epoxy and vitrimer preparation. Macromolecular Rapid Communications, 2019, 40(7): 1800889
https://doi.org/10.1002/marc.201800889
16 T Liu , B M Zhao , J W Zhang . Recent development of repairable, malleable and recyclable thermosetting polymers through dynamic transesterification. Polymer, 2020, 194: 122392
https://doi.org/10.1016/j.polymer.2020.122392
17 Y Yang , Y S Xu , Y Ji , Y Wei . Functional epoxy vitrimers and composites. Progress in Materials Science, 2021, 120: 100710
https://doi.org/10.1016/j.pmatsci.2020.100710
18 S Gu , Y F Xiao , S H Tan , B W Liu , D M Guo , Y Z Wang , L Chen . Neighboring molecular engineering in Diels-Alder chemistry enabling easily recyclable carbon fiber reinforced composites. Angewandte Chemie International Edition, 2023, 62(51): e202312638
https://doi.org/10.1002/anie.202312638
19 J H Chen , B W Liu , J H Lu , P Lu , Y L Tang , L Chen , Y Z Wang . Catalyst-free dynamic transesterification towards a high-performance and fire-safe epoxy vitrimer and its carbon fiber composite. Green Chemistry, 2022, 24(18): 6980–6988
https://doi.org/10.1039/D2GC01405J
20 J H Chen , Y R Zhang , Y Z Wang , L Chen . Reprocessable, malleable and intrinsically fire-safe epoxy resin with catalyst-free mixed carboxylate/phosphonate transesterification. Polymer, 2023, 281: 126083
https://doi.org/10.1016/j.polymer.2023.126083
21 X M Feng , J Z Fan , A Li , G Q Li . Multireusable thermoset with anomalous flame-triggered shape memory effect. ACS Applied Materials & Interfaces, 2019, 11(17): 16075–16086
https://doi.org/10.1021/acsami.9b03092
22 Q R Ren , S Gu , J H Liu , Y Z Wang , L Chen . Catalyst-free reprocessable, degradable and intrinsically flame-retardant epoxy vitrimer for carbon fiber reinforced composites. Polymer Degradation & Stability, 2023, 211: 110315
https://doi.org/10.1016/j.polymdegradstab.2023.110315
23 Y R Zhang , S Gu , Y Z Wang , L Chen . Intrinsically flame-retardant epoxy vitrimers with catalyst-free multi-reprocessability towards sustainable carbon fiber composites. Sustainable Materials and Technologies, 2024, 40: e00883
https://doi.org/10.1016/j.susmat.2024.e00883
24 J H Chen , J H Lu , X L Pu , L Chen , Y Z Wang . Recyclable, malleable and intrinsically flame-retardant epoxy resin with catalytic transesterification. Chemosphere, 2022, 294: 133778
https://doi.org/10.1016/j.chemosphere.2022.133778
25 C M Hamel , X Kuang , K J Chen , H J Qi . Reaction-diffusion model for thermosetting polymer dissolution through exchange reactions assisted by small-molecule solvents. Macromolecules, 2019, 52(10): 3636–3645
https://doi.org/10.1021/acs.macromol.9b00540
26 X Kuang , Y Y Zhou , Q Shi , T J Wang , H J Qi . Recycling of epoxy thermoset and composites via good solvent assisted and small molecules participated exchange reactions. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 9189–9197
https://doi.org/10.1021/acssuschemeng.8b01538
27 Z H Liu , Z Z Fang , N Zheng , K X Yang , Z Sun , S J Li , W Li , J J Wu , T Xie . Chemical upcycling of commodity thermoset polyurethane foams towards high-performance 3D photo-printing resins. Nature Chemistry, 2023, 15(12): 1773–1779
https://doi.org/10.1038/s41557-023-01308-9
28 T Liu , X L Guo , W C Liu , C Hao , L W Wang , W C Hiscox , C Y Liu , C Jin , J Xin , J W Zhang . Selective cleavage of ester linkages of anhydride-cured epoxy using a benign method and reuse of the decomposed polymer in new epoxy preparation. Green Chemistry, 2017, 19(18): 4364–4372
https://doi.org/10.1039/C7GC01737E
29 S Gu , S D Xu , J H Lu , X L Pu , Q R Ren , Y F Xiao , Y Z Wang , L Chen . Phosphonate-influenced Diels-Alder chemistry toward multi-path recyclable, fire safe thermoset and its carbon fiber composites. EcoMat, 2023, 5(9): e12388
https://doi.org/10.1002/eom2.12388
30 C N Ye , V S D Voet , R Folkersma , K Loos . Robust superamphiphilic membrane with a closed-loop life cycle. Advanced Materials, 2021, 33(15): 2008460
https://doi.org/10.1002/adma.202008460
31 W Denissen , M Droesbeke , R Nicolaÿ , L Leibler , J M Winne , Prez F E Du . Chemical control of the viscoelastic properties of vinylogous urethane vitrimers. Nature Communications, 2017, 8(1): 14857
https://doi.org/10.1038/ncomms14857
32 Z Y Ma , Y Wang , J Zhu , J R Yu , Z M Hu . Bio-based epoxy vitrimers: reprocessibility, controllable shape memory, and degradability. Journal of Polymer Science. Part A, Polymer Chemistry, 2017, 55(10): 1790–1799
https://doi.org/10.1002/pola.28544
33 M Delahaye , J M Winne , F E Du Prez . Internal catalysis in covalent adaptable networks: phthalate monoester transesterification as a versatile dynamic cross-linking chemistry. Journal of the American Chemical Society, 2019, 141(38): 15277–15287
https://doi.org/10.1021/jacs.9b07269
34 C Hao , T Liu , W C Liu , M E Fei , L Shao , W B Kuang , K L Simmons , J W Zhang . Recyclable CFRPs with extremely high Tg: hydrothermal recyclability in pure water and upcycling of the recyclates for new composite preparation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2022, 10(29): 15623–15633
https://doi.org/10.1039/D2TA03161B
35 C Hao , T Liu , S Zhang , W C Liu , Y F Shan , J W Zhang . Triethanolamine-mediated covalent adaptable epoxy network: excellent mechanical properties, fast repairing, and easy recycling. Macromolecules, 2020, 53(8): 3110–3118
https://doi.org/10.1021/acs.macromol.9b02243
36 F Van Lijsebetten , Y Spiesschaert , J M Winne , F E Du Prez . Reprocessing of covalent adaptable polyamide networks through internal catalysis and ring-size effects. Journal of the American Chemical Society, 2021, 143(38): 15834–15844
https://doi.org/10.1021/jacs.1c07360
37 J H Zhang , X Q Mi , S Y Chen , Z J Xu , D H Zhang , M H Miao , J S Wang . A bio-based hyperbranched flame retardant for epoxy resins. Chemical Engineering Journal, 2020, 381: 122719
https://doi.org/10.1016/j.cej.2019.122719
38 X F Liu , B W Liu , X Luo , D M Guo , H Y Zhong , L Chen , Y Z Wang . A novel phosphorus-containing semi-aromatic polyester toward flame retardancy and enhanced mechanical properties of epoxy resin. Chemical Engineering Journal, 2020, 380: 122471
https://doi.org/10.1016/j.cej.2019.122471
39 A L Zhang , J Z Zhang , L N Liu , J F Dai , X Y Lu , S Q Huo , M Hong , X H Liu , M Lynch , X S Zeng . et al.. Engineering phosphorus-containing lignin for epoxy biocomposites with enhanced thermal stability, fire retardancy and mechanical properties. Journal of Materials Science and Technology, 2023, 167: 82–93
https://doi.org/10.1016/j.jmst.2023.06.004
40 Z C Bai , T Huang , J H Shen , D Xie , J J Xu , J H Zhu , F Q Chen , W B Zhang , J F Dai , P A Song . Molecularly engineered polyphosphazene-derived for advanced polylactide biocomposites with robust toughness, flame retardancy, and UV resistance. Chemical Engineering Journal, 2024, 482: 148964
https://doi.org/10.1016/j.cej.2024.148964
41 S Q Huo , T Sai , S Y Ran , Z H Guo , Z P Fang , P A Song , H Wang . A hyperbranched P/N/B-containing oligomer as multifunctional flame retardant for epoxy resins. Composites. Part B, Engineering, 2022, 234: 109701
https://doi.org/10.1016/j.compositesb.2022.109701
42 S Q Huo , P A Song , B Yu , S Y Ran , V S Chevali , L Liu , Z P Fang , H Wang . Phosphorus-containing flame retardant epoxy thermosets: recent advances and future perspectives. Progress in Polymer Science, 2021, 114: 101366
https://doi.org/10.1016/j.progpolymsci.2021.101366
43 M M Velencoso , A Battig , J C Markwart , B Schartel , F R Wurm . Molecular firefighting-how modern phosphorus chemistry can help solve the challenge of flame retardancy. Angewandte Chemie International Edition, 2018, 57(33): 10450–10467
https://doi.org/10.1002/anie.201711735
44 L Zhang , Z Li , Q Q Bi , L Y Jiang , X D Zhang , E Tang , X M Cao , H F Li , J Hobson , D Y Wang . Strong yet tough epoxy with superior fire suppression enabled by bio-based phosphaphenanthrene towards in-situ formed Diels-Alder network. Composites. Part B, Engineering, 2023, 251: 110490
https://doi.org/10.1016/j.compositesb.2022.110490
45 Q ChenS Q HuoY X LuM M DingJ B FengG B HuangH XuZ Q SunZ Z WangP A Song. Heterostructured graphene@silica@iron phenylphosphinate for fire-retardant, strong, thermally conductive yet electrically insulated epoxy nanocomposites. Small, March 1, 2024, 2310724
46 S B Nie , Z Q Zhao , Y X Xu , W He , W L Zhai , J N Yang . A strategy to synthesize phosphorus-containing nickel phyllosilicate whiskers to enhance the flame retardancy of epoxy composites with excellent mechanical and dry-friction properties. Frontiers of Chemical Science and Engineering, 2024, 18(3): 28–35
https://doi.org/10.1007/s11705-024-2391-7
47 S B Nie , W He , Y X Xu , W L Zhai , H Zhang , J N Yang . Molybdenum disulfide@nickel phyllosilicate hybrid for improving the flame retardancy and wear resistance of epoxy composites. Frontiers of Chemical Science and Engineering, 2023, 17(12): 2114–2126
https://doi.org/10.1007/s11705-023-2357-1
48 X M Ding , L Chen , X Luo , F M He , Y F Xiao , Y Z Wang . Biomass-derived dynamic covalent epoxy thermoset with robust mechanical properties and facile malleability. Chinese Chemical Letters, 2022, 33(6): 3245–3248
https://doi.org/10.1016/j.cclet.2021.10.079
49 L Shao , Y C Chang , B M Zhao , X Y Yan , B J Bliss , M E Fei , C H Yu , J W Zhang . Bona fide upcycling strategy of anhydride cured epoxy and reutilization of decomposed dual monomers into multipurpose applications. Chemical Engineering Journal, 2023, 464: 142735
https://doi.org/10.1016/j.cej.2023.142735
50 P Y Li , S Q Ma , B B Wang , X W Xu , H Z Feng , Z Yu , T Yu , Y L Liu , J Zhu . Degradable benzyl cyclic acetal epoxy monomers with low viscosity: synthesis, structure-property relationships, application in recyclable carbon fiber composite. Composites Science and Technology, 2022, 219: 109243
https://doi.org/10.1016/j.compscitech.2021.109243
[1] FCE-24050-OF-ZY_suppl_1 Download
[1] Lei Bi, Qiong Wang, Jingzhang Liu, Fuxiang Cui, Maoyong Song. Efficient removal and upcycling of pollutants in wastewater: a strategy for reconciling environmental pollution and resource depletion crisis[J]. Front. Chem. Sci. Eng., 2024, 18(11): 135-.
[2] Shibin Nie, Wei He, Yuxuan Xu, Wenli Zhai, Hong Zhang, Jinian Yang. Molybdenum disulfide@nickel phyllosilicate hybrid for improving the flame retardancy and wear resistance of epoxy composites[J]. Front. Chem. Sci. Eng., 2023, 17(12): 2114-2126.
[3] Qian Wu, Jincheng Zhang, Shengpeng Wang, Bajin Chen, Yijun Feng, Yongbing Pei, Yue Yan, Longcheng Tang, Huayu Qiu, Lianbin Wu. Exceptionally flame-retardant flexible polyurethane foam composites: synergistic effect of the silicone resin/graphene oxide coating[J]. Front. Chem. Sci. Eng., 2021, 15(4): 969-983.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed