Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (12) : 147    https://doi.org/10.1007/s11705-024-2498-x
Chemical recycling of polyolefin waste: from the perspective of efficient pyrolysis reactors
Weiqiang Gao1,2, Yinlong Chang1,2, Qimin Zhou1,2, Qingyue Wang1,2(), Khak Ho Lim1,2, Deliang Wang1,2, Jijiang Hu1,2, Wen-Jun Wang1,2, Bo-Geng Li1,2, Pingwei Liu1,2()
1. State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
2. Institute of Zhejiang University-Quzhou, Quzhou 324000, China
 Download: PDF(1590 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Polyolefins, widely used for packaging, construction, and electronics, facilitate daily life but cause severe environmental pollution when discarded after usage. Chemical recycling of polyolefins has received widespread attention for eliminating polyolefin pollution, as it is promising to convert polyolefin wastes to high-value chemicals (e.g., fuels, light olefins, aromatic hydrocarbons). However, the chemical recycling of polyolefins typically involves high-viscosity, high-temperature and high-pressure, and its efficiency depends on the catalytic materials, reaction conditions, and more essentially, on the reactors which are overlooked in previous studies. Herein, this review first introduces the mechanisms and influencing factors of polyolefin waste upcycling, followed by a brief overview of in situ and ex situ processes. Emphatically, the review focuses on the various reactors used in polyolefin recycling (i.e., batch/semi-batch reactor, fixed bed reactor, fluidized bed reactor, conical spouted bed reactor, screw reactor, molten metal bed reactor, vertical falling film reactor, rotary kiln reactor and microwave-assisted reactor) and their respective merits and demerits. Nevertheless, challenges remain in developing highly efficient reacting techniques to realize the practical application. In light of this, the review is concluded with recommendations and prospects to enlighten the future of polyolefin upcycling.

Keywords polyolefins      chemical recycling      thermal pyrolysis      catalytic pyrolysis      reactors     
Corresponding Author(s): Qingyue Wang,Pingwei Liu   
Just Accepted Date: 27 June 2024   Issue Date: 18 September 2024
 Cite this article:   
Weiqiang Gao,Yinlong Chang,Qimin Zhou, et al. Chemical recycling of polyolefin waste: from the perspective of efficient pyrolysis reactors[J]. Front. Chem. Sci. Eng., 2024, 18(12): 147.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2498-x
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I12/147
Fig.1  Global primary plastic waste generation by polymer in 2019 (date source: OECD 2022). Reprinted with permission from Ref. [4], copyright 2023, Our world in data. Note: Polymers are color-coded to indicate recyclability: widely recycled (green), moderately recycled (blue), limited recyclability (orange), usually non-recycled (red), and unknown recyclability (violet). Polymer types: ABS, acrylonitrile butadiene styrene; ASA, acrylonitrile styrene acrylate; SAN, styrene acrylonitrile; PUR, polyurethane; PVC, polyvinyl chloride; PS, polystyrene; LLDPE, linear LDPE; PET, polyethylene terephthalate.
Fig.2  Schematic diagram of mechanisms for the PE thermal pyrolysis. Reprinted with permission from Ref. [25], copyright 2020, Royal Society of Chemistry.
Feedstock Reactors T/℃ Residence time Yield of product/wt % Ref.
Oil Wax Gas Residue
HDPE Fixed bed reactor 600 58.3 38.49 [50]
LDPE Fixed bed reactor 600 61.81 34.78 [50]
PP Fixed bed reactor 600 74.58 6.27 [50]
HDPE Fixed bed reactor 550 70 (oil + wax) 22 7 [51]
PP Fixed bed reactor 525 76.4 4.2 10.1 2.6 [52]
LDPE Fluidized bed reactor 500–600 12.4–20.4 s 28.5–81.2 8.2–56.8 10.6–14.7 [53]
HDPE Fluidized bed reactor 510 4.6–5.6 s 13.2–13.7 83.7–84 2.4–2.6 [54]
PP Fluidized bed reactor 510 4.2 s 35.4–36.7 76 6.8–6.9 [54]
HDPE∶PP = 3∶2 Fluidized bed reactor 510 4.3 s 19.4 71.5 4.5 [54]
HDPE∶PP = 2∶3 Fluidized bed reactor 510 4.1 s 23.2 56.2–57.5 5.1 [54]
LDPE Fluidized bed reactor 500–700 15 s 24.6–43.9 4–45.3 10.8–71.4 [55]
Mix plastics (polyolefin rich) Fluidized bed reactor 600 2.2 s 45 36 18 1.8 [56]
HDPE Fluidized bed reactor 650–850 0.64–2.57 s 9.6-79.7 (oil + wax) 11.4–86.4 [57]
LDPE Conical spouted bed reactor 450–600 51-80 20–49 (volatiles) [49]
HDPE Conical spouted bed reactor 450–600 49-80 20–51 (volatiles) [49]
PP Conical spouted bed reactor 450–600 50-92 8–50 (volatiles) [49]
Mix plastics (PE rich) Screw reactor 500 10 min 5.5 23.8 (light) + 69.4 (heavy) 1.3 [58]
PP Batch reactor 250–400 10 min 57.27–69.82 (oil + wax) 28.84–31.07 5.7–13.68 [59]
HDPE Batch reactor 300–400 10 min 30.70–80.88 (oil + wax) 17.24–45.29 0.54–33.05 [59]
HDPE Microwave reactor 500 74.7 (oil + wax) 13.3 12 [60]
PP Microwave reactor 600 83.9 (oil + wax) 15.7 0.4 [60]
Tab.1  Product distribution of polyolefin thermal pyrolysis under different reaction conditions
Feedstock Catalysts Reactors T/℃ Yield of product/wt % Ref.
Alkenes Aromatics Alkanes Gasoline
HDPE Hβ Batch reactor 480 51 4 17 83 [61]
HDPE HY Batch reactor 480 23 18 20 73 [61]
HDPE HZSM-5 Batch reactor 480 34 17 13 68 [61]
LDPE Al2O3 + M-clay Batch reactor 600 7.7 (C5–C12) 6.3 (C5–C12) 31.25 (C5+) [62]
LDPE B/Meso-HZSM-5 Fixed bed reactor 600 65.5 (C2–C4) 10.2 [63]
PP FCC Fixed bed reactor 600 34.61 35.43 4.49 54.58 (C8–C12) [50]
PP MgO Fixed bed reactor 600 78.62 5.95 49.91 (C8–C12) [50]
HDPE Al-MCM-41 Fixed bed reactor 450 12.9 (C5–C12) 1.7 (C5–C12) 12.9 (C5–C12) 56 [64]
PP HUSY Fluidized bed reactor 360 0.93 (BTX) 51.83 (C5–C9) [65]
PP HZSM-5 Fluidized bed reactor 360 1.82 (BTX) 25.54 (C5–C9) [66]
PP HMOR Fluidized bed reactor 360 0.48 (BTX) 27.95 (C5–C9) [66]
PP SAHA Fluidized bed reactor 360 0.25 (BTX) 63.65 (C5–C9) [66]
PP MCM-41 Fluidized bed reactor 360 0.16 (BTX) 60.56 [66]
HDPE HZSM-5 Conical spouted bed reactor + fixed bed reactor 500 1.15 (C2–C4) 0.28 (C6–C11) 0.35 (C1–C4) [66]
LDPE HZSM-5 Microwave reactor 450 21.4 [67]
HDPE Zn/SBA-15 Microwave + fixed bed reactor 500 4.53 (C5–C12) 22.6 30.9 [68]
HDPE HZSM-5 Microwave + fixed bed reactor 620 22 35.94 (C5–C12) [69]
Tab.2  Catalytic performance of different polyolefin wastes under different reaction conditions
Fig.3  (a) Reaction pathways for conversion of model compound in polyolefin plastic pyrolysis oil (1-octene) over zeolites, (b) its relation between BTX yield and paraffin yield, molar hydrogen selectivity, and the hydrogen transfer rate associated with the average zeolite pore size. Reprinted with permission from Ref. [79], copyright 2024, Elsevier. (c) Proposed mechanism of catalytic pyrolysis of LDPE over Zn-P/HZSM-5. Reprinted with permission from Ref. [83], copyright 2024, Elsevier BV.
Fig.4  A graphical illustration of the thermo-catalytic pyrolysis of LDPE in one-step (in situ) and two-step (ex situ) processes. Reprinted with permission from Ref. [92], copyright 2022, Elsevier BV.
Reactor typesApplicable processesAdvantagesDisadvantagesRef.
Batch/semi-batch reactorThermal/catalytic pyrolysisSimple design, easy to control the operating parameters, no limitation on particle sizeHigh reaction times, low heat transfer rate, more secondary reactions leading to coke formation, wide product distribution, low production capacity[103?107]
Fixed bed reactorThermal/catalytic pyrolysisSimple design, easy to control, no limitation on particle sizeLong residence time, uneven temperature distribution, low heat transfer rate, difficulty to continuously operated[42,51,104,108?113]
FBRThermal/catalytic pyrolysisHigh efficiency of heat and mass transfer, continuous operation, large scale operating, narrow product distribution, allows for catalysts circulation, efficient contact with catalystsDefluidization may occur, catalysts attrition, high investment in equipment[2,54,114?120]
CSBRThermal/catalytic pyrolysisHigh efficiency of heat and mass transfer, accommodate a broad particle size distribution, bigger particles and different particle densities, narrow product distribution, efficient contact with catalystsProblems with catalyst feeding and entrainment and collection of pyrolysis products, catalysts attrition, high investment in equipment, difficulties for catalyst circulation[49,75,121?127]
Screw reactorThermal/catalytic pyrolysisEfficient blending between plastics and catalysts, treatment of high viscosity materials, residence time controllable, conveying raw material, no limitation on particle sizeWear and tear of the screw over prolonged operation, low heat efficiency[58,103,128,129]
Molten metal bed reactorThermal pyrolysisUniform temperature distribution, high heat transfer efficiency, no limitation on particle sizeHigh cost of equipment, possible metal pollution, difficulty of scale-up[130?132]
Vertical falling film reactorThermal pyrolysisUniform heating way, no limitation on particle sizeComplexity in large-scale manufacturing[133?135]
Rotary kiln reactorThermal/catalytic pyrolysisNo limitations on raw material type and particle size, efficient blending between plastics and catalysts, simple design, continuous mixing of incoming wastesHigh energy consumption, high equipment cost, difficult to guarantee reaction uniformity[136?140]
Microwave-assisted reactorThermal/catalytic pyrolysisFast and uniform heating, selective heating, easy control of the operating parametersHigh equipment cost, requires a large amount of microwave absorbing materials, cannot be applied on a large scale[41,67,69,141?147]
Tab.3  The applicable process, advantages and disadvantages of different pyrolysis reactors
Fig.5  (a) Schematic diagram of two-step fixed bed reactor; yields of selected aromatic compounds in (b) noncatalyzed; (c) catalyzed product oil from processing of real-world plastics (MP), the simulated mixture of plastics (SMP), and virgin plastics (PE, PP, PS, PET). Reprinted with permission from Ref. [157], copyright 2015, American Chemical Society; (d) schematic flow diagram of the novel pyrolysis reactor system. Reprinted with permission from Ref. [51], copyright 2019, Institution of Chemical Engineers.
Fig.6  Schematic diagram of the combined reacting system of screw reactor and FBR in series. Reprinted with permission from Ref. [38], copyright 2019, Elsevier BV.
Fig.7  (a) Schematic diagram of CSBR. Reprinted with permission from Ref. [127], copyright 2021, Wiley-VCH Verlag. (b) Double-bed CSBR. Reprinted with permission from Ref. [173], copyright 2014, Elsevier.
Fig.8  (a) Screw reactor. Reprinted with permission from Ref. [182], copyright 2003, Elsevier. (b) Vertical falling film reactor. Reprinted with permission from Ref. [184], copyright 2014, Elsevier.
Fig.9  Schematic diagram of the semi-batch rotary kiln reactor system. Reprinted with permission from Ref. [140], copyright 2020, Elsevier.
Fig.10  Schematic diagram of two-step pyrolysis reactor. (a) Combined with CSBR and fixed bed reactor. Reprinted with permission from Ref. [48], copyright 2012, American Chemical Society. (b) Combined with microwave reactor and fixed bed reactor. Reprinted with permission from Ref. [190], copyright 2023, Elsevier Ltd.
1 H Sardon , A P Dove . Plastics recycling with a difference. Science, 2018, 360(6387): 380–381
https://doi.org/10.1126/science.aat4997
2 M S Abbas-Abadi , Y Ureel , A Eschenbacher , F H Vermeire , R J Varghese , J Oenema , G D Stefanidis , K M Van Geem . Challenges and opportunities of light olefin production via thermal and catalytic pyrolysis of end-of-life polyolefins: towards full recyclability. Progress in Energy and Combustion Science, 2023, 96: 101046
https://doi.org/10.1016/j.pecs.2022.101046
3 B C Gibb . Plastics are forever. Nature Chemistry, 2019, 11(5): 394–395
https://doi.org/10.1038/s41557-019-0260-7
4 H RitchieV SamborskaM Roser. Plastic pollution. Our World in Data, 2023
5 J Di , B K Reck , A Miatto , T E Graedel . United States plastics: large flows, short lifetimes, and negligible recycling. Resources, Conservation and Recycling, 2021, 167: 105440
https://doi.org/10.1016/j.resconrec.2021.105440
6 G P Karmakar. Regeneration and recovery of plastics. Encyclopedia of Materials: Plastics and Polymers, 2022: 634–651
7 Z Huang , Y Weng , Q Shen , Y Zhao , Y Jin . Microplastic: a potential threat to human and animal health by interfering with the intestinal barrier function and changing the intestinal microenvironment. Science of the Total Environment, 2021, 785: 147365
https://doi.org/10.1016/j.scitotenv.2021.147365
8 A Rahman , A Sarkar , O P Yadav , G Achari , J Slobodnik . Potential human health risks due to environmental exposure to nano- and microplastics and knowledge gaps: a scoping review. Science of the Total Environment, 2021, 757: 143872
https://doi.org/10.1016/j.scitotenv.2020.143872
9 I Issifu , E W Deffor , U R Sumaila . How COVID-19 could change the economics of the plastic recycling sector. Recycling, 2021, 6(4): 64
https://doi.org/10.3390/recycling6040064
10 I Vollmer , M J F Jenks , M C P Roelands , R J White , T Van Harmelen , P De Wild , G P Van Der Laan , F Meirer , J T F Keurentjes , B M Weckhuysen . Beyond mechanical recycling: giving new life to plastic waste. Angewandte Chemie International Edition, 2020, 59(36): 15402–15423
https://doi.org/10.1002/anie.201915651
11 O Nkwachukwu , C Chima , A Ikenna , L Albert . Focus on potential environmental issues on plastic world towards a sustainable plastic recycling in developing countries. International Journal of Industrial Chemistry, 2013, 4(1): 34
https://doi.org/10.1186/2228-5547-4-34
12 R A Sheldon , M Norton . Green chemistry and the plastic pollution challenge: towards a circular economy. Green Chemistry, 2020, 22(19): 6310–6322
https://doi.org/10.1039/D0GC02630A
13 A Kiersnowska , W Fabianowski , E Koda . The influence of the accelerated aging conditions on the properties of polyolefin geogrids used for landfill slope reinforcement. Polymers, 2020, 12(9): 1874
https://doi.org/10.3390/polym12091874
14 L De Weerdt , T Sasao , T Compernolle , S Van Passel , S De Jaeger . The effect of waste incineration taxation on industrial plastic waste generation: a panel analysis. Resources, Conservation and Recycling, 2020, 157: 104717
https://doi.org/10.1016/j.resconrec.2020.104717
15 Z O G Schyns , M P Shaver . Mechanical recycling of packaging plastics: a review. Macromolecular Rapid Communications, 2021, 42(3): 2000415
https://doi.org/10.1002/marc.202000415
16 C I Idumah , I C Nwuzor . Novel trends in plastic waste management. SN Applied Sciences, 2019, 1(11): 1402
https://doi.org/10.1007/s42452-019-1468-2
17 S Nanda , F Berruti . Thermochemical conversion of plastic waste to fuels: a review. Environmental Chemistry Letters, 2021, 19(1): 123–148
https://doi.org/10.1007/s10311-020-01094-7
18 R A Ibikunle , I F Titiladunayo , B O Akinnuli , S O Dahunsi , T M A Olayanju . Estimation of power generation from municipal solid wastes: a case study of Ilorin metropolis, Nigeria. Energy Reports, 2019, 5: 126–135
https://doi.org/10.1016/j.egyr.2019.01.005
19 H Jouhara , D Ahmad , I van den Boogaert , E Katsou , S Simons , N Spencer . Pyrolysis of domestic based feedstock at temperatures up to 300 °C. Thermal Science and Engineering Progress, 2018, 5: 117–143
https://doi.org/10.1016/j.tsep.2017.11.007
20 R Verma , K S Vinoda , M Papireddy , A N S Gowda . Toxic pollutants from plastic waste—a review. Procedia Environmental Sciences, 2016, 35: 701–708
https://doi.org/10.1016/j.proenv.2016.07.069
21 K Ragaert , L Delva , K Van Geem . Mechanical and chemical recycling of solid plastic waste. Waste Management, 2017, 69: 24–58
https://doi.org/10.1016/j.wasman.2017.07.044
22 C K Williams , G L Gregory . High-performance plastic made from renewable oils is chemically recyclable by design. Nature, 2021, 590(7846): 391–392
https://doi.org/10.1038/d41586-021-00349-9
23 A EschenbacherR J VargheseM S Abbas-AbadiGeem K M. Van. Maximizing light olefins and aromatics as high value base chemicals via single step catalytic conversion of plastic waste. Chemical Engineering Journal, 2022, 428: 132087
24 D Kwon . Three ways to solve the plastics pollution crisis. Nature, 2023, 616(7956): 234–237
https://doi.org/10.1038/d41586-023-00975-5
25 C Wang , H Lei , M Qian , E Huo , Y Zhao , Q Zhang , W Mateo , X Lin , X Kong , R Zou . et al.. Application of highly stable biochar catalysts for efficient pyrolysis of plastics: a readily accessible potential solution to a global waste crisis. Sustainable Energy & Fuels, 2020, 4(9): 4614–4624
https://doi.org/10.1039/D0SE00652A
26 M S Abbas-Abadi , M N Haghighi , H Yeganeh , A G McDonald . Evaluation of pyrolysis process parameters on polypropylene degradation products. Journal of Analytical and Applied Pyrolysis, 2014, 109: 272–277
https://doi.org/10.1016/j.jaap.2014.05.023
27 B P S Santos , D Almeida , F V Marques M de , C A Henriques . Petrochemical feedstock from pyrolysis of waste polyethylene and polypropylene using different catalysts. Fuel, 2018, 215: 515–521
https://doi.org/10.1016/j.fuel.2017.11.104
28 G Lopez , M Artetxe , M Amutio , J Alvarez , J Bilbao , M Olazar . Recent advances in the gasification of waste plastics. A critical overview. Renewable & Sustainable Energy Reviews, 2018, 82: 576–596
https://doi.org/10.1016/j.rser.2017.09.032
29 J Gil , J Corella , M P Aznar , M A Caballero . Biomass gasification in atmospheric and bubbling fluidized bed: effect of the type of gasifying agent on the product distribution. Biomass and Bioenergy, 1999, 17(5): 389–403
https://doi.org/10.1016/S0961-9534(99)00055-0
30 A Erkiaga , G Lopez , M Amutio , J Bilbao , M Olazar . Syngas from steam gasification of polyethylene in a conical spouted bed reactor. Fuel, 2013, 109: 461–469
https://doi.org/10.1016/j.fuel.2013.03.022
31 X Liu , Y Zhang , M A Nahil , P T Williams , C Wu . Development of Ni- and Fe-based catalysts with different metal particle sizes for the production of carbon nanotubes and hydrogen from thermo-chemical conversion of waste plastics. Journal of Analytical and Applied Pyrolysis, 2017, 125: 32–39
https://doi.org/10.1016/j.jaap.2017.05.001
32 D Yao , C Wu , H Yang , Y Zhang , M A Nahil , Y Chen , P T Williams , H Chen . Co-production of hydrogen and carbon nanotubes from catalytic pyrolysis of waste plastics on Ni-Fe bimetallic catalyst. Energy Conversion and Management, 2017, 148: 692–700
https://doi.org/10.1016/j.enconman.2017.06.012
33 D Hassanian-Moghaddam , N Asghari , M Ahmadi . Circular polyolefins: advances toward a sustainable future. Macromolecules, 2023, 56(15): 5679–5697
https://doi.org/10.1021/acs.macromol.3c00872
34 J Jiang , K Shi , X Zhang , K Yu , H Zhang , J He , Y Ju , J Liu . From plastic waste to wealth using chemical recycling: a review. Journal of Environmental Chemical Engineering, 2022, 10(1): 106867
https://doi.org/10.1016/j.jece.2021.106867
35 Z A Hussein , Z M Shakor , M Alzuhairi , F Al-Sheikh . Thermal and catalytic cracking of plastic waste: a review. International Journal of Environmental Analytical Chemistry, 2023, 103(17): 5920–5937
https://doi.org/10.1080/03067319.2021.1946527
36 M Sekar , V K Ponnusamy , A Pugazhendhi , S Nižetić , T R Praveenkumar . Production and utilization of pyrolysis oil from solidplastic wastes: a review on pyrolysis process and influence of reactors design. Journal of Environmental Management, 2022, 302: 114046
https://doi.org/10.1016/j.jenvman.2021.114046
37 Y ChangQ ZhouQ WangW WangB LiP Liu. Research progress in high value chemical recycling of waste polyolefins. Chemical Industry and Engineering Progress, 2023, 42(8): 3965–3978 (in Chinese)
38 K B Park , Y S Jeong , J S Kim . Activator-assisted pyrolysis of polypropylene. Applied Energy, 2019, 253: 113558
https://doi.org/10.1016/j.apenergy.2019.113558
39 K B Park , Y S Jeong , B Guzelciftci , J S Kim . Characteristics of a new type continuous two-stage pyrolysis of waste polyethylene. Energy, 2019, 166: 343–351
https://doi.org/10.1016/j.energy.2018.10.078
40 W Kaminsky . Chemical recycling of plastics by fluidized bed pyrolysis. Fuel Communications, 2021, 8: 100023
https://doi.org/10.1016/j.jfueco.2021.100023
41 Y Cui , Y Zhang , L Cui , Q Xiong , E Mostafa . Microwave-assisted fluidized bed reactor pyrolysis of polypropylene plastic for pyrolysis gas production towards a sustainable development. Applied Energy, 2023, 342: 121099
https://doi.org/10.1016/j.apenergy.2023.121099
42 W Hu , Z Sárossy , A D Jensen , A E Daugaard , P A Jensen . Two-stage fixed-bed low-density polyethylene pyrolysis: influence of using different catalytic materials in the second stage. Energy & Fuels, 2023, 37(23): 19063–19075
https://doi.org/10.1021/acs.energyfuels.3c01948
43 I Hussain , S A Ganiyu , H Alasiri , K Alhooshani . A state-of-the-art review on waste plastics-derived aviation fuel: unveiling the heterogeneous catalytic systems and techno-economy feasibility of catalytic pyrolysis. Energy Conversion and Management, 2022, 274: 116433
https://doi.org/10.1016/j.enconman.2022.116433
44 R E Harmon , G SriBala , L J Broadbelt , A K Burnham . SriBala G, Broadbelt L J, Burnham A K. Insight into polyethylene and polypropylene pyrolysis: global and mechanistic models. Energy & Fuels, 2021, 35(8): 6765–6775
https://doi.org/10.1021/acs.energyfuels.1c00342
45 M S Qureshi , A Oasmaa , H Pihkola , I Deviatkin , A Tenhunen , J Mannila , H Minkkinen , M Pohjakallio , J Laine-Ylijoki . Pyrolysis of plastic waste: opportunities and challenges. Journal of Analytical and Applied Pyrolysis, 2020, 152: 104804
https://doi.org/10.1016/j.jaap.2020.104804
46 Y Zhang , Z Fu , W Wang , G Ji , M Zhao , A Li . Kinetics, product evolution, and mechanism for the pyrolysis of typical plastic waste. ACS Sustainable Chemistry & Engineering, 2022, 10(1): 91–103
https://doi.org/10.1021/acssuschemeng.1c04915
47 P A Willems , G F Froment . Kinetic modeling of the thermal cracking of hydrocarbons. 1. Calculation of frequency factors. Industrial & Engineering Chemistry Research, 1988, 27(11): 1959–1966
https://doi.org/10.1021/ie00083a001
48 M Artetxe , G Lopez , G Elordi , M Amutio , J Bilbao , M Olazar . Production of light olefins from polyethylene in a two-step process: pyrolysis in a conical spouted bed and downstream high-temperature thermal cracking. Industrial & Engineering Chemistry Research, 2012, 51(43): 13915–13923
https://doi.org/10.1021/ie300178e
49 M Arabiourrutia , G Elordi , G Lopez , E Borsella , J Bilbao , M Olazar . Characterization of the waxes obtained by the pyrolysis of polyolefin plastics in a conical spouted bed reactor. Journal of Analytical and Applied Pyrolysis, 2012, 94: 230–237
https://doi.org/10.1016/j.jaap.2011.12.012
50 K Saeaung , N Phusunti , W Phetwarotai , S Assabumrungrat , B Cheirsilp . Catalytic pyrolysis of petroleum-based and biodegradable plastic waste to obtain high-value chemicals. Waste Management, 2021, 127: 101–111
https://doi.org/10.1016/j.wasman.2021.04.024
51 S M Al-Salem . Thermal pyrolysis of high density polyethylene (HDPE) in a novel fixed bed reactor system for the production of high value gasoline range hydrocarbons (HC). Process Safety and Environmental Protection, 2019, 127: 171–179
https://doi.org/10.1016/j.psep.2019.05.008
52 G K Parku , F X Collard , J F Görgens . Pyrolysis of waste polypropylene plastics for energy recovery: influence of heating rate and vacuum conditions on composition of fuel product. Fuel Processing Technology, 2020, 209: 106522
https://doi.org/10.1016/j.fuproc.2020.106522
53 D Zhao , X Wang , J B Miller , G W Huber . The chemistry and kinetics of polyethylene pyrolysis: a process to produce fuels and chemicals. ChemSusChem, 2020, 13(7): 1764–1774
https://doi.org/10.1002/cssc.201903434
54 M Predel , W Kaminsky . Pyrolysis of mixed polyolefins in a fluidised-bed reactor and on a pyro-GC/MS to yield aliphatic waxes. Polymer Degradation & Stability, 2000, 70(3): 373–385
https://doi.org/10.1016/S0141-3910(00)00131-2
55 P T Williams , E A Williams . Fluidised bed pyrolysis of low density polyethylene to produce petrochemical feedstock. Journal of Analytical and Applied Pyrolysis, 1999, 51(1): 107–126
https://doi.org/10.1016/S0165-2370(99)00011-X
56 G Grause , S Matsumoto , T Kameda , T Yoshioka . Pyrolysis of mixed plastics in a fluidized bed of hard burnt lime. Industrial & Engineering Chemistry Research, 2011, 50(9): 5459–5466
https://doi.org/10.1021/ie102412h
57 F J Mastral , E Esperanza , P García , M Juste . Pyrolysis of high-density polyethylene in a fluidised bed reactor. Influence of the temperature and residence time. Journal of Analytical and Applied Pyrolysis, 2002, 63(1): 1–15
https://doi.org/10.1016/S0165-2370(01)00137-1
58 S M Al-Salem , Y Yang , J Wang , G A Leeke . Pyro-oil and wax recovery from reclaimed plastic waste in a continuous auger/pyrolysis reactor. Energies, 2020, 13(8): 2040
https://doi.org/10.3390/en13082040
59 I Ahmad , M I Khan , H Khan , M Ishaq , R Tariq , K Gul , W Ahmad . Pyrolysis study of polypropylene and polyethylene into premium oil products. International Journal of Green Energy, 2015, 12(7): 663–671
https://doi.org/10.1080/15435075.2014.880146
60 A Undri , L Rosi , M Frediani , P Frediani . Efficient disposal of waste polyolefins through microwave assisted pyrolysis. Fuel, 2014, 116: 662–671
https://doi.org/10.1016/j.fuel.2013.08.037
61 Y WangY ZhangH FanP WuM LiuX LiJ YangC LiuP BaiZ Yan. Elucidating the structure-performance relationship of typical commercial zeolites in catalytic cracking of low-density polyethylene. Catalysis Today, 2022, 405–406: 135–143
62 L Dai , N Zhou , Y Lv , Y Cheng , Y Wang , Y Liu , K Cobb , P Chen , H Lei , R Ruan . Chemical upcycling of waste polyolefinic plastics to low-carbon synthetic naphtha for closing the plastic use loop. Science of the Total Environment, 2021, 782: 146897
https://doi.org/10.1016/j.scitotenv.2021.146897
63 A Eschenbacher , F Goodarzi , R J Varghese , K Enemark-Rasmussen , S Kegnæs , M S Abbas-Abadi , Geem K M Van . Boron-modified mesoporous ZSM-5 for the conversion of pyrolysis vapors from LDPE and mixed polyolefins: maximizing the C2–C4 olefin yield with minimal carbon footprint. ACS Sustainable Chemistry & Engineering, 2021, 9(43): 14618–14630
https://doi.org/10.1021/acssuschemeng.1c06098
64 J Aguado , D P Serrano , G San Miguel , M C Castro , S Madrid . Feedstock recycling of polyethylene in a two-step thermo-catalytic reaction system. Journal of Analytical and Applied Pyrolysis, 2007, 79(1–2): 415–423
https://doi.org/10.1016/j.jaap.2006.11.008
65 Y H Lin , H Y Yen . Fluidised bed pyrolysis of polypropylene over cracking catalysts for producing hydrocarbons. Polymer Degradation & Stability, 2005, 89(1): 101–108
https://doi.org/10.1016/j.polymdegradstab.2005.01.006
66 M ArtetxeG LopezM AmutioG ElordiJ BilbaoM Olazar. Light olefins from HDPE cracking in a two-step thermal and catalytic process. Chemical Engineering Journal, 2012, 207–208: 27–34
67 Z Chen , M Monzavi , M Latifi , S Samih , J Chaouki . Microwave-responsive SiC foam@zeolite core-shell structured catalyst for catalytic pyrolysis of plastics. Environmental Pollution, 2022, 307: 119573
https://doi.org/10.1016/j.envpol.2022.119573
68 L Dai , N Zhou , Y Lv , K Cobb , Y Cheng , Y Wang , Y Liu , P Chen , R Zou , H Lei . et al.. Pyrolysis-catalysis for waste polyolefin conversion into low aromatic naphtha. Energy Conversion and Management, 2021, 245: 114578
https://doi.org/10.1016/j.enconman.2021.114578
69 N Zhou , L Dai , Y Lv , H Li , W Deng , F Guo , P Chen , H Lei , R Ruan . Catalytic pyrolysis of plastic wastes in a continuous microwave assisted pyrolysis system for fuel production. Chemical Engineering Journal, 2021, 418: 129412
https://doi.org/10.1016/j.cej.2021.129412
70 Y Peng , Y Wang , L Ke , L Dai , Q Wu , K Cobb , Y Zeng , R Zou , Y Liu , R Ruan . A review on catalytic pyrolysis of plastic wastes to high-value products. Energy Conversion and Management, 2022, 254: 115243
https://doi.org/10.1016/j.enconman.2022.115243
71 Z Zhang , K Gora-Marek , J S Watson , J Tian , M R Ryder , K A Tarach , L López-Pérez , J Martínez-Triguero , I Melián-Cabrera . Recovering waste plastics using shape-selective nano-scale reactors as catalysts. Nature Sustainability, 2019, 2(1): 39–42
https://doi.org/10.1038/s41893-018-0195-9
72 M Seifali Abbas-Abadi , M Fathi , M Ghadiri . Effect of different process parameters on the pyrolysis of Iranian oak using a fixed bed reactor and TGA instrument. Energy & Fuels, 2019, 33(11): 11226–11234
https://doi.org/10.1021/acs.energyfuels.9b02845
73 R Miandad , M A Barakat , A S Aburiazaiza , M Rehan , A S Nizami . Catalytic pyrolysis of plastic waste: a review. Process Safety and Environmental Protection, 2016, 102: 822–838
https://doi.org/10.1016/j.psep.2016.06.022
74 J Duan , W Chen , C Wang , L Wang , Z Liu , X Yi , W Fang , H Wang , H Wei , S Xu . et al.. Coking-resistant polyethylene upcycling modulated by zeolite micropore diffusion. Journal of the American Chemical Society, 2022, 144(31): 14269–14277
https://doi.org/10.1021/jacs.2c05125
75 H Raveh-Amit , F Lemont , G Bar-Nes , O Klein-BenDavid , N Banano , S Gelfer , P Charvin , T Bin Rozaini , J Sedan , F Rousset . Catalytic pyrolysis of high-density polyethylene: decomposition efficiency and kinetics. Catalysts, 2022, 12(2): 140
https://doi.org/10.3390/catal12020140
76 J Socci , A Osatiashtiani , G Kyriakou , T Bridgwater . The catalytic cracking of sterically challenging plastic feedstocks over high acid density Al-SBA-15 catalysts. Applied Catalysis A, General, 2019, 570: 218–227
https://doi.org/10.1016/j.apcata.2018.11.020
77 P Castaño , G Elordi , M Olazar , A T Aguayo , B Pawelec , J Bilbao . Insights into the coke deposited on HZSM-5, Hβ and HY zeolites during the cracking of polyethylene. Applied Catalysis B: Environmental, 2011, 104(1): 91–100
https://doi.org/10.1016/j.apcatb.2011.02.024
78 O Akin , R J Varghese , A Eschenbacher , J Oenema , M S Abbas-Abadi , G D Stefanidis , K M Van Geem . Chemical recycling of plastic waste to monomers: effect of catalyst contact time, acidity and pore size on olefin recovery in ex-situ catalytic pyrolysis of polyolefin waste. Journal of Analytical and Applied Pyrolysis, 2023, 172: 106036
https://doi.org/10.1016/j.jaap.2023.106036
79 J Gancedo , H Li , J S Walz , L Faba , S Ordoñez , G W Huber . Investigation into the shape selectivity of zeolites for conversion of polyolefin plastic pyrolysis oil model compound. Applied Catalysis A, General, 2024, 669: 119484
https://doi.org/10.1016/j.apcata.2023.119484
80 H Yuan , C Li , R Shan , J Zhang , Y Wu , Y Chen . Recent developments on the zeolites catalyzed polyolefin plastics pyrolysis. Fuel Processing Technology, 2022, 238: 107531
https://doi.org/10.1016/j.fuproc.2022.107531
81 L Dai , N Zhou , K Cobb , P Chen , Y Wang , Y Liu , R Zou , H Lei , B A Mohamed , Y Cheng . et al.. Insights into structure–performance relationship in the catalytic cracking of high density polyethylene. Applied Catalysis B: Environmental, 2022, 318: 121835
https://doi.org/10.1016/j.apcatb.2022.121835
82 M Olazar , G Lopez , M Amutio , G Elordi , R Aguado , J Bilbao . Influence of FCC catalyst steaming on HDPE pyrolysis product distribution. Journal of Analytical and Applied Pyrolysis, 2009, 85(1–2): 359–365
https://doi.org/10.1016/j.jaap.2008.10.016
83 X Zhang , H Yang , Z Chen , X Wang , H Feng , J Zhang , J Yu , S Gao , D Lai . Sustainable production of aromatics via catalytic pyrolysis of polyolefins towards the carbon cycle for plastics. Fuel, 2024, 357: 129897
https://doi.org/10.1016/j.fuel.2023.129897
84 X Su , W Zan , X Bai , G Wang , W Wu . Synthesis of microscale and nanoscale ZSM-5 zeolites: effect of particle size and acidity of Zn modified ZSM-5 zeolites on aromatization performance. Catalysis Science & Technology, 2017, 7(9): 1943–1952
https://doi.org/10.1039/C7CY00435D
85 W T Lee , A van Muyden , F D Bobbink , M D Mensi , J R Carullo , P J Dyson . Mechanistic classification and benchmarking of polyolefin depolymerization over silica-alumina-based catalysts. Nature Communications, 2022, 13(1): 4850
https://doi.org/10.1038/s41467-022-32563-y
86 Q Zhou , D Wang , Q Wang , K He , K H Lim , X Yang , W Wang , B Li , P Liu . Mechanistic understanding of efficient polyethylene hydrocracking over two-dimensional platinum-anchored tungsten trioxide. Angewandte Chemie International Edition, 2023, 62(40): e202305644
https://doi.org/10.1002/anie.202305644
87 Q Wang , Y Li , A Serrano-Lotina , W Han , R Portela , R Wang , M A Bañares , K L Yeung . Operando investigation of toluene oxidation over 1D Pt@CeO2 derived from Pt cluster-containing MOF. Journal of the American Chemical Society, 2021, 143(1): 196–205
https://doi.org/10.1021/jacs.0c08640
88 F Zhang , M Zeng , R D Yappert , J Sun , Y H Lee , A M LaPointe , B Peters , M M Abu-Omar , S L Scott . Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization. Science, 2020, 370(6515): 437–441
https://doi.org/10.1126/science.abc5441
89 M L Pennel , A K Maurya , A M Ebrahim , C J Tassone , M Cargnello . Activity of silica-alumina for the conversion of polyethylene into tunable aromatics below pyrolytic temperatures. ACS Sustainable Chemistry & Engineering, 2023, 11(34): 12623–12630
https://doi.org/10.1021/acssuschemeng.3c02295
90 Y Yuan , Z Xie , K K Turaczy , S Hwang , J Zhou , J G Chen . Controlling product distribution of polyethylene hydrogenolysis using bimetallic RuM3 (M = Fe, Co, Ni) catalysts. Chem & Bio Engineering, 2024, 1(1): 67–75
https://doi.org/10.1021/cbe.3c00007
91 A Inayat , A Fasolini , F Basile , D Fridrichova , P Lestinsky . Chemical recycling of waste polystyrene by thermo-catalytic pyrolysis: a description for different feedstocks, catalysts and operation modes. Polymer Degradation & Stability, 2022, 201: 109981
https://doi.org/10.1016/j.polymdegradstab.2022.109981
92 A Inayat , A Inayat , W Schwieger , B Sokolova , P Lestinsky . Enhancing aromatics and olefins yields in thermo-catalytic pyrolysis of LDPE over zeolites: role of staged catalysis and acid site density of HZSM-5. Fuel, 2022, 314: 123071
https://doi.org/10.1016/j.fuel.2021.123071
93 B Muneer , M Zeeshan , S Qaisar , M Razzaq , H Iftikhar . Influence of in-situ and ex-situ HZSM-5 catalyst on co-pyrolysis of corn stalk and polystyrene with a focus on liquid yield and quality. Journal of Cleaner Production, 2019, 237: 117762
https://doi.org/10.1016/j.jclepro.2019.117762
94 Y Xue , P Johnston , X Bai . Effect of catalyst contact mode and gas atmosphere during catalytic pyrolysis of waste plastics. Energy Conversion and Management, 2017, 142: 441–451
https://doi.org/10.1016/j.enconman.2017.03.071
95 D Duan , Y Wang , L Dai , R Ruan , Y Zhao , L Fan , M Tayier , Y Liu . Ex-situ catalytic co-pyrolysis of lignin and polypropylene to upgrade bio-oil quality by microwave heating. Bioresource Technology, 2017, 241: 207–213
https://doi.org/10.1016/j.biortech.2017.04.104
96 Y Zheng , D Li , T Pei , J Wang , C Liu , Y Lu , X Lin , J Li , Z Zheng . Mechanism of synergistic effects and kinetic analysis in bamboo-LDPE waste ex-situ catalytic co-pyrolysis for enhanced aromatic hydrocarbon production via CeZrAl and HZSM-5 dual catalyst. Journal of Environmental Chemical Engineering, 2022, 10(3): 107479
https://doi.org/10.1016/j.jece.2022.107479
97 L D Ellis , N A Rorrer , K P Sullivan , M Otto , J E McGeehan , Y Román-Leshkov , N Wierckx , G T Beckham . Chemical and biological catalysis for plastics recycling and upcycling. Nature Catalysis, 2021, 4(7): 539–556
https://doi.org/10.1038/s41929-021-00648-4
98 J A Onwudili , N Insura , P T Williams . Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: effects of temperature and residence time. Journal of Analytical and Applied Pyrolysis, 2009, 86(2): 293–303
https://doi.org/10.1016/j.jaap.2009.07.008
99 R K Singh , B Ruj , A K Sadhukhan , P Gupta . Impact of fast and slow pyrolysis on the degradation of mixed plastic waste: product yield analysis and their characterization. Journal of the Energy Institute, 2019, 92(6): 1647–1657
https://doi.org/10.1016/j.joei.2019.01.009
100 P Das , P Tiwari . The effect of slow pyrolysis on the conversion of packaging waste plastics (PE and PP) into fuel. Waste Management, 2018, 79: 615–624
https://doi.org/10.1016/j.wasman.2018.08.021
101 Y P Supriyanto , T Richards . Gaseous products from primary reactions of fast plastic pyrolysis. Journal of Analytical and Applied Pyrolysis, 2021, 158: 105248
https://doi.org/10.1016/j.jaap.2021.105248
102 T Maqsood , J Dai , Y Zhang , M Guang , B Li . Pyrolysis of plastic species: a review of resources and products. Journal of Analytical and Applied Pyrolysis, 2021, 159: 105295
https://doi.org/10.1016/j.jaap.2021.105295
103 E Santos , B Rijo , F Lemos , M A N D A Lemos . A catalytic reactive distillation approach to high density polyethylene pyrolysis—Part 2—Middle olefin production. Catalysis Today, 2021, 379: 212–221
https://doi.org/10.1016/j.cattod.2020.06.014
104 M I Jahirul , M G Rasul , D Schaller , M M K Khan , M M Hasan , M A Hazrat . Transport fuel from waste plastics pyrolysis—a review on technologies, challenges and opportunities. Energy Conversion and Management, 2022, 258: 115451
https://doi.org/10.1016/j.enconman.2022.115451
105 E Butler , G Devlin , K McDonnell . Waste polyolefins to liquid fuels via pyrolysis: review of commercial state-of-the-art and recent laboratory research. Waste and Biomass Valorization, 2011, 2(3): 227–255
https://doi.org/10.1007/s12649-011-9067-5
106 Y Yang , R Pan , Y Shuai . Investigation of the effect of alumina porous media on the polyethylene waste pyrolysis with continuous feed. Fuel, 2024, 361: 130734
https://doi.org/10.1016/j.fuel.2023.130734
107 E Giglio , A Marino , P Pizarro , J M Escola , M Migliori , G Giordano , D P Serrano . Critical issues for the deployment of plastic waste pyrolysis. Catalysis Science & Technology, 2023, 13(20): 5799–5820
https://doi.org/10.1039/D3CY00445G
108 S Papuga , P Gvero , L Vukic . Temperature and time influence on the waste plastics pyrolysis in the fixed bed reactor. Thermal Science, 2016, 20(2): 731–741
https://doi.org/10.2298/TSCI141113154P
109 L Ballice . A kinetic approach to the temperature-programmed pyrolysis of low- and high-density polyethylene in a fixed bed reactor: determination of kinetic parameters for the evolution of n-paraffins and 1-olefins. Fuel, 2001, 80(13): 1923–1935
https://doi.org/10.1016/S0016-2361(01)00067-9
110 E V Antonakou , K G Kalogiannis , S D Stefanidis , S A Karakoulia , K S Triantafyllidis , A A Lappas , D S Achilias . Catalytic and thermal pyrolysis of polycarbonate in a fixed-bed reactor: the effect of catalysts on products yields and composition. Polymer Degradation & Stability, 2014, 110: 482–491
https://doi.org/10.1016/j.polymdegradstab.2014.10.007
111 M S Abbas-Abadi , K M Van Geem , M Fathi , H Bazgir , M Ghadiri . The pyrolysis of oak with polyethylene, polypropylene and polystyrene using fixed bed and stirred reactors and TGA instrument. Energy, 2021, 232: 121085
https://doi.org/10.1016/j.energy.2021.121085
112 E Valanciene , L Miknius , V Martynaitis , N Striugas . Influence of equilibrium fluid catalytic cracking catalyst amount on the thermolysis process of various polyolefin plastic wastes in a fixed-bed reactor for gasoline and diesel production. Energy & Fuels, 2017, 31(10): 11194–11210
https://doi.org/10.1021/acs.energyfuels.7b01472
113 G Albor , A Mirkouei , A G McDonald , E Struhs , F Sotoudehnia . Fixed bed batch slow pyrolysis process for polystyrene waste recycling. Processes, 2023, 11(4): 1126
https://doi.org/10.3390/pr11041126
114 P Kasar , D K Sharma , M Ahmaruzzaman . Thermal and catalytic decomposition of waste plastics and its co-processing with petroleum residue through pyrolysis process. Journal of Cleaner Production, 2020, 265: 121639
https://doi.org/10.1016/j.jclepro.2020.121639
115 M L Mastellone , U Arena . Fluidized-bed pyrolysis of polyolefins wastes: predictive defluidization model. AIChE Journal. American Institute of Chemical Engineers, 2002, 48(7): 1439–1447
https://doi.org/10.1002/aic.690480708
116 S H Jung , M H Cho , B S Kang , J S Kim . Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor. Fuel Processing Technology, 2010, 91(3): 277–284
https://doi.org/10.1016/j.fuproc.2009.10.009
117 S A Salaudeen , S M Al-Salem , S Sharma , A Dutta . Pyrolysis of high-density polyethylene in a fluidized bed reactor: pyro-wax and gas analysis. Industrial & Engineering Chemistry Research, 2021, 60(50): 18283–18292
https://doi.org/10.1021/acs.iecr.1c03373
118 S Hafeez , M Van Haute , A Constantinou , S M Al-Salem . Process simulation modeling of the linear low-density polyethylene catalytic pyrolysis in a fluidized bed reactor. Industrial & Engineering Chemistry Research, 2023, 62(16): 6386–6393
https://doi.org/10.1021/acs.iecr.2c04379
119 S M Al-Salem , M Van Haute , H J Karam , A Hakeem , W Meuldermans , J Patel , S Hafeez , G Manos , A Constantinou . Fuel range properties of oil and wax obtained from catalytic pyrolysis of linear low-density polyethylene in a fluidized bed reactor (FBR). Industrial & Engineering Chemistry Research, 2022, 61(43): 16383–16392
https://doi.org/10.1021/acs.iecr.2c02875
120 T T Wei , Y H Lin . Fast pyroylysis of polyolefin waste over cracking catalysts for producing hydrocarbon fuels using a fluidized-bed reactor. International Journal of Chemical Reactor Engineering, 2012, 10(1): A69
https://doi.org/10.1515/1542-6580.3053
121 S HafeezE PallariG ManosA Constantinou. 6—Catalytic conversion and chemical recovery. Plastics to Energy, 2019, 147–172
122 R Aguado , M Olazar , B Gaisán , R Prieto , J Bilbao . Kinetic study of polyolefin pyrolysis in a conical spouted bed reactor. Industrial & Engineering Chemistry Research, 2002, 41(18): 4559–4566
https://doi.org/10.1021/ie0201260
123 R Aguado , M Olazar , José M J San , B Gaisán , J Bilbao . Wax formation in the pyrolysis of polyolefins in a conical spouted bed reactor. Energy & Fuels, 2002, 16(6): 1429–1437
https://doi.org/10.1021/ef020043w
124 G Elordi , M Olazar , G Lopez , M Artetxe , J Bilbao . Continuous polyolefin cracking on an HZSM-5 zeolite catalyst in a conical spouted bed reactor. Industrial & Engineering Chemistry Research, 2011, 50(10): 6061–6070
https://doi.org/10.1021/ie2002999
125 G Elordi , M Olazar , G Lopez , M Artetxe , J Bilbao . Product yields and compositions in the continuous pyrolysis of high-density polyethylene in a conical spouted bed reactor. Industrial & Engineering Chemistry Research, 2011, 50(11): 6650–6659
https://doi.org/10.1021/ie200186m
126 S Orozco , J Alvarez , G Lopez , M Artetxe , J Bilbao , M Olazar . Pyrolysis of plastic wastes in a fountain confined conical spouted bed reactor: determination of stable operating conditions. Energy Conversion and Management, 2021, 229: 113768
https://doi.org/10.1016/j.enconman.2020.113768
127 S Orozco , M Artetxe , G Lopez , M Suarez , J Bilbao , M Olazar . Conversion of HDPE into value products by fast pyrolysis using FCC spent catalysts in a fountain confined conical spouted bed reactor. ChemSusChem, 2021, 14(19): 4291–4300
https://doi.org/10.1002/cssc.202100889
128 D P SerranoJ AguadoJ M EscolaE Garagorri. Conversion of low density polyethylene into petrochemical feedstocks using a continuous screw kiln reactor. Journal of Analytical and Applied Pyrolysis, 2001, 58–59: 789–801
129 J Vera-Sorroche , A L Kelly , E C Brown , T Gough , C Abeykoon , P D Coates , J Deng , K Li , E Harkin-Jones , M Price . The effect of melt viscosity on thermal efficiency for single screw extrusion of HDPE. Chemical Engineering Research & Design, 2014, 92(11): 2404–2412
https://doi.org/10.1016/j.cherd.2013.12.025
130 M Stelmachowski . Thermal conversion of waste polyolefins to the mixture of hydrocarbons in the reactor with molten metal bed. Energy Conversion and Management, 2010, 51(10): 2016–2024
https://doi.org/10.1016/j.enconman.2010.02.035
131 F Riedewald , J Zuber , P Rathsack , G Duffy , M O’Mahoney , M Sousa-Gallagher . Chemical recycling of polyolefins with the molten metal reactor at 460 °C. Chemieingenieurtechnik, 2023, 95(8): 1332–1338
https://doi.org/10.1002/cite.202300056
132 M Stelmachowski . Feedstock recycling of waste polymers by thermal cracking in molten metal: thermodynamic analysis. Journal of Material Cycles and Waste Management, 2014, 16(2): 211–218
https://doi.org/10.1007/s10163-013-0178-x
133 Z Jin , D Chen , L Yin , Y Hu , H Zhu , L Hong . Molten waste plastic pyrolysis in a vertical falling film reactor and the influence of temperature on the pyrolysis products. Chinese Journal of Chemical Engineering, 2018, 26(2): 400–406
https://doi.org/10.1016/j.cjche.2017.08.001
134 Z Jin , L Yin , D Chen , Y Jia , J Yuan , B Yu . Heat transfer characteristics of molten plastics in a vertical falling film reactor. Chinese Journal of Chemical Engineering, 2019, 27(5): 1015–1020
https://doi.org/10.1016/j.cjche.2018.11.015
135 Z Jin , L Yin , D Chen , Y Jia , J Yuan , Y Hu . Co-pyrolysis characteristics of typical components of waste plastics in a falling film pyrolysis reactor. Chinese Journal of Chemical Engineering, 2018, 26(10): 2176–2184
https://doi.org/10.1016/j.cjche.2018.07.005
136 D De Conto , W P Silvestre , C Baldasso , M Godinho . Performance of rotary kiln reactor for the elephant grass pyrolysis. Bioresource Technology, 2016, 218: 153–160
https://doi.org/10.1016/j.biortech.2016.06.082
137 E Yazdani , S H Hashemabadi , A Taghizadeh . Study of waste tire pyrolysis in a rotary kiln reactor in a wide range of pyrolysis temperature. Waste Management, 2019, 85: 195–201
https://doi.org/10.1016/j.wasman.2018.12.020
138 Z Ma , N Gao , L Xie , A Li . Study of the fast pyrolysis of oilfield sludge with solid heat carrier in a rotary kiln for pyrolytic oil production. Journal of Analytical and Applied Pyrolysis, 2014, 105: 183–190
https://doi.org/10.1016/j.jaap.2013.11.003
139 A HornungH Seifert. Rotary kiln pyrolysis of polymers containing heteroatoms. Feedstock Recycling and Pyrolysis of Waste Plastics, 2006, 549–567
140 Y Zhang , G Ji , C Chen , Y Wang , W Wang , A Li . Liquid oils produced from pyrolysis of plastic wastes with heat carrier in rotary kiln. Fuel Processing Technology, 2020, 206: 106455
https://doi.org/10.1016/j.fuproc.2020.106455
141 C Yang , H Shang , J Li , X Fan , J Sun , A Duan . A review on the microwave-assisted pyrolysis of waste plastics. Processes (Basel, Switzerland), 2023, 11(5): 1487
https://doi.org/10.3390/pr11051487
142 C Ludlow-Palafox , H A Chase . Microwave-induced pyrolysis of plastic wastes. Industrial & Engineering Chemistry Research, 2001, 40(22): 4749–4756
https://doi.org/10.1021/ie010202j
143 Y Cui , Y Zhang , L Cui , Y Liu , B Li , W Liu . Microwave-assisted pyrolysis of polypropylene plastic for liquid oil production. Journal of Cleaner Production, 2023, 411: 137303
https://doi.org/10.1016/j.jclepro.2023.137303
144 W A Wan Mahari , C T Chong , W H Lam , T N S T Anuar , N L Ma , M D Ibrahim , S S Lam . Microwave co-pyrolysis of waste polyolefins and waste cooking oil: influence of N2 atmosphere versus vacuum environment. Energy Conversion and Management, 2018, 171: 1292–1301
https://doi.org/10.1016/j.enconman.2018.06.073
145 Y Zeng , Y Wang , Y Liu , L Dai , Q Wu , M Xia , S Zhang , L Ke , R Zou , R Ruan . Microwave catalytic co-pyrolysis of waste cooking oil and low-density polyethylene to produce monocyclic aromatic hydrocarbons: effect of different catalysts and pyrolysis parameters. Science of the Total Environment, 2022, 809: 152182
https://doi.org/10.1016/j.scitotenv.2021.152182
146 A Undri , L Rosi , M Frediani , P Frediani . Fuel from microwave assisted pyrolysis of waste multilayer packaging beverage. Fuel, 2014, 133: 7–16
https://doi.org/10.1016/j.fuel.2014.04.092
147 S Ge , P N Y Yek , Y W Cheng , C Xia , W A Wan Mahari , R K Liew , W Peng , T Q Yuan , M Tabatabaei , M Aghbashlo . et al.. Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: a batch to continuous approach. Renewable & Sustainable Energy Reviews, 2021, 135: 110148
https://doi.org/10.1016/j.rser.2020.110148
148 W Kaminsky , I J N Zorriqueta . Catalytical and thermal pyrolysis of polyolefins. Journal of Analytical and Applied Pyrolysis, 2007, 79(1): 368–374
https://doi.org/10.1016/j.jaap.2006.11.005
149 X Jing , G Yan , Y Zhao , H Wen , Z Xu . Study on mild cracking of polyolefins to liquid hydrocarbons in a closed batch reactor for subsequent olefin recovery. Polymer Degradation & Stability, 2014, 109: 79–91
https://doi.org/10.1016/j.polymdegradstab.2014.07.003
150 P Das , P Tiwari . Valorization of packaging plastic waste by slow pyrolysis. Resources, Conservation and Recycling, 2018, 128: 69–77
https://doi.org/10.1016/j.resconrec.2017.09.025
151 E Santos , B Rijo , F Lemos , M A N D A Lemos . A catalytic reactive distillation approach to high density polyethylene pyrolysis—Part 1—Light olefin production. Chemical Engineering Journal, 2019, 378: 122077
https://doi.org/10.1016/j.cej.2019.122077
152 R Pan , M Ferreira Martins , G Debenest . Pyrolysis of waste polyethylene in a semi-batch reactor to produce liquid fuel: optimization of operating conditions. Energy Conversion and Management, 2021, 237: 114114
https://doi.org/10.1016/j.enconman.2021.114114
153 Z Zheng , Y Yang , K Huang , J Hu , S Jie , B G Li . Real-time detection of atmosphere composition in three-component gas-phase copolymerization of olefins. Macromolecular Reaction Engineering, 2018, 12(6): 1800042
https://doi.org/10.1002/mren.201800042
154 S M Al-Salem , S R Chandrasekaran , A Dutta , B K Sharma . Study of the fuel properties of extracted oils obtained from low and linear low density polyethylene pyrolysis. Fuel, 2021, 304: 121396
https://doi.org/10.1016/j.fuel.2021.121396
155 A Marcilla , M I Beltrán , R Navarro . Evolution of products during the degradation of polyethylene in a batch reactor. Journal of Analytical and Applied Pyrolysis, 2009, 86(1): 14–21
https://doi.org/10.1016/j.jaap.2009.03.004
156 S M Al-Salem , A Dutta . Wax recovery from the pyrolysis of virgin and waste plastics. Industrial & Engineering Chemistry Research, 2021, 60(22): 8301–8309
https://doi.org/10.1021/acs.iecr.1c01176
157 C Muhammad , J A Onwudili , P T Williams . Thermal degradation of real-world waste plastics and simulated mixed plastics in a two-stage pyrolysis-catalysis reactor for fuel production. Energy & Fuels, 2015, 29(4): 2601–2609
https://doi.org/10.1021/ef502749h
158 M del R Hernández , Á N García , A Marcilla . Study of the gases obtained in thermal and catalytic flash pyrolysis of HDPE in a fluidized bed reactor. Journal of Analytical and Applied Pyrolysis, 2005, 73(2): 314–322
https://doi.org/10.1016/j.jaap.2005.03.001
159 P J Donaj , W Kaminsky , F Buzeto , W Yang . Pyrolysis of polyolefins for increasing the yield of monomers’ recovery. Waste Management, 2012, 32(5): 840–846
https://doi.org/10.1016/j.wasman.2011.10.009
160 M L Mastellone , L Zaccariello , U Arena . Co-gasification of coal, plastic waste and wood in a bubbling fluidized bed reactor. Fuel, 2010, 89(10): 2991–3000
https://doi.org/10.1016/j.fuel.2010.05.019
161 Q Xiong , S Aramideh , S C Kong . Modeling effects of operating conditions on biomass fast pyrolysis in bubbling fluidized bed reactors. Energy & Fuels, 2013, 27(10): 5948–5956
https://doi.org/10.1021/ef4012966
162 M Rüdisüli , T J Schildhauer , S M A Biollaz , Ommen J R van . Scale-up of bubbling fluidized bed reactors—a review. Powder Technology, 2012, 217: 21–38
https://doi.org/10.1016/j.powtec.2011.10.004
163 B J Milne , L A Behie , F Berruti . Recycling of waste plastics by ultrapyrolysis using an internally circulating fluidized bed reactor. Journal of Analytical and Applied Pyrolysis, 1999, 51(1): 157–166
https://doi.org/10.1016/S0165-2370(99)00014-5
164 Y Choi , S Wang , Y M Yoon , J J Jang , D Kim , H J Ryu , D Lee , Y Won , H Nam , B Hwang . Sustainable strategy for converting plastic waste into energy over pyrolysis: a comparative study of fluidized-bed and fixed-bed reactors. Energy, 2024, 286: 129564
https://doi.org/10.1016/j.energy.2023.129564
165 Remedio Hernández M del , Á N García , A Marcilla . Catalytic flash pyrolysis of HDPE in a fluidized bed reactor for recovery of fuel-like hydrocarbons. Journal of Analytical and Applied Pyrolysis, 2007, 78(2): 272–281
https://doi.org/10.1016/j.jaap.2006.03.009
166 A R Manzoori , P K Agarwal . Agglomeration and defluidization under simulated circulating fluidized-bed combustion conditions. Fuel, 1994, 73(4): 563–568
https://doi.org/10.1016/0016-2361(94)90041-8
167 A R Fernández-Akarregui , J Makibar , I Alava , L Diaz , F Cueva , R Aguado , G Lopez , M Olazar . Sand attrition in conical spouted beds. Particuology, 2012, 10(5): 592–599
https://doi.org/10.1016/j.partic.2012.02.002
168 R Aguado , R Prieto , M J S José , S Alvarez , M Olazar , J Bilbao . Defluidization modelling of pyrolysis of plastics in a conical spouted bed reactor. Chemical Engineering and Processing, 2005, 44(2): 231–235
https://doi.org/10.1016/j.cep.2004.02.016
169 M Artetxe , G Lopez , M Amutio , G Elordi , M Olazar , J Bilbao . Operating conditions for the pyrolysis of poly-(ethylene terephthalate) in a conical spouted-bed reactor. Industrial & Engineering Chemistry Research, 2010, 49(5): 2064–2069
https://doi.org/10.1021/ie900557c
170 G Elordi , M Olazar , G Lopez , M Amutio , M Artetxe , R Aguado , J Bilbao . Catalytic pyrolysis of HDPE in continuous mode over zeolite catalysts in a conical spouted bed reactor. Journal of Analytical and Applied Pyrolysis, 2009, 85(1): 345–351
https://doi.org/10.1016/j.jaap.2008.10.015
171 G Elordi , M Olazar , P Castaño , M Artetxe , J Bilbao . Polyethylene cracking on a spent FCC catalyst in a conical spouted bed. Industrial & Engineering Chemistry Research, 2012, 51(43): 14008–14017
https://doi.org/10.1021/ie3018274
172 S Orozco , L Santamaria , M Artetxe , J Alvarez , J Bilbao , M Olazar , G Lopez . Influence of oxidative conditions on the deactivation of an equilibrium FCC catalyst in the fast pyrolysis of HDPE in a conical spouted bed reactor. Chemical Engineering Journal, 2023, 472: 144947
https://doi.org/10.1016/j.cej.2023.144947
173 A R Fernandez-Akarregi , J Makibar , G Lopez , M Amutio , H Altzibar , M Olazar . Development of a dual conical spouted bed system for heat integration purposes. Powder Technology, 2014, 268: 261–268
https://doi.org/10.1016/j.powtec.2014.08.028
174 S Pal , A Kumar , A K Sharma , P K Ghodke , S Pandey , A Patel . Recent advances in catalytic pyrolysis of municipal plastic waste for the production of hydrocarbon fuels. Processes, 2022, 10(8): 1497
https://doi.org/10.3390/pr10081497
175 A Schweighuber , A Felgel-Farnholz , T Bögl , J Fischer , W Buchberger . W. Investigations on the influence of multiple extrusion on the degradation of polyolefins. Polymer Degradation & Stability, 2021, 192: 109689
https://doi.org/10.1016/j.polymdegradstab.2021.109689
176 J Li , L Lai , L Wu , S J Severtson , W J Wang . Enhancement of water vapor barrier properties of biodegradable poly(butylene adipate-co-terephthalate) films with highly oriented organomontmorillonite. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 6654–6662
https://doi.org/10.1021/acssuschemeng.8b00430
177 J D Martínez , F Campuzano , N Cardona-Uribe , C N Arenas , D Muñoz-Lopera . Waste tire valorization by intermediate pyrolysis using a continuous twin-auger reactor: operational features. Waste Management, 2020, 113: 404–412
https://doi.org/10.1016/j.wasman.2020.06.019
178 J Haydary , D Susa , V Gelinger , F Čacho . Pyrolysis of automobile shredder residue in a laboratory scale screw type reactor. Journal of Environmental Chemical Engineering, 2016, 4(1): 965–972
https://doi.org/10.1016/j.jece.2015.12.038
179 E Henrich , N Dahmen , F Weirich , R Reimert , C Kornmayer . Fast pyrolysis of lignocellulosics in a twin screw mixer reactor. Fuel Processing Technology, 2016, 143: 151–161
https://doi.org/10.1016/j.fuproc.2015.11.003
180 K B Park , S J Oh , G Begum , J S Kim . Production of clean oil with low levels of chlorine and olefins in a continuous two-stage pyrolysis of a mixture of waste low-density polyethylene and polyvinyl chloride. Energy, 2018, 157: 402–411
https://doi.org/10.1016/j.energy.2018.05.182
181 N Netsch , J Vogt , F Richter , G Straczewski , G Mannebach , V Fraaije , S Tavakkol , S Mihan , D Stapf . Chemical recycling of polyolefinic waste to light olefins by catalytic pyrolysis. Chemieingenieurtechnik, 2023, 95(8): 1305–1313
https://doi.org/10.1002/cite.202300078
182 D P Serrano , J Aguado , J M Escola , E Garagorri . Performance of a continuous screw kiln reactor for the thermal and catalytic conversion of polyethylene-lubricating oil base mixtures. Applied Catalysis B: Environmental, 2003, 44(2): 95–105
https://doi.org/10.1016/S0926-3373(03)00024-9
183 N Mascarenhas , I Mudawar . Investigation of eddy diffusivity and heat transfer coefficient for free-falling turbulent liquid films subjected to sensible heating. International Journal of Heat and Mass Transfer, 2013, 64: 647–660
https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.061
184 L J Yin , D Z Chen , H Wang , X B Ma , G M Zhou . Simulation of an innovative reactor for waste plastics pyrolysis. Chemical Engineering Journal, 2014, 237: 229–235
https://doi.org/10.1016/j.cej.2013.09.114
185 D Chen , L Yin , H Wang , P He . Pyrolysis technologies for municipal solid waste: a review. Waste Management, 2014, 34(12): 2466–2486
https://doi.org/10.1016/j.wasman.2014.08.004
186 Y Kodera , T Yamamoto , E Ishikawa . Energy- and economic-balance estimation of pyrolysis plant for fuel-gas production from plastic waste based on bench-scale plant operations. Fuel Communications, 2021, 7: 100016
https://doi.org/10.1016/j.jfueco.2021.100016
187 P H M Putra , S Rozali , M F A Patah , A Idris . A review of microwave pyrolysis as a sustainable plastic waste management technique. Journal of Environmental Management, 2022, 303: 114240
https://doi.org/10.1016/j.jenvman.2021.114240
188 D V Suriapparao , G Nagababu , A Yerrayya , V Sridevi . Optimization of microwave power and graphite susceptor quantity for waste polypropylene microwave pyrolysis. Process Safety and Environmental Protection, 2021, 149: 234–243
https://doi.org/10.1016/j.psep.2020.10.055
189 L Fan , P Chen , Y Zhang , S Liu , Y Liu , Y Wang , L Dai , R Ruan . Fast microwave-assisted catalytic co-pyrolysis of lignin and low-density polyethylene with HZSM-5 and MgO for improved bio-oil yield and quality. Bioresource Technology, 2017, 225: 199–205
https://doi.org/10.1016/j.biortech.2016.11.072
190 Y Peng , X Wang , L Fan , Q Zhang , X Cui , X Tian , Q Wu , K Cobb , R Ruan , H Tu . et al.. Conversion of low-density polyethylene into monocyclic aromatic hydrocarbons through continuous microwave pyrolysis with ex-situ dual-catalyst beds. Journal of Cleaner Production, 2023, 418: 138039
https://doi.org/10.1016/j.jclepro.2023.138039
191 L Estel , M Poux , N Benamara , I Polaert . Continuous flow-microwave reactor: where are we?. Chemical Engineering and Processing, 2017, 113: 56–64
https://doi.org/10.1016/j.cep.2016.09.022
192 L Fan , L Liu , Z Xiao , Z Su , P Huang , H Peng , S Lv , H Jiang , R Ruan , P Chen , W Zhou . Comparative study of continuous-stirred and batch microwave pyrolysis of linear low-density polyethylene in the presence/absence of HZSM-5. Energy, 2021, 228: 120612
https://doi.org/10.1016/j.energy.2021.120612
193 L Fan , Z Su , J Wu , Z Xiao , P Huang , L Liu , H Jiang , W Zhou , S Liu , R Ruan . Integrating continuous-stirred microwave pyrolysis with ex-situ catalytic upgrading for linear low-density polyethylene conversion: effects of parameter conditions. Journal of Analytical and Applied Pyrolysis, 2021, 157: 105213
https://doi.org/10.1016/j.jaap.2021.105213
194 L Fan , Y Zhang , S Liu , N Zhou , P Chen , Y Liu , Y Wang , P Peng , Y Cheng , M Addy , H Lei , R Ruan . Ex-situ catalytic upgrading of vapors from microwave-assisted pyrolysis of low-density polyethylene with MgO. Energy Conversion and Management, 2017, 149: 432–441
https://doi.org/10.1016/j.enconman.2017.07.039
195 A M Li , X D Li , S Q Li , Y Ren , Y Chi , J H Yan , K F Cen . Pyrolysis of solid waste in a rotary kiln: influence of final pyrolysis temperature on the pyrolysis products. Journal of Analytical and Applied Pyrolysis, 1999, 50(2): 149–162
https://doi.org/10.1016/S0165-2370(99)00025-X
196 A E Lechleitner , T Schubert , W Hofer , M Lehner . Lumped kinetic modeling of polypropylene and polyethylene co-pyrolysis in tubular reactors. Processes, 2021, 9(1): 34
https://doi.org/10.3390/pr9010034
197 A Karaduman , M Ç Koçak , A Y Bilgesü . Flash vacuum pyrolysis of low density polyethylene in a free-fall reactor. Polymer-Plastics Technology and Engineering, 2003, 42(2): 181–191
https://doi.org/10.1081/PPT-120017921
[1] Ecrin Ekici, Güray Yildiz, Magdalena Joka Yildiz, Monika Kalinowska, Erol Şeker, Jiawei Wang. Continuous flow pyrolysis of virgin and waste polyolefins: a comparative study, process optimization and product characterization[J]. Front. Chem. Sci. Eng., 2024, 18(6): 70-.
[2] Haiping Yang, Zhiqiang Chen, Yi Zhang, Biao Liu, Yang Yang, Ziyue Tang, Yingquan Chen, Hanping Chen. Catalytic effect of K and Na with different anions on lignocellulosic biomass pyrolysis[J]. Front. Chem. Sci. Eng., 2024, 18(12): 141-.
[3] Dongyang Liu, Yibo Zhi, Yuen Bai, Liang Zhao, Jinsen Gao, Chunming Xu. Thermodynamic analysis of reaction pathways and equilibrium yields for catalytic pyrolysis of naphtha[J]. Front. Chem. Sci. Eng., 2022, 16(12): 1700-1712.
[4] Mahsa Javidi Nobarzad, Maryam Tahmasebpoor, Mohammad Heidari, Covadonga Pevida. Theoretical and experimental study on the fluidity performance of hard-to-fluidize carbon nanotubes-based CO2 capture sorbents[J]. Front. Chem. Sci. Eng., 2022, 16(10): 1460-1475.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed