Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (12) : 141    https://doi.org/10.1007/s11705-024-2492-3
Catalytic effect of K and Na with different anions on lignocellulosic biomass pyrolysis
Haiping Yang, Zhiqiang Chen, Yi Zhang, Biao Liu, Yang Yang, Ziyue Tang(), Yingquan Chen, Hanping Chen
State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(1386 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Alkali metals (AMs) play an important role in biomass pyrolysis, and it is important to explore their catalytic effects so to better utilize biomass pyrolysis. This study analyzed the catalytic influence of K and Na with different anions (Cl, SO42–, and CO32–) on biomass pyrolysis, and explored the influence on the pyrolytic mechanism. AM chlorides (NaCl and KCl), sulfates (Na2SO4 and K2SO4) and carbonates (Na2CO3 and K2CO3) were mixed with cellulose and bamboo feedstocks at a mass ratio of 20 wt %, in order to maximize their potential on in situ upgrading of the pyrolysis products. AM chlorides had little effect on the pyrolysis products, whereas sulfates slightly promoted the yields of char and gas, and had a positive effect on the composition of the gaseous and liquid products. Carbonates noticeably increased the yields of the char and gases, and improved the C content of the char. Besides, AM salt catalysis is an effective method for co-production of bio-oil and porous char.

Keywords alkali metal salt      cellulose      biomass      catalytic pyrolysis     
Corresponding Author(s): Ziyue Tang   
Just Accepted Date: 19 June 2024   Issue Date: 02 September 2024
 Cite this article:   
Hanping Chen,Yingquan Chen,Ziyue Tang, et al. Catalytic effect of K and Na with different anions on lignocellulosic biomass pyrolysis[J]. Front. Chem. Sci. Eng., 2024, 18(12): 141.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2492-3
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I12/141
Fig.1  (a) Product distribution, (b) gas composition, and (c) the compositions of liquid products for cellulose pyrolysis with K2CO3 addition.
Fig.2  Product distribution for (a) cellulose and (b) bamboo pyrolysis with the addition of various AM salts.
Fig.3  Gas product characteristics for (a) cellulose and (b) bamboo pyrolysis with the addition of various AM salts.
Item Cellulose Bamboo
Blank KCl NaCl K2SO4 Na2SO4 K2CO3 Na2CO3 Blank KCl NaCl K2SO4 Na2SO4 K2CO3 Na2CO3
Gas composition distribution and heat value/vol %
CO2 37.0 43.5 45.7 50.8 44.5 49.9 52.9 43.4 46.8 44.2 43.4 43.4 51.7 54.1
CO 52.8 47.1 45.1 38.3 45.0 32.2 32.4 40.8 38.8 40.2 40.8 40.5 21.2 22.0
CH4 6.7 6.8 6.7 6.7 7.2 4.8 6.6 12.4 11.3 12.6 12.5 13.0 9.3 11.0
H2 3.5 2.7 2.5 4.2 3.3 13.2 8.1 3.5 3.1 3.0 3.3 3.1 17.8 12.9
LHV/(MJ·Nm–3) 9.5 8.7 8.4 7.7 8.6 7.2 7.3 10.0 9.3 9.9 10.0 10.1 7.9 8.1
Properties of liquid products
Water content/wt % 46.8 47.2 47.7 46.5 44.9 48.7 49.5 39.8 40.7 39.6 42.8 37.7 44.9 42.7
Tab.1  Characteristics of gas and liquid products
Fig.4  Liquid product characteristics from cellulose pyrolysis with the addition of various AM salts.
Fig.5  (a) Liquid product characteristics and (b) the phenyl group composition from bamboo pyrolysis with the addition of various AM salts.
Fig.6  XRD analysis of char products from (a) cellulose and (b) bamboo pyrolysis, with variable alkali salts after water washing.
Fig.7  FTIR analysis of char products from (a) cellulose and (b) bamboo pyrolysis, with the addition of variable alkali salts after water washing.
Item Cellulose Bamboo
Blank KCl NaCl K2SO4 Na2SO4 K2CO3 Na2CO3 Blank KCl NaCl K2SO4 Na2SO4 K2CO3 Na2CO3
Ultimate analysis/wt %, dry and ash free basis
C 85.4 85.2 86.0 86.0 86.1 89.3 88.8 84.5 84.0 84.5 82.5 81.6 88.7 86.4
H 3.0 3.0 3.0 2.9 2.9 2.0 2.0 2.9 2.7 2.0 2.5 3.1 2.0 1.7
O* 11.6 11.8 11.0 11.1 10.9 8.7 9.3 12.6 13.3 13.5 15.0 15.3 9.3 11.9
Pore properties of washed chars
SBET/(m2·g–1) 7.5 8.2 27.8 16.7 21.9 79.6 9.5 8.6 6.9 7.9 11.6 6.2 116.8 52.5
Smicro/(m2·g–1) 0.0 0.0 7.9 1.9 0.0 57.6 0.0 0.0 0.0 0.0 0.0 0.0 87.2 23.5
Vtotal/(10?3cm3·g–1) 10.1 9.8 17.0 10.3 27.6 94.6 6.5 9.1 18.2 22.1 19.3 9.5 201.2 128.1
Pore size/nm 5.4 4.7 2.2 3.0 4.9 1.9 6.9 4.1 8.4 9.9 7.5 10.8 2.5 3.5
Tab.2  Characteristics of char products
Fig.8  Effect paths map of AM salts during biomass pyrolysis.
1 X Chen , Q Che , S Li , Z Liu , H Yang , Y Chen , X Wang , J Shao , H Chen . Recent developments in lignocellulosic biomass catalytic fast pyrolysis: strategies for the optimization of bio-oil quality and yield. Fuel Processing Technology, 2019, 196: 106180
https://doi.org/10.1016/j.fuproc.2019.106180
2 M Reza , Z Iskakova , S Afroze , K Kuterbekov , A Kabyshev , K Bekmyrza , M Kubenova , M Bakar , A Azad , H Roy . et al.. Influence of catalyst on the yield and quality of bio-oil for the catalytic pyrolysis of biomass: a comprehensive review. Energies, 2023, 16(14): 5547
https://doi.org/10.3390/en16145547
3 S Wang , G Dai , H Yang , Z Luo . Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Progress in Energy and Combustion Science, 2017, 62: 33–86
https://doi.org/10.1016/j.pecs.2017.05.004
4 K Lee , Y Jing , Y Wang , N Yan . A unified view on catalytic conversion of biomass and waste plastics. Nature Reviews. Chemistry, 2022, 6(9): 635–652
https://doi.org/10.1038/s41570-022-00411-8
5 W Wang , R Lemaire , A Bensakhria , D Luart . Review on the catalytic effects of alkali and alkaline earth metals (AAEMs) including sodium, potassium, calcium and magnesium on the pyrolysis of lignocellulosic biomass and on the co-pyrolysis of coal with biomass. Journal of Analytical and Applied Pyrolysis, 2022, 163: 105479
https://doi.org/10.1016/j.jaap.2022.105479
6 E Leng , Y Guo , Y Yin , Y Yu , X Gong , J Chen , Y Xue , J E . In situ evolution of functional groups in char during cellulose pyrolysis under the catalysis of KCl and CaCl2. Fuel, 2022, 309: 122227
https://doi.org/10.1016/j.fuel.2021.122227
7 P Giudicianni , V Gargiulo , C M Grottola , M Alfe , A I Ferreiro , M A A Mendes , M Fagnano , R Ragucci . Inherent metal elements in biomass pyrolysis: a review. Energy & Fuels, 2021, 35(7): 5407–5478
https://doi.org/10.1021/acs.energyfuels.0c04046
8 L Ma , S S A Syed-Hassan , J Zhou , W Deng , Y Xiong , X Wang , X Hu , J Xu , L Jiang , S Su . et al.. Effect of alkali and alkali earth metals on reactions of stable free radicals during biomass pyrolysis: an in-situ EPR study. Fuel Processing Technology, 2023, 250: 107916
https://doi.org/10.1016/j.fuproc.2023.107916
9 F Guo , K Peng , S Liang , X Jia , X Jiang , L Qian . Evaluation of the catalytic performance of different activated biochar catalysts for removal of tar from biomass pyrolysis. Fuel, 2019, 258: 116204
https://doi.org/10.1016/j.fuel.2019.116204
10 C Di Stasi , D Alvira , G Greco , B Gonzalez , J J Manya . Physically activated wheat straw-derived biochar for biomass pyrolysis vapors upgrading with high resistance against coke deactivation. Fuel, 2019, 255: 115807
https://doi.org/10.1016/j.fuel.2019.115807
11 L Rodriguez-Machin , L E Arteaga-Perez , Y Chenaf , J Feys , N V Rodriguez , W Prins , F Ronsse . Effect of citric acid concentration on demineralization and pyrolysis of sugarcane residues as analyzed by analytical pyrolysis. Afinidad, 2021, 78(592): 23–32
12 E G Silveira-Junior , V H Perez , O R Justo , G F David , E Simionatto , L C S de Oliveira . Valorization of guava (Psidium guajava L.) seeds for levoglucosan production by fast pyrolysis. Cellulose, 2021, 28(1): 71–79
https://doi.org/10.1007/s10570-020-03506-x
13 K Jeong , H J Jeong , G Lee , S H Kim , K H Kim , C G Yoo . Catalytic effect of alkali and alkaline earth metals in lignin pyrolysis: a density functional theory study. Energy & Fuels, 2020, 34(8): 9734–9740
https://doi.org/10.1021/acs.energyfuels.0c01897
14 E W Leng , M Costa , X Gong , A Q Zheng , S J Liu , M H Xu . Effects of KCl and CaCl2 on the evolution of anhydro sugars in reaction intermediates during cellulose fast pyrolysis. Fuel, 2019, 251: 307–315
https://doi.org/10.1016/j.fuel.2019.04.006
15 S S Li , C Wang , Z J Luo , X F Zhu . Investigation on the catalytic behavior of alkali metals and alkaline earth metals on the biomass pyrolysis assisted with real-time monitoring. Energy & Fuels, 2020, 34(10): 12654–12664
https://doi.org/10.1021/acs.energyfuels.0c01938
16 H Zhu , B Yi , H Hu , Q Fan , H Wang , H Yao . The effects of char and potassium on the fast pyrolysis behaviors of biomass in an infrared-heating condition. Energy, 2021, 214: 119065
https://doi.org/10.1016/j.energy.2020.119065
17 H Sun , D Feng , Y Zhang , S Sun , Y Zhao , F Zhang . Roles of AAEMs in catalytic reforming of biomass pyrolysis tar and coke accumulation characteristics over biochar surface for H2 production. International Journal of Hydrogen Energy, 2022, 47(68): 29207–29218
https://doi.org/10.1016/j.ijhydene.2022.06.248
18 S Zhang , J Wang , S Zhu , X Liu , Y Xiong , H Zhang . Effects of MgCl2 and Mg(NO3)2 loading on catalytic pyrolysis of sawdust for bio-oil and MgO-impregnated biochar production. Journal of Analytical and Applied Pyrolysis, 2020, 152: 104962
https://doi.org/10.1016/j.jaap.2020.104962
19 W ChenK LiZ ChenM XiaY ChenH YangX ChenH Chen. A new insight into chemical reactions between biomass and alkaline additives during pyrolysis process. Proceedings of the Combustion Institute, 2020: 3881–3890
20 X Fu , X Wang , Y Li , Y Xin , S Li . Enhancing and upgrading bio-oil during catalytic pyrolysis of cellulose: the synergistic effect of potassium cation and different anions impregnation. Fuel Processing Technology, 2019, 193: 338–347
https://doi.org/10.1016/j.fuproc.2019.05.022
21 Y Shen , N Zhang , S Zhang . Catalytic pyrolysis of biomass with potassium compounds for Co-production of high-quality biofuels and porous carbons. Energy, 2020, 190: 116431
https://doi.org/10.1016/j.energy.2019.116431
22 Y R Liu , Y Nie , X M Lu , X P Zhang , H Y He , F J Pan , L Zhou , X Liu , X Y Ji , S J Zhang . Cascade utilization of lignocellulosic biomass to high-value products. Green Chemistry, 2019, 21(13): 3499–3535
https://doi.org/10.1039/C9GC00473D
23 X H Wang , C Wang , Z Q Chen , B Liu , W L Ma , Z Y Tang , Y Q Chen , H P Yang , H P Chen . Study on the effect mechanism of Ca and Mg with different anion on lignocellulosic biomass pyrolysis. Journal of Analytical and Applied Pyrolysis, 2024, 177: 106335
https://doi.org/10.1016/j.jaap.2023.106335
24 H Chen , Z Tang , B Liu , W Chen , J Hu , Y Chen , H Yang . The new insight about mechanism of the influence of K2CO3 on cellulose pyrolysis. Fuel, 2021, 295: 120617
https://doi.org/10.1016/j.fuel.2021.120617
25 H P Yang , B J Huan , Y Q Chen , Y Gao , J Li , H P Chen . Biomass-based pyrolytic polygeneration system for bamboo industry waste: evolution of the char structure and the pyrolysis mechanism. Energy & Fuels, 2016, 30(8): 6430–6439
https://doi.org/10.1021/acs.energyfuels.6b00732
26 M Zabeti , T S Nguyen , L Lefferts , H J Heeres , K Seshan . In situ catalytic pyrolysis of lignocellulose using alkali-modified amorphous silica alumina. Bioresource Technology, 2012, 118(0): 374–381
https://doi.org/10.1016/j.biortech.2012.05.034
27 C Di Blasi , C Branca , A Galgano . Role of the potassium chemical state in the global exothermicity of wood pyrolysis. Industrial & Engineering Chemistry Research, 2018, 57(34): 11561–11571
https://doi.org/10.1021/acs.iecr.8b02047
28 M Nishimura , S Iwasaki , M Horio . The role of potassium carbonate on cellulose pyrolysis. Journal of the Taiwan Institute of Chemical Engineers, 2009, 40(6): 630–637
https://doi.org/10.1016/j.jtice.2009.05.005
29 L J Yan , Y H Bai , X J Kong , F Li . Effects of alkali and alkaline earth metals on the formation of light aromatic hydrocarbons during coal pyrolysis. Journal of Analytical and Applied Pyrolysis, 2016, 122: 169–174
https://doi.org/10.1016/j.jaap.2016.10.001
30 A Zheng , L Jiang , Z Zhao , Z Huang , K Zhao , G Wei , H Li . Catalytic fast pyrolysis of lignocellulosic biomass for aromatic production: chemistry, catalyst and process. Wiley Interdisciplinary Reviews. Energy and Environment, 2017, 6(3): e234
https://doi.org/10.1002/wene.234
[1] FCE-24046-OF-YH_suppl_1 Download
[1] Hyungmin Jeon, Susung Lee, Jeong-Chul Kim, Minkee Choi. Nanocrystalline low-silica X zeolite as an efficient ion-exchanger enabling fast radioactive strontium capture[J]. Front. Chem. Sci. Eng., 2024, 18(9): 98-.
[2] Mubarak Al-Kwradi, Mohammednoor Altarawneh. Degradation pathways of amino acids during thermal utilization of biomass: a review[J]. Front. Chem. Sci. Eng., 2024, 18(7): 78-.
[3] Li Zhao, Xinru Liu, Zihao Ye, Bin Hu, Haoyu Wang, Ji Liu, Bing Zhang, Qiang Lu. Insight into the selective separation of CO2 from biomass pyrolysis gas over metal-incorporated nitrogen-doped carbon materials: a first-principles study[J]. Front. Chem. Sci. Eng., 2024, 18(3): 25-.
[4] Zulfiqar Ali, Jiliang Ma, Dongnv Jin, Rui Cui, Runcang Sun. Clean production of lactic acid by selective carbon-carbon bond cleavage of biomass feedstock over a novel carbon-bismuth oxychloride photocatalyst[J]. Front. Chem. Sci. Eng., 2024, 18(2): 17-.
[5] Shuhua Mo, Yao Zheng, Jianyu Gong, Minsheng Lu. γ-Valerolactone/CuCl2 biphasic system for high total monosaccharides recovery from pretreatment and enzymatic hydrolysis processes of eucalyptus[J]. Front. Chem. Sci. Eng., 2024, 18(11): 139-.
[6] Weizuo Wang, Bingru Lu, Jinwen Shi, Qiuyang Zhao, Hui Jin. Comparison of CO2 with H2O as the transport medium in a biomass supercritical water gasification system[J]. Front. Chem. Sci. Eng., 2024, 18(11): 121-.
[7] Yiwen Dai, Bin Guan, Xingxiang Wang, Jinli Zhang, Bin Dai, Jiangbing Li, Jichang Liu. Effect of binder addition on combustion characteristics of cotton straw pellets and kinetic analysis[J]. Front. Chem. Sci. Eng., 2024, 18(10): 119-.
[8] Likai Zhu, Huaping Lin, Wenli Zhang, Qinhui Wang, Yefeng Zhou. Preparation of biomass-derived carbon loaded with MnO2 as lithium-ion battery anode for improving its reversible capacity and cycling performance[J]. Front. Chem. Sci. Eng., 2024, 18(1): 10-.
[9] Melvin X. J. Wee, Bridgid L. F. Chin, Agus Saptoro, Chung L. Yiin, Jiuan J. Chew, Jaka Sunarso, Suzana Yusup, Abhishek Sharma. A review on co-pyrolysis of agriculture biomass and disposable medical face mask waste for green fuel production: recent advances and thermo-kinetic models[J]. Front. Chem. Sci. Eng., 2023, 17(9): 1141-1161.
[10] Ya-Ge Zhang, Ling-Zhi Huang, Qi Yuan, Ming-Guo Ma. Flexible, ultrathin, and multifunctional polypyrrole/cellulose nanofiber composite films with outstanding photothermal effect, excellent mechanical and electrochemical properties[J]. Front. Chem. Sci. Eng., 2023, 17(8): 1028-1037.
[11] Jiangwei Li, Lina Meng, Jiaxuan Chen, Xu Chen, Yonggui Wang, Zefang Xiao, Haigang Wang, Daxin Liang, Yanjun Xie. Encapsulation of polyethylene glycol in cellulose-based porous capsules for latent heat storage and light-to-thermal conversion[J]. Front. Chem. Sci. Eng., 2023, 17(8): 1038-1050.
[12] Ying Zhang, Zhaohui Wang. Review on cellulose paper-based electrodes for sustainable batteries with high energy densities[J]. Front. Chem. Sci. Eng., 2023, 17(8): 1010-1027.
[13] Wenchang Wei, Haiqiang Chen, Junwei Zha, Yiyi Zhang. Research progress on low dielectric constant modification of cellulose insulating paper for power transformers[J]. Front. Chem. Sci. Eng., 2023, 17(8): 991-1009.
[14] Jiali Bai, Jiamei Huang, Qiyun Yu, Muslum Demir, Eda Akgul, Bilge Nazli Altay, Xin Hu, Linlin Wang. Fabrication of coconut shell-derived porous carbons for CO2 adsorption application[J]. Front. Chem. Sci. Eng., 2023, 17(8): 1122-1130.
[15] De-Fa Hou, Pan-Pan Yuan, Zi-Wei Feng, Meng An, Pei-Yao Li, Can Liu, Ming-Bo Yang. Sustainable conversion regenerated cellulose into cellulose oleate by sonochemistry[J]. Front. Chem. Sci. Eng., 2023, 17(8): 1096-1108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed