Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2023, Vol. 17 Issue (8) : 1028-1037    https://doi.org/10.1007/s11705-022-2251-2
RESEARCH ARTICLE
Flexible, ultrathin, and multifunctional polypyrrole/cellulose nanofiber composite films with outstanding photothermal effect, excellent mechanical and electrochemical properties
Ya-Ge Zhang, Ling-Zhi Huang, Qi Yuan(), Ming-Guo Ma()
Research Center of Biomass Clean Utilization, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
 Download: PDF(3993 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Electrodes that combine energy storage with mechanical and photothermal performance are necessary for efficient development and use of flexible energy storage and conversion devices. In this study, the flexible, ultrathin, and multifunctional polypyrrole/cellulose nanofiber composite films were fabricated via a one-step “soak and polymerization” method. The dense sandwich structure and strong interfacial interaction endowed polypyrrole/cellulose nanofiber composite films with excellent flexibility, outstanding mechanical strength, and desired toughness. Interestingly, the polypyrrole/cellulose nanofiber composite film electrodes with quaternary amine functionalized cellulose nanofiber had the highest specific mass capacitance (392.90 F∙g–1) and specific areal capacitance (3.32 F∙cm–2) than the electrodes with unmodified and carboxyl functionalized cellulose nanofibers. Further, the polypyrrole/cellulose nanofiber composite films with sandwich structure had excellent photothermal conversion properties. This study demonstrated a feasible and versatile method for preparing of multifunctional composite films, having promising applications in various energy storage fields.

Keywords cellulose nanofiber      electrochemical      photothermal conversion      polypyrrole     
Corresponding Author(s): Qi Yuan,Ming-Guo Ma   
Online First Date: 19 December 2022    Issue Date: 20 July 2023
 Cite this article:   
Ya-Ge Zhang,Ling-Zhi Huang,Qi Yuan, et al. Flexible, ultrathin, and multifunctional polypyrrole/cellulose nanofiber composite films with outstanding photothermal effect, excellent mechanical and electrochemical properties[J]. Front. Chem. Sci. Eng., 2023, 17(8): 1028-1037.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2251-2
https://academic.hep.com.cn/fcse/EN/Y2023/V17/I8/1028
Fig.1  (a) Schematic diagram depicting the synthesis of PPy-coated modified CNF films; (b) the PPy/CNF composite films with electrical conductivity and photothermal conversion performance; (c) hydrogen bonding between PPy and different CNF films.
Fig.2  (a) Wide-scan XPS of CNF-1, CNF-2 and CNF-3 samples; (b) high-resolution O 1s spectra of CNF-2; (c) high-resolution N 1s spectra of CNF-3; (d) pore size distribution curves of PPy/CNF-1, PPy/CNF-2, PPy/CNF-3 composite films.
Fig.3  SEM images of (a) CNF-1, (b) CNF-2, (c) CNF-3; (d) PPy/CNF-1, (e) PPy/CNF-2, and (f) PPy/CNF-3 composite films.
Fig.4  (a) Stress-strain curves and (b) mechanical properties of PPy/CNF composite films; (c) the comparison of mass loadings of PPy and thickness of the PPy/CNF composite films; sheet resistance variation of PPy/CNF composite films with different bending (d) cycles and (e) angles; (f) The comparison of sheet resistance and conductivity of the fabricated PPy/CNF composite films.
Fig.5  Comparison between cyclic voltammograms of different PPy/CNF composite film electrodes at scan rates of (a) 5 mV?s?1 and (b) 50 mV?s?1; (c) gravimetric capacitances and (d) areal capacitances of PPy/CNF films electrodes at different charging/discharging current densities; (e) Nyquist plot (the equivalent circuit is exhibited in the inset) and (f) cycling performance of PPy/CNF composite films in terms of capacitance retention at 10 mA?cm?2 (the capacitance from the first cycle is set to 100%).
Fig.6  Photothermal heating and cooling curves of the (a) PPy/CNF-1, (b) PPy/CNF-2, and (c) PPy/CNF-3 composite films at different power densities; infrared thermographic photographs of (d) PPy/CNF-1, (e) PPy/CNF-2, and (f) PPy/CNF-3 composite films at different power densities.
1 S Zhang, M C Chi, J L Mo, T Liu, Y H Liu, Q Fu, J L Wang, B Luo, Y Qin, S F Wang, S Nie. Bioinspired asymmetric amphiphilic surface for triboelectric enhanced efficient water harvesting. Nature Communications, 2022, 13(1): 4168
https://doi.org/10.1038/s41467-022-31987-w
2 J M Zhao, W L Zhang, T Liu, Y H Liu, Y Qin, J L Mo, C C Cai, S Zhang, S X Nie. Hierarchical porous cellulosic triboelectric materials for extreme environmental conditions. Small Methods, 2022, 6(9): 2200664
https://doi.org/10.1002/smtd.202200664
3 C C Cai, B Luo, Y H Liu, Q Fu, T Liu, S F Wang, S X Nie. Advanced triboelectric materials for liquid energy harvesting and emerging application. Materials Today, 2022, 52: 299–326
https://doi.org/10.1016/j.mattod.2021.10.034
4 Y Qin, J L Mo, Y H Liu, S Zhang, J L Wang, Q Fu, S F Wang, S X Nie. Stretchable triboelectric self-powered sweat sensor fabricated from self-healing nanocellulose hydrogels. Advanced Functional Materials, 2022, 32(27): 2201846
https://doi.org/10.1002/adfm.202201846
5 Z L Ma, X L Xiang, L Shao, Y L Zhang, J W Gu. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angewandte Chemie International Edition, 2022, 61: e202200705
6 Y L Zhang, Z L Ma, K P Ruan, J W Gu. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with janus structure for outstanding electromagnetic interference shielding and superior visual thermal nanagement. Nano Research, 2022, 15(6): 5601–5609
https://doi.org/10.1007/s12274-022-4358-7
7 Y X Han, K P Ruan, J W Gu. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and joule heat performances. Nano Research, 2022, 15(5): 4747–4755
https://doi.org/10.1007/s12274-022-4159-z
8 P Song, B Liu, C B Liang, K P Ruan, H Qiu, Z L Ma, Y Q Guo, J W Gu. Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Letters, 2021, 13(1): 91
https://doi.org/10.1007/s40820-021-00624-4
9 G Y Xiong, T X Wang, Y K Zhang, M Zhu, Y H Ni. Recent progress on green electromagnetic shielding materials based on macro wood and micro cellulose components from natural agricultural and forestry resources. Nano Research, 2022, 15(8): 7506–7532
https://doi.org/10.1007/s12274-022-4512-2
10 J Wen, B Xu, Y Gao, M Li, H Fu. Wearable technologies enable high-performance textile supercapacitors with flexible, breathable and wearable characteristics for future energy storage. Energy Storage Materials, 2021, 37: 94–122
https://doi.org/10.1016/j.ensm.2021.02.002
11 Z F Wang, Z H Ruan, W S Ng, H F Li, Z J Tang, Z X Liu, Y K Wang, H Hu, C Y Zhi. Integrating a triboelectric nanogenerator and a Zinc-ion battery on a designed flexible 3D spacer fabric. Small Methods, 2018, 2(10): 1800150
https://doi.org/10.1002/smtd.201800150
12 P Hu, T Chen, Y Yang, H Wang, Z Luo, J Yang, H Fu, L Guo. Renewable-emodin-based wearable supercapacitors. Nanoscale, 2017, 9(4): 1423–1427
https://doi.org/10.1039/C6NR09190C
13 Q Huang, D Wang, Z Zheng. Textile-based electrochemical energy storage devices. Advanced Energy Materials, 2016, 6(22): 1600783
https://doi.org/10.1002/aenm.201600783
14 T Liu, Y Li. Addressing the Achilles’ heel of pseudocapacitive materials: long-term stability. InfoMat, 2020, 2(5): 807–842
https://doi.org/10.1002/inf2.12105
15 R Chen, M Yu, R P Sahu, I K Puri, I Zhitomirsky. The development of pseudocapacitor electrodes and devices with high active mass loading. Advanced Electronic Materials, 2020, 10: 1903848
16 C Choi, D S Ashby, D M Butts, R H DeBlock, Q Wei, J Lau, B Dunn. Achieving high energy density and high power density with pseudocapacitive materials. Nature Reviews. Materials, 2019, 5(1): 5–19
https://doi.org/10.1038/s41578-019-0142-z
17 K Wang, H Wu, Y Meng, Z Wei. Conducting polymer nanowire arrays for high performance supercapacitors. Small, 2014, 10(1): 14–31
https://doi.org/10.1002/smll.201301991
18 C Tang, N Chen, X Hu. Conducting polymer nanocomposites: recent developments and future prospects. Journal of Industrial and Engineering Chemistry, 2017, 60: 53–84
19 P Kumar, U Narayan Maiti, A Sikdar, T Kumar Das, A Kumar, V Sudarsan. Recent advances in polymer and polymer composites for electromagnetic interference shielding: review and future prospects. Polymer Reviews, 2019, 59(4): 687–738
https://doi.org/10.1080/15583724.2019.1625058
20 P Naskar, A Maiti, P Chakraborty, D Kundu, B Biswas, A Banerjee. Chemical supercapacitors: a review focusing on metallic compounds and conducting polymers. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2021, 9(4): 1970–2017
https://doi.org/10.1039/D0TA09655E
21 Y Wang, Y Ding, X Guo, G Yu. Conductive polymers for stretchable supercapacitors. Nano Research, 2019, 12(9): 1978–1987
https://doi.org/10.1007/s12274-019-2296-9
22 C Y Xiong, T X Wang, Y K Zhang, B B Li, Q Han, D P Li, Y H Ni. Li−Na metal compounds inserted into porous natural wood as a bifunctional hybrid applied in supercapacitors and electrocatalysis. International Journal of Hydrogen Energy, 2022, 47(4): 2389–2398
https://doi.org/10.1016/j.ijhydene.2021.10.168
23 H Pang, L Xu, D X Yan, Z M Li. Conductive polymer composites with segregated structures. Progress in Polymer Science, 2014, 39(11): 1908–1933
https://doi.org/10.1016/j.progpolymsci.2014.07.007
24 L Li, Y Deng, G Chen. Status and prospect of garnet/polymer solid composite electrolytes for all-solid-state lithium batteries. Journal of Energy Chemistry, 2020, 50: 154–177
https://doi.org/10.1016/j.jechem.2020.03.017
25 X Yu, A Manthiram. A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Materials, 2021, 34: 282–300
https://doi.org/10.1016/j.ensm.2020.10.006
26 X X Wang, G F Yu, J Zhang, M Yu, S Ramakrishna, Y Z Long. Conductive polymer ultrafine fibers via electrospinning: preparation, physical properties and applications. Progress in Materials Science, 2021, 115: 100704
https://doi.org/10.1016/j.pmatsci.2020.100704
27 S Aggrawal, R Sharma, P Mohanty. CuO immobilized paper matrices: a green catalyst for conversion of CO2 to cyclic carbonates. Journal of CO2 Utilization, 2021, 46: 101466
28 P Rani, K S Kumar, A D Pathak, C S Sharma. Pyrolyzed pencil graphite coated cellulose paper as an interlayer: an effective approach for high-performance lithium−sulfur battery. Applied Surface Science, 2020, 533: 147483
https://doi.org/10.1016/j.apsusc.2020.147483
29 L Li, J Meng, M Zhang, T Liu, C Zhang. Recent advances in conductive polymer hydrogel composites and nanocomposites for flexible electrochemical supercapacitors. Chemical Communications, 2021, 58(2): 185–207
https://doi.org/10.1039/D1CC05526G
30 Z Fang, G Hou, C Chen, L Hu. Nanocellulose-based films and their emerging applications. Current Opinion in Solid State and Materials Science, 2019, 23(4): 100764
https://doi.org/10.1016/j.cossms.2019.07.003
31 H Kargarzadeh, J Huang, N Lin, I Ahmad, M Mariano, A Dufresne, S Thomas, A Galeski. Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites. Progress in Polymer Science, 2018, 87: 197–227
https://doi.org/10.1016/j.progpolymsci.2018.07.008
32 W Zhang, Y Zhang, J Cao, W Jiang. Improving the performance of edible food packaging films by using nanocellulose as an additive. International Journal of Biological Macromolecules, 2021, 166: 288–296
https://doi.org/10.1016/j.ijbiomac.2020.10.185
33 P Thomas, T Duolikun, N P Rumjit, S Moosavi, C W Lai, M R Bin Johan, L B Fen. Comprehensive review on nanocellulose: recent developments, challenges and future prospects. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110: 103884
https://doi.org/10.1016/j.jmbbm.2020.103884
34 Y Wu, Y Liang, C Mei, L Cai, A Nadda, Q V Le, Y C Peng, S S Lam, C Sonne, C L Xia. Advanced nanocellulose-based gas barrier materials: present status and prospects. Chemosphere, 2022, 286: 131891
https://doi.org/10.1016/j.chemosphere.2021.131891
35 L Xiao, H Qi, K Qu, C Shi, Y Cheng, Z Sun, B N Yuan, Z H Huang, D Pan, Z H Guo. Layer-by-layer assembled free-standing and flexible nanocellulose/porous Co3O4 polyhedron hybrid film as supercapacitor electrodes. Advanced Composites and Hybrid Materials, 2021, 4(2): 306–316
https://doi.org/10.1007/s42114-021-00223-2
36 H H Hsu, A Khosrozadeh, B Li, G X Luo, M Xing, W Zhong. An Eco-friendly, nanocellulose/RGO/in-situ formed polyaniline for flexible and free-standing supercapacitors. ACS Sustainable Chemistry & Engineering, 2019, 7(5): 4766–4776
https://doi.org/10.1021/acssuschemeng.8b04947
37 Q Yuan, M G Ma. Conductive polypyrrole incorporated nanocellulose/MoS2 film for preparing flexible supercapacitor electrodes. Frontiers of Materials Science, 2021, 15(2): 227–240
https://doi.org/10.1007/s11706-021-0549-5
38 C Ma, W T Cao, W Xin, J Bian, M G Ma. Flexible and free-standing reduced graphene oxide and polypyrrole coated air-laid paper-based supercapacitor electrodes. Industrial & Engineering Chemistry Research, 2019, 58(27): 12018–12027
https://doi.org/10.1021/acs.iecr.9b02088
39 Y Wang, H Huang, W M Choi. Polypyrrole decorated cobalt carbonate hydroxide on carbon cloth for high performance flexible supercapacitor electrodes. Journal of Alloys and Compounds, 2021, 886: 161171
https://doi.org/10.1016/j.jallcom.2021.161171
40 C C Wan, Y Jiao, J Li. Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(8): 3819–3831
https://doi.org/10.1039/C6TA04844G
41 D Pawcenis, D K Chlebda, R J Jędrzejczyk, M Leśniak, M Sitarz, J Łojewska. Preparation of silver nanoparticles using different fractions of TEMPO-oxidized nanocellulose. European Polymer Journal, 2019, 116: 242–255
https://doi.org/10.1016/j.eurpolymj.2019.04.022
42 A Pei, N Butchosa, L A Berglund, Q Zhou. Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter, 2013, 9(6): 2047
https://doi.org/10.1039/c2sm27344f
43 S Saini, C Yucel Falco, M N Belgacem, J Bras. Surface cationized cellulose nanofibrils for the production of contact active antimicrobial surfaces. Carbohydrate Polymers, 2016, 135: 239–247
https://doi.org/10.1016/j.carbpol.2015.09.002
44 Z Lei, J Zhang, L L Zhang, N A Kumar, X S Zhao. Functionalization of chemically derived graphene for improving its electrocapacitive energy storage properties. Energy & Environmental Science, 2016, 9(6): 1891–1930
https://doi.org/10.1039/C6EE00158K
45 M Mo, C Chen, H Gao, M Chen, D Li. Wet-spinning assembly of cellulose nanofibers reinforced graphene/polypyrrole microfibers for high performance fiber-shaped supercapacitors. Electrochimica Acta, 2018, 269: 11–20
https://doi.org/10.1016/j.electacta.2018.02.118
46 L Yuan, B Yao, B Hu, K Huo, W Chen, J Zhou. Polypyrrole-coated paper for flexible solid-state energy storage. Energy & Environmental Science, 2013, 6(2): 470
https://doi.org/10.1039/c2ee23977a
47 Y Qiu, H Zhang, L Hu, D Yang, L Wang, B Wang, J Y Ji, G Q Liu, X Liu, J F Lin, F Li, S Han. Flexible piezoelectric nanogenerators based on ZnO nanorods grown on common paper substrates. Nanoscale, 2012, 4(20): 6568–6573
https://doi.org/10.1039/c2nr31031g
48 M Hou, Y Hu, M Xu, B Li. Nanocellulose based flexible and highly conductive film and its application in supercapacitors. Cellulose, 2020, 27(16): 9457–9466
https://doi.org/10.1007/s10570-020-03420-2
49 Z Zhou, Q Song, B Huang, S Feng, C Lu. Facile fabrication of densely packed Ti3C2 MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance. ACS Nano, 2021, 15(7): 12405–12417
https://doi.org/10.1021/acsnano.1c04526
50 L Liu, Z Niu, L Zhang, W Zhou, X Chen, S Xie. Nanostructured graphene composite papers for highly flexible and foldable supercapacitors. Advanced Materials, 2014, 26(28): 4855–4862
https://doi.org/10.1002/adma.201401513
51 J Xu, L Zhu, Z Bai, G Liang, L Liu, D Fang, W L Xu. Conductive polypyrrole-bacterial cellulose nanocomposite membranes as flexible supercapacitor electrode. Organic Electronics, 2013, 14(12): 3331–3338
https://doi.org/10.1016/j.orgel.2013.09.042
52 Q Fan, R Zhao, M Yi, P Qi, C Chai, H Ying, J C Hao. Ti3C2-MXene composite films functionalized with polypyrrole and ionic liquid-based microemulsion particles for supercapacitor applications. Chemical Engineering Journal, 2022, 428: 131107
https://doi.org/10.1016/j.cej.2021.131107
53 J Lv, Z Liu, L Zhang, K Li, S Zhang, H Xu, Z P Mao, H F Zhang, J F Chen, G B Pan. Multifunctional polypyrrole and rose-like silver flower-decorated E-textile with outstanding pressure/strain sensing and energy storage performance. Chemical Engineering Journal, 2022, 427: 130823
https://doi.org/10.1016/j.cej.2021.130823
54 Q Liu, L Zang, X Qiao, J Qiu, X Wang, L Hu, J Yang, C Yang. Compressible all-in-one supercapacitor with adjustable output voltage based on polypyrrole-coated melamine foam. Advanced Electronic Materials, 2019, 5(12): 1900724
https://doi.org/10.1002/aelm.201900724
55 L Xiao, X Chen, X Yang, J Sun, J Geng. Recent advances in polymer-based photothermal materials for biological applications. ACS Applied Polymer Materials, 2020, 2(10): 4273–4288
https://doi.org/10.1021/acsapm.0c00711
56 J Li, W Zhang, W H Ji, J Q Wang, N X Wang, W X Wu, Q Wu, X Y Hou, W B Hu, L Li. Near infrared photothermal conversion materials: mechanism, preparation, and photothermal cancer therapy applications. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2021, 9(38): 7909–7926
https://doi.org/10.1039/D1TB01310F
57 R T Li, Z Wang, X L Tao, S Z Lyu, J C Jia, X Q Xu, Y P Wang. A non-conjugated photothermal polymer complex absorbing light in visible and infrared windows. Polymer Chemistry, 2021, 12(22): 3233–3239
https://doi.org/10.1039/D1PY00437A
[1] FCE-22076-OF-ZY_suppl_1 Download
[1] Rongqian Meng, Jianke Tang, Hong Yang, Lijun Guo, Yongbo Song, Qiaoling Li, Yulan Niu. Overoxidized poly(3,4-ethylenedioxythiophene)-overoxidized polypyrrole composite films with enhanced electrocatalytic ability for rutin and luteolin determination[J]. Front. Chem. Sci. Eng., 2023, 17(6): 735-748.
[2] Joseph Raj Xavier. Influence of surface modified mixed metal oxide nanoparticles on the electrochemical and mechanical properties of polyurethane matrix[J]. Front. Chem. Sci. Eng., 2023, 17(1): 1-14.
[3] Andrew Nattestad, Klaudia Wagner, Gordon G. Wallace. Scale up of reactors for carbon dioxide reduction[J]. Front. Chem. Sci. Eng., 2023, 17(1): 116-122.
[4] Yuyao Han, Lei Xia, Xupin Zhuang, Yuxia Liang. Integrating of metal-organic framework UiO-66-NH2 and cellulose nanofibers mat for high-performance adsorption of dye rose bengal[J]. Front. Chem. Sci. Eng., 2022, 16(9): 1387-1398.
[5] Siliu Lyu, Muhammad Adnan Younis, Zhibin Liu, Libin Zeng, Xianyun Peng, Bin Yang, Zhongjian Li, Lecheng Lei, Yang Hou. Rational design on photoelectrodes and devices to boost photoelectrochemical performance of solar-driven water splitting: a mini review[J]. Front. Chem. Sci. Eng., 2022, 16(6): 777-798.
[6] Jinxiao Bo, Mei Li, Xinli Zhu, Qingfeng Ge, Jinyu Han, Hua Wang. Bamboo-like N-doped carbon nanotubes encapsulating M(Co, Fe)-Ni alloy for electrochemical production of syngas with potential-independent CO/H2 ratios[J]. Front. Chem. Sci. Eng., 2022, 16(4): 498-510.
[7] Zambaga Otgonbayar, Kwang Youn Cho, Chong-Hun Jung, Won-Chun Oh. Newly-modeled graphene-based ternary nanocomposite for the magnetophotocatalytic reduction of CO2 with electrochemical performance[J]. Front. Chem. Sci. Eng., 2022, 16(10): 1438-1459.
[8] Shuyao Wu, Chengquan Sui, Chong Wang, Yulu Wang, Dongqing He, Ying Sun, Yu Zhang, Qingbo Meng, Tianyi Ma, Xi-Ming Song. Gold nanoparticles/single-stranded DNA-reduced graphene oxide nanocomposites based electrochemical biosensor for highly sensitive detection of cholesterol[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1572-1582.
[9] Jiajia Li, Shengcheng Zhai, Weibing Wu, Zhaoyang Xu. Hydrophobic nanocellulose aerogels with high loading of metal-organic framework particles as floating and reusable oil absorbents[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1158-1168.
[10] Wei Wang, Haijun Lv, Juan Du, Aibing Chen. Fabrication of N-doped carbon nanobelts from a polypyrrole tube by confined pyrolysis for supercapacitors[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1312-1321.
[11] Wenming Li, Weijian Tang, Maoqin Qiu, Qiuge Zhang, Muhammad Irfan, Zeheng Yang, Weixin Zhang. Effects of gradient concentration on the microstructure and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials[J]. Front. Chem. Sci. Eng., 2020, 14(6): 988-996.
[12] Mengyun Wang, Shengbo Zhang, Mei Li, Aiguo Han, Xinli Zhu, Qingfeng Ge, Jinyu Han, Hua Wang. Facile synthesis of hierarchical flower-like Ag/Cu2O and Au/Cu2O nanostructures and enhanced catalytic performance in electrochemical reduction of CO2[J]. Front. Chem. Sci. Eng., 2020, 14(5): 813-823.
[13] Kasra Pirzadeh, Ali Asghar Ghoreyshi, Mostafa Rahimnejad, Maedeh Mohammadi. Optimization of electrochemically synthesized Cu3(BTC)2 by Taguchi method for CO2/N2 separation and data validation through artificial neural network modeling[J]. Front. Chem. Sci. Eng., 2020, 14(2): 233-247.
[14] Evelyn Chalmers, Yi Li, Xuqing Liu. Molecular tailoring to improve polypyrrole hydrogels’ stiffness and electrochemical energy storage capacity[J]. Front. Chem. Sci. Eng., 2019, 13(4): 684-694.
[15] Liangliang Lin, Xintong Ma, Sirui Li, Marly Wouters, Volker Hessel. Plasma-electrochemical synthesis of europium doped cerium oxide nanoparticles[J]. Front. Chem. Sci. Eng., 2019, 13(3): 501-510.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed