Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (9) : 98    https://doi.org/10.1007/s11705-024-2449-6
Nanocrystalline low-silica X zeolite as an efficient ion-exchanger enabling fast radioactive strontium capture
Hyungmin Jeon1, Susung Lee1, Jeong-Chul Kim2, Minkee Choi1()
1. Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
2. Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
 Download: PDF(856 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

NaA zeolite (Si/Al = 1.00) has been commercially applied for capturing radioactive 90Sr2+ because of its high surface charge density, effectively stabilizing the multivalent cation. However, owing to its narrow micropore opening (4.0 Å), large micron-sized crystallites, and bulkiness of hydrated Sr2+, the Sr2+ exchange over NaA has been limited by very slow kinetics. In this study, we synthesized nanocrystalline low-silica X by minimizing a water content in a synthesis gel and utilizing a methyl cellulose hydrogel as a crystal growth inhibitor. The resulting zeolite exhibited high crystallinity and Al-rich framework (Si/Al of approximately 1.00) with the sole presence of tetrahedral Al sites, which are capable of high Sr2+ uptake and ion selectivity. Meanwhile, the zeolite with a FAU topology has a much larger micropore opening size (7.4 Å) and a much smaller crystallite size (~340 nm) than NaA, which enable significantly enhanced ion-exchange kinetics. Compared to conventional NaA, the nanocrystalline low-silica X exhibited remarkably increased Sr2+-exchange kinetics (> 18-fold larger rate constant) in batch experiments. Although both the nanocrystalline low-silica X and NaA exhibited comparable Sr2+ capacities under equilibrated conditions, the former demonstrated a 5.5-fold larger breakthrough volume than NaA under dynamic conditions, attributed to its significantly faster Sr2+-exchange kinetics.

Keywords Sr2+ removal      low-silica X zeolite      nanocrystal      hydrogel      methyl cellulose     
Corresponding Author(s): Minkee Choi   
Just Accepted Date: 19 April 2024   Issue Date: 18 July 2024
 Cite this article:   
Hyungmin Jeon,Susung Lee,Jeong-Chul Kim, et al. Nanocrystalline low-silica X zeolite as an efficient ion-exchanger enabling fast radioactive strontium capture[J]. Front. Chem. Sci. Eng., 2024, 18(9): 98.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2449-6
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I9/98
Samples Si/Ala) Na/Ala) K/Ala) SBETb)/(m2·g–1) Sextc)/(m2·g–1) Vmicroc)/(cm3·g–1) dSEMd)/μm
NaA 1.00 1.00 0 < 1 < 1 < 0.01 2.9
LSX-1 1.02 0.77 0.20 775 22.5 0.35 3.1
LSX-2 1.01 0.72 0.23 798 31.4 0.35 1.8
LSX-3 1.02 0.76 0.21 823 45.4 0.35 0.34
Tab.1  Physical and chemical properties of the zeolites
Fig.1  (a) XRD patterns and (b) N2 adsorption-desorption isotherms at 77 K for the zeolite samples. SEM images of (c) NaA, (d) LSX-1, (e) LSX-2, and (f) LSX-3.
Fig.2  (a) Kinetics of Sr2+-exchange for the zeolites in a solution with a Sr2+ concentration of 100 mg·L–1. Pseudo-second order kinetic fitting results are indicated as trend lines. (b) Plots of the normalized Sr2+ uptake vs the square root of time.
Samples qea)/(mg·gads–1) qe (exp)b)/(mg·gads–1) k2c)/(gads·mg–1·min–1) R2
NaA 213 204 3.5 × 10?4 0.96
LSX-1 210 208 1.3 × 10?3 1.00
LSX-2 205 205 2.3 × 10?3 1.00
LSX-3 207 206 6.3 × 10?3 1.00
Tab.2  Fitting results of the pseudo-second order model for Sr2+-exchange over the synthesized zeolites
Fig.3  Sr2+-exchange isotherms of the zeolites. Langmuir isotherm fitting results are represented as solid trend lines.
Samples qmaxa)/(mg·gads–1) bb)/(kg·mg–1) R2
NaA 237 1.7 1.00
LSX-1 235 1.7 1.00
LSX-2 230 1.5 1.00
LSX-3 232 1.6 1.00
Tab.3  Langmuir fitting results for Sr2+-exchange isotherms
Fig.4  Distribution coefficient (Kd) and Sr2+ removal (%) of LSX-3 and NaA in aqueous solutions containing 1 mg·L–1 Sr2+ and various molar ratios competing cations (a) Na+ and (b) Ca2+. (c) Capability of LSX-3 and NaA zeolites in removing 1 mg·L–1 Sr2+ in deionised water, simulated groundwater, and simulated seawater.
Fig.5  Comparison of maximum Sr2+-exchange capacity and required equilibrium time for LSX-3, NaA, and various ion-exchangers in the literature.
Parameters NaA LSX-3
Adsorbent volume (cm3) 0.49 0.49
Adsorbent mass (g) 0.21 0.21
C0 (mg·L–1) 10 10
F (mL·min–1)a) 0.49 0.49
qbed (mg·gads–1)b) 127 141
kth (L·mg–1·min–1)b) 7.6 × 10?5 1.8 × 10?4
BV5%c) 660 3660
Correlation factor (R2) 0.99 1.00
Tab.4  Thomas model fitting results and the resulting parameters for the column experiments
Fig.6  Fixed-bed column adsorption of Sr2+ using NaA and LSX-3 zeolites (initial Sr2+ concentration: 10 mg·L–1, flow rate: 60 BV·h–1).
1 Z Zhang , M Cheng , X Xiao , K Bi , T Song , K Q Hu , Y Dai , L Zhou , C Liu , X Ji . et al.. Machine-learning-guided identification of coordination polymer ligands for crystallizing separation of Cs/Sr. ACS Applied Materials & Interfaces, 2022, 14(29): 33076–33084
https://doi.org/10.1021/acsami.2c05272
2 D Delacroix , J P Guerre , P Leblanc , C Hickman . Radionuclide and radiation protection data handbook 2002. Radiation Protection Dosimetry, 2022, 98(1): 1–168
https://doi.org/10.1093/oxfordjournals.rpd.a006705
3 S V Avery . Caesium accumulation by microorganisms: uptake mechanism, cation competition, compartmentalization and toxicity. Journal of Industrial Microbiology, 1995, 14(2): 76–84
https://doi.org/10.1007/BF01569888
4 D K GuptaC Walther. Behaviour of strontium in plants and the environment. 2018, Springer, Cham
5 K M A El-Rahman , A M El-Kamash , M R El-Sourougy , N M Abdel-Moniem . Thermodynamic modeling for the removal of Cs+, Sr2+, Ca2+ and Mg2+ ions from aqueous waste solutions using zeolite A. Journal of Radioanalytical and Nuclear Chemistry, 2006, 268(2): 221–230
https://doi.org/10.1007/s10967-006-0157-y
6 E Han , Y G Kim , H M Yang , I H Yoon , M Choi . Synergy between zeolite framework and encapsulated sulfur for enhanced ion-exchange selectivity to radioactive cesium. Chemistry of Materials, 2018, 30(16): 5777–5785
https://doi.org/10.1021/acs.chemmater.8b02782
7 S Kwon , C Kim , E Han , H Lee , H S Cho , M Choi . Relationship between zeolite structure and capture capability for radioactive cesium and strontium. Journal of Hazardous Materials, 2021, 408: 124419
https://doi.org/10.1016/j.jhazmat.2020.124419
8 X Zhang , Y Liu . Ultrafast removal of radioactive strontium ions from contaminated water by nanostructured layered sodium vanadosilicate with high adsorption capacity and selectivity. Journal of Hazardous Materials, 2020, 398: 122907
https://doi.org/10.1016/j.jhazmat.2020.122907
9 H Zhang , C Li , X Chen , H Fu , Y Chen , S Ning , T Fujita , Y Wei , X Wang . Layered ammonium vanadate nanobelt as efficient adsorbents for removal of Sr2+ and Cs+ from contaminated water. Journal of Colloid and Interface Science, 2022, 615: 110–123
https://doi.org/10.1016/j.jcis.2022.01.164
10 R G Anthony , C V Philip , R G Dosch . Selective adsorption and ion exchange of metal cations and anions with silico-titanates and layered titanates. Waste Management, 1993, 13(5–7): 503–512
https://doi.org/10.1016/0956-053X(93)90080-G
11 S Chitra , S Viswanathan , S V S Rao , P K Sinha . Uptake of cesium and strontium by crystalline silicotitanates from radioactive wastes. Journal of Radioanalytical and Nuclear Chemistry, 2011, 287(3): 955–960
https://doi.org/10.1007/s10967-010-0867-z
12 S Wang , S Ning , W Zhang , S Zhang , J Zhou , X Wang , Y Wei . Synthesis of carboxyl group functionalized silica composite resin for strontium removal. Materials & Design, 2020, 185: 108224
https://doi.org/10.1016/j.matdes.2019.108224
13 M J Manos , N Ding , M G Kanatzidis . Layered metal sulfides: exceptionally selective agents for radioactive strontium removal. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(10): 3696–3699
https://doi.org/10.1073/pnas.0711528105
14 S Schneider , A C Garcez , M Tremblay , F Bilodeau , D Lariviere , F Kleitz . Nanoporous ammonium molybdophosphate-silica hybrids as regenerable ultra-selective extraction agents for radiocesium monitoring. New Journal of Chemistry, 2013, 37(12): 3877–3880
https://doi.org/10.1039/c3nj01236k
15 H Jeon , J Seok , Y Ha , J C Kim , H S Cho , H M Yang , M Choi . First successful synthesis of an Al-rich mesoporous aluminosilicate for fast radioactive strontium capture. Journal of Hazardous Materials, 2023, 451: 131136
https://doi.org/10.1016/j.jhazmat.2023.131136
16 J Zhang , L Chen , D Gui , H Zhang , D Zhang , W Liu , G Huang , J Diwu , Z Chai , S Wang . et al.. An ingenious one-dimensional zirconium phosphonate with efficient strontium exchange capability and moderate proton conductivity. Dalton Transactions, 2018, 47(15): 5161–5165
https://doi.org/10.1039/C8DT00508G
17 J Zhang , L Chen , X Dai , L Chen , F Zhai , W Yu , S Guo , L Yang , L Chen , Y Zhang . et al.. Efficient Sr-90 removal from highly alkaline solution by an ultrastable crystalline zirconium phosphonate. Chemical Communications, 2021, 57(68): 8452–8455
https://doi.org/10.1039/D1CC02446A
18 X Tang , S Wang , Z Zhang , Z Li , L Wang , L Yuan , B Wang , J Sun , L Zheng , H Wang . et al.. Graphene oxide/chitosan/potassium copper hexacyanoferrate(II) composite aerogel for efficient removal of cesium. Chemical Engineering Journal, 2022, 444: 136397
https://doi.org/10.1016/j.cej.2022.136397
19 S Vashnia , H Tavakoli , R Cheraghali , H Sepehrian . Supporting of lead hexacyanoferrate on mesoporous MCM-41 and its use as effective adsorbent for strontium: equilibrium, kinetic, and thermodynamic studies. Separation Science and Technology, 2014, 49(2): 241–248
https://doi.org/10.1080/01496395.2013.828310
20 A M McAleer , L V C Rees , A K Nowak . Ion exchange and aluminum distribution in ZSM-5 zeolites. Zeolites, 1991, 11(4): 329–336
https://doi.org/10.1016/0144-2449(91)80296-C
21 T C Watling , L V C Rees . Ion exchange in zeolite EU-1: Part 1. The effect of Si/Al ratio. Zeolites, 1994, 14(8): 687–692
https://doi.org/10.1016/0144-2449(94)90126-0
22 H S Hassan , O A A Moamen , W F Zaher . Adaptive neuro-fuzzy inference system analysis on sorption studies of strontium and cesium cations onto a novel impregnated nano-zeolite. Advanced Powder Technology, 2020, 31(3): 1125–1139
https://doi.org/10.1016/j.apt.2019.12.031
23 R M Barrer , R F Bartholomew , L V C Rees . Ion exchange in porous crystals, Part I. self- and exchange-diffusion of ions in chabazites. Journal of Physics and Chemistry of Solids, 1963, 24(1): 51–62
https://doi.org/10.1016/0022-3697(63)90041-6
24 A M El-Kamash . Evaluation of zeolite A for the sorptive removal of Cs+ and Sr2+ ions from aqueous solutions using batch and fixed bed column operation. Journal of Hazardous Materials, 2008, 151(2-3): 432–445
https://doi.org/10.1016/j.jhazmat.2007.06.009
25 A Merceille , E Weinzaepfel , Y Barré , A Grandjean . The sorption behaviour of synthetic sodium nonatitanate and zeolite A for removing radioactive strontium from aqueous wastes. Separation and Purification Technology, 2012, 96: 81–88
https://doi.org/10.1016/j.seppur.2012.05.018
26 H Mimura , T Kanno . Distribution and fixation of cesium and strontium in zeolite A and chabazite. Journal of Nuclear Science and Technology, 1985, 22(4): 284–291
https://doi.org/10.1080/18811248.1985.9735658
27 B Said , A Grandjean , Y Barre , F Tancret , F Fajula , A Galarneau . LTA zeolite monoliths with hierarchical trimodal porosity as highly efficient microreactors for strontium capture in continuous flow. Microporous and Mesoporous Materials, 2016, 232: 39–52
https://doi.org/10.1016/j.micromeso.2016.05.036
28 H RobsonK P Lillerud. Verified Synthesis of Zeolitic Materials, 2nd. rev. ed. International Zeolite Association. Amsterdam, Netherlands, 2001
29 H Awala , J P Gilson , R Retoux , P Boullay , J M Goupil , V Valtchev , S Mintova . Template-free nanosized faujasite-type zeolites. Nature Materials, 2015, 14(4): 447–451
https://doi.org/10.1038/nmat4173
30 S Mintova , M Jaber , V Valtchev . Nanosized microporous crystals: emerging applications. Chemical Society Reviews, 2015, 44(20): 7207–7233
https://doi.org/10.1039/C5CS00210A
31 C Zhang , Q Wu , C Lei , S Han , Q Zhu , S Maurer , D Dai , A N Parvulescu , U Müller , X Meng . et al.. An efficient, rapid, and non-centrifugation synthesis of nanosized zeolites by accelerating the nucleation rate. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(42): 21156–21161
https://doi.org/10.1039/C8TA07171C
32 S K Lagergren . About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl, 1898, 24: 1–39
33 Y S Ho , G McKay . Pseudo-second order model for sorption processes. Process Biochemistry, 1999, 34(5): 451–465
https://doi.org/10.1016/S0032-9592(98)00112-5
34 W J Jr Weber , J C Morris . Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 1963, 89(2): 31–59
https://doi.org/10.1061/JSEDAI.0000430
35 Z Xue , J Ma , W Hao , X Bai , Y Kang , J Liu , R Li . Synthesis and characterization of ordered mesoporous zeolite LTA with high ion exchange ability. Journal of Materials Chemistry, 2012, 22(6): 2532–2538
https://doi.org/10.1039/C1JM14740D
36 S J Datta , W K Moon , D Y Choi , I C Hwang , K B Yoon . A novel vanadosilicate with hexadeca-coordinated Cs+ ions as a highly effective Cs+ remover. Angewandte Chemie, 2014, 126(28): 7331–7336
https://doi.org/10.1002/ange.201402778
37 H Yang , M Luo , L Luo , H Wang , D Hu , J Lin , X Wang , Y Wang , S Wang , X Bu . et al.. Highly selective and rapid uptake of radionuclide cesium based on robust zeolitic chalcogenide via stepwise ion-exchange strategy. Chemistry of Materials, 2016, 28(23): 8774–8780
https://doi.org/10.1021/acs.chemmater.6b04273
38 H C Thomas . Heterogeneous ion exchange in a flowing system. Journal of the American Chemical Society, 1944, 66(10): 1664–1666
https://doi.org/10.1021/ja01238a017
39 W Loewenstein . The distribution of aluminum in the tetrahedral of silicates and aluminates. American Mineralogist, 1954, 39(1–2): 92–96
40 H Wang , B A Holmberg , Y Yan . Synthesis of template-free zeolite nanocrystals by using in situ thermoreversible polymer hydrogels. Journal of the American Chemical Society, 2003, 125(33): 9928–9929
https://doi.org/10.1021/ja036071q
41 Y Ishikawa , S Tsukimoto , K S Nakayama , N Asao . Ultrafine sodium titanate nanowires with extraordinary Sr ion-exchange properties. Nano Letters, 2015, 15(5): 2980–2984
https://doi.org/10.1021/nl504820c
42 C Liu , L Chen , Z Ye , C Li , X Yin , X Wang , Y Wei . Pellet silica-based titanate adsorbents with high selectivity for strontium removal from synthetic radioactive solutions. Journal of Sol-Gel Science and Technology, 2019, 91(2): 273–285
https://doi.org/10.1007/s10971-019-05005-3
43 J Zhang , L Chen , X Dai , L Zhu , C Xiao , L Xu , Z Zhang , E V Alekseev , Y Wang , C Zhang . et al.. Distinctive two-step intercalation of Sr2+ into a coordination polymer with record high 90Sr uptake capabilities. Chem, 2019, 5(4): 977–994
https://doi.org/10.1016/j.chempr.2019.02.011
44 M Zhang , P Gu , S Yan , L Dong , G Zhang . Na/Zn/Sn/S (NaZTS): quaternary metal sulfide nanosheets for efficient adsorption of radioactive strontium ions. Chemical Engineering Journal, 2020, 379: 122227
https://doi.org/10.1016/j.cej.2019.122227
45 X Zhao , Q Meng , G Chen , Z Wu , G Sun , G Yu , L Sheng , H Weng , M Lin . An acid-resistant magnetic Nb-substituted crystalline silicotitanate for selective separation of strontium and/or cesium ions from aqueous solution. Chemical Engineering Journal, 2018, 352: 133–142
https://doi.org/10.1016/j.cej.2018.06.175
[1] FCE-23123-OF-JH_suppl_1 Download
[1] Ning Yang, Tingjun Fu, Chuntao Cao, Xueqing Wu, Huiling Zheng, Zhong Li. Constructing hierarchical ZSM-5 coated with small ZSM-5 crystals via oriented-attachment and in situ assembly for methanol-to-aromatics reaction[J]. Front. Chem. Sci. Eng., 2024, 18(7): 76-.
[2] Yayun Zhao, Dechuan Zhao, Chunlong Kong, Yichao Lin, Xuezhen Wang, Liang Chen. Remarkable enhancement of gas selectivity on organosilica hybrid membranes using urea-modulated metal-organic framework nanoparticles[J]. Front. Chem. Sci. Eng., 2024, 18(2): 18-.
[3] Mengjiao Liang, Wenwen Cao, Yaodong Huang. Reversible heat-set four-phase transitions of gel1-to-sol1-to-gel2-to-sol2 in binary hydrogels[J]. Front. Chem. Sci. Eng., 2024, 18(12): 155-.
[4] Xiuzhi Tian, Rui Yang, Chuanyin Xiong, Haibo Deng, Yonghao Ni, Xue Jiang. Dialdehyde cellulose nanocrystal cross-linked chitosan foam with high adsorption capacity for removal of acid red 134[J]. Front. Chem. Sci. Eng., 2023, 17(7): 853-866.
[5] Qizhao Shao, Lan Sun, Xinzhou Wu, Dafeng Zheng. Investigation of the roles of lignin in biomass-based hydrogel for efficient desalination[J]. Front. Chem. Sci. Eng., 2023, 17(7): 954-965.
[6] Fan Zhang, Ce Gao, Shang-Ru Zhai, Qing-Da An. Nanosilver anchored alginate/poly(acrylic acid/acrylamide) double-network hydrogel composites for efficient catalytic degradation of organic dyes[J]. Front. Chem. Sci. Eng., 2023, 17(7): 893-905.
[7] Jianzhong Ma, Lu Wen, Qianqian Fan, Siying Wei, Xueyun Hu, Fan Yang. All-inorganic TiO2/Cs2AgBiBr6 composite as highly efficient photocatalyst under visible light irradiation[J]. Front. Chem. Sci. Eng., 2023, 17(12): 1925-1936.
[8] Xing Feng, Meiqing Du, Hongbei Wei, Xiaoxiao Ruan, Tao Fu, Jie Zhang, Xiaolong Sun. Chemically triggered life control of “smart” hydrogels through click and declick reactions[J]. Front. Chem. Sci. Eng., 2022, 16(9): 1399-1406.
[9] Sunhui Chen, Qiujun Qiu, Dongdong Wang, Dejun She, Bo Yin, Meihong Chai, Huining He, Dong Nyoung Heo, Jianxin Wang. Long acting carmustine loaded natural extracellular matrix hydrogel for inhibition of glioblastoma recurrence after tumor resection[J]. Front. Chem. Sci. Eng., 2022, 16(4): 536-545.
[10] Katarína Gáborová, Marcela Achimovičová, Michal Hegedüs, Vladimír Girman, Mária Kaňuchová, Erika Dutková. Advantageous mechanochemical synthesis of copper(I) selenide semiconductor, characterization, and properties[J]. Front. Chem. Sci. Eng., 2022, 16(3): 433-442.
[11] Bangxian Peng, Rusen Zhou, Ying Chen, Song Tu, Yingwu Yin, Liyi Ye. Immobilization of nano-zero-valent irons by carboxylated cellulose nanocrystals for wastewater remediation[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1006-1017.
[12] Evelyn Chalmers, Yi Li, Xuqing Liu. Molecular tailoring to improve polypyrrole hydrogels’ stiffness and electrochemical energy storage capacity[J]. Front. Chem. Sci. Eng., 2019, 13(4): 684-694.
[13] Peiwen Liu, Carsten Mai, Kai Zhang. Preparation of hydrogels with uniform and gradient chemical structures using dialdehyde cellulose and diamine by aerating ammonia gas[J]. Front. Chem. Sci. Eng., 2018, 12(3): 383-389.
[14] Jie Zhou, Xuewen Du, Jiaqing Wang, Natsuko Yamagata, Bing Xu. Enzyme-instructed self-assembly of peptides containing phosphoserine to form supramolecular hydrogels as potential soft biomaterials[J]. Front. Chem. Sci. Eng., 2017, 11(4): 509-515.
[15] Baozhen An,Mingjie Li,Jialin Wang,Chaoxu Li. Shape/size controlling syntheses, properties and applications of two-dimensional noble metal nanocrystals[J]. Front. Chem. Sci. Eng., 2016, 10(3): 360-382.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed