Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2023, Vol. 17 Issue (8) : 1038-1050    https://doi.org/10.1007/s11705-022-2279-3
RESEARCH ARTICLE
Encapsulation of polyethylene glycol in cellulose-based porous capsules for latent heat storage and light-to-thermal conversion
Jiangwei Li, Lina Meng, Jiaxuan Chen, Xu Chen, Yonggui Wang(), Zefang Xiao, Haigang Wang, Daxin Liang, Yanjun Xie()
Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
 Download: PDF(6586 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Phase change materials are potential candidates for the application of latent heat storage. Herein, we fabricated porous capsules as shape-stable materials from cellulose-based polyelectrolyte complex, which were first prepared using cellulose 6-(N-pyridinium)hexanoyl ester as the cationic polyelectrolyte and carboxymethyl cellulose as the anionic polyelectrolyte to encapsulate polyethylene glycol by the vacuum impregnation method. Furthermore, the multi-walled carbon nanotube or graphene oxide, which were separately composited into the polyelectrolytes complex capsules to enhance thermal conductivity and light-to-thermal conversion efficiency. These capsules owned a typical core–shell structure, with an extremely high polyethylene glycol loading up to 34.33 g∙g‒1. After loading of polyethylene glycol, the resulted cellulose-based composite phase change materials exhibited high thermal energy storage ability with the latent heat up to 142.2 J∙g‒1, which was 98.5% of pure polyethylene glycol. Further results showed that the composite phase change materials demonstrated good form-stable property and thermal stability. Moreover, studies involving light-to-thermal conversion determined that composite phase change materials exhibited outstanding light-to-thermal conversion performance. Considering their exceptional comprehensive features, innovative composite phase change materials generated from cellulose presented a highly interesting choice for thermal management and renewable thermal energy storage.

Keywords cellulose      polyelectrolytes      phase change materials      thermal energy storage      light-to-thermal conversion     
Corresponding Author(s): Yonggui Wang,Yanjun Xie   
Just Accepted Date: 24 November 2022   Online First Date: 10 May 2023    Issue Date: 20 July 2023
 Cite this article:   
Jiangwei Li,Lina Meng,Jiaxuan Chen, et al. Encapsulation of polyethylene glycol in cellulose-based porous capsules for latent heat storage and light-to-thermal conversion[J]. Front. Chem. Sci. Eng., 2023, 17(8): 1038-1050.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2279-3
https://academic.hep.com.cn/fcse/EN/Y2023/V17/I8/1038
SampleTemperature/°CTime/ha)Molar ratiob)N/(wt %)c)DSSolubilityd)
CPHE-15022
CPHE-2100213.270.94
CPHE-3100224.432.70+
CPHE-4100524.492.91+
Tab.1  Reaction conditions and results of CPHEs
Fig.1  (a) The synthesis route of CPHEs; (b) FTIR spectra of CPHE-3 and MCC; liquid-state (c) 13C and (d) 1H NMR spectra of CPHE-3; XPS spectra for CPHE-3: (e) Br 3d, (f) N 1s, and (g) Cl 2p.
  Scheme1 Schematic illustration for the preparation of CPEC-based porous capsules and the PEG-based composite PCMs.
Fig.2  Photos of (a1) CPEC, (b1) CPEC/GO-3, and (c1) CPEC/CNT-3; SEM images of the surface structures for (a2) CPEC, (b2) CPEC/GO-3, and (c2) CPEC/CNT-3; SEM images of the inner structures for (a3) CPEC, (b3) CPEC/GO-3, and (c3) CPEC/CNT-3.
Fig.3  Photos of (a1) PEG@CPEC, (b1) PEG@CPEC/GO-3, and (c1) PEG@CPEC/CNT-3; SEM images of (a2) PEG@CPEC, (b2) PEG@CPEC/GO-3, and (c2) PEG@CPEC/CNT-3; (d) the WGR values for the obtained PEG-based composite PCMs.
SampleMelting processCrystallization processλ
Tm/°CHm/(J?g?1)Tc/°CHc/(J?g?1)
PEG63.86144.440.58141.8
PEG@CPEC65.41139.542.51136.996.6
PEG@CPEC/GO-0.565.01140.642.23138.297.4
PEG@CPEC/GO-164.72142.042.12135.098.3
PEG@CPEC/GO-365.47142.242.32137.498.5
PEG@CPEC/CNT-0.565.36136.542.57134.894.5
PEG@CPEC/CNT-165.59135.641.83136.193.9
PEG@CPEC/CNT-364.98138.642.67131.295.9
Tab.2  DSC results of PEG, PEG@CPEC, PEG@CPEC/GO and PEG@CPEC/CNT
Fig.4  (a) DSC curves of PEG and composite PCMs; leakage test photos of PEG and the composite PCMs at (b) 20 °C and (c) 90 °C (samples 1–7 represented the samples of PEG@CPEC, PEG@CPEC/CNT-0.5, 1, 3, PEG@CPEC/GO-0.5, 1, and 3, respectively); DSC curves of (d) PEG@CPEC, (e) PEG@CPEC/GO-3, and (f) PEG@CPEC/CNT-3 after the 1st, 50th, 100th, 150th, and 200th heating and cooling cycles.
Fig.5  The thermal transport performance of the samples: time-dependent temperature evolution curves of (a) PEG@CPEC/GO and (b) PEG@CPEC/CNT during heating and cooling (temperature plateaus during heating and cooling processes are correspondingly denoted by black rectangles); (c–d) infrared images showing temperature variations of samples during heating and cooling. Note: Samples 1, 2, 3, 4 and 5 in (c) represented CPEC, PEG@CPEC, PEG@CPEC/GO-0.5, PEG@CPEC/GO-3, and PEG@CPEC/GO-1, respectively. Samples i, ii, iii, iv and v in (d) represented CPEC, PEG@CPEC, PEG@CPEC/CNT-1, PEG@CPEC/CNT-3, and PEG@CPEC/CNT-0.5, respectively. The numbers above or below the arrows in (c) and (d) denoted the temperatures (°C) of the corresponding samples.
Fig.6  The light-to-thermal conversion of samples: light-to-thermal conversion curves of (a) PEG@CPEC/GO and (b) PEG@CPEC/CNT (the black rectangles showed the temperature plateaus during the heating and cooling processes); (c–d) infrared images showing the temperature variations of samples during the cooling process. Note: samples 1, 2, 3, 4, and 5 in (c) represented the samples of CPEC, PEG@CPEC, PEG@CPEC/GO-1, PEG@CPEC/GO-3, and PEG@CPEC/GO-0.5, respectively. Samples i, ii, iii, iv, and v in (d) represented the samples of CPEC, PEG@CPEC, PEG@CPEC/CNT-1, PEG@CPEC/CNT-3, and PEG@CPEC/CNT-0.5, respectively. The numbers above or below the arrows in(c–d) denoted the temperatures (°C) of the corresponding samples.
1 J Guo, Y Jiang, Y Wang, B Zou. Thermal storage and thermal management properties of a novel ventilated mortar block integrated with phase change material for floor heating: an experimental study. Energy Conversion and Management, 2020, 205: 112288
https://doi.org/10.1016/j.enconman.2019.112288
2 H Yang, Y Bai, C Ge, L He, W Liang, X Zhang. Polyethylene glycol-based phase change materials with high photothermal conversion efficiency and shape stability in an aqueous environment for solar water heater. Composites Part A: Applied Science and Manufacturing, 2022, 154: 106778
https://doi.org/10.1016/j.compositesa.2021.106778
3 C Li, H Yu, Y Song, Z Liu. Novel hybrid microencapsulated phase change materials incorporated wallboard for year-long year energy storage in buildings. Energy Conversion and Management, 2019, 183: 791–802
https://doi.org/10.1016/j.enconman.2019.01.036
4 Z Huang, X Gao, T Xu, Y Fang, Z Zhang. Thermal property measurement and heat storage analysis of LiNO3/KCl-expanded graphite composite phase change material. Applied Energy, 2014, 115: 265–271
https://doi.org/10.1016/j.apenergy.2013.11.019
5 Z Khan, Z Khan, A Ghafoor. A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility. Energy Conversion and Management, 2016, 115: 132–158
https://doi.org/10.1016/j.enconman.2016.02.045
6 S Y Kee, Y Munusamy, K S Ong. Review of solar water heaters incorporating solid-liquid organic phase change materials as thermal storage. Applied Thermal Engineering, 2018, 131: 455–471
https://doi.org/10.1016/j.applthermaleng.2017.12.032
7 K Sun, Y Kou, Y Zhang, T Liu, Q Shi. Photo-triggered hierarchical porous carbon-based composite phase-change materials with superior thermal energy conversion capacity. ACS Sustainable Chemistry & Engineering, 2020, 8(8): 3445–3453
https://doi.org/10.1021/acssuschemeng.9b07659
8 Z Sun, K Sun, H Zhang, H Liu, D Wu, X Wang. Development of poly(ethylene glycol)/silica phase-change microcapsules with well-defined core–shell structure for reliable and durable heat energy storage. Solar Energy Materials and Solar Cells, 2021, 225: 111069
https://doi.org/10.1016/j.solmat.2021.111069
9 Z Zheng, T Shi, H Liu, D Wu, X Wang. Polyimide/phosphorene hybrid aerogel-based composite phase change materials for high-efficient solar energy capture and photothermal conversion. Applied Thermal Engineering, 2022, 207: 118173
https://doi.org/10.1016/j.applthermaleng.2022.118173
10 Z Lang, Y Ju, Y Wang, Z Xiao, H Wang, D Liang, J Li, Y Xie. Cellulose-derived solid-solid phase change thermal energy storage membrane with switchable optical transparency. Chemical Engineering Journal, 2022, 435: 134851
https://doi.org/10.1016/j.cej.2022.134851
11 Z Yu, D Feng, Y Feng, X Zhang. Thermal conductivity and energy storage capacity enhancement and bottleneck of shape-stabilized phase change composites with graphene foam and carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 2022, 152: 106703
https://doi.org/10.1016/j.compositesa.2021.106703
12 P A Advincula, A C de Leon, B J Rodier, J Kwon, R C Advincula, E B Pentzer. Accommodating volume change and imparting thermal conductivity by encapsulation of phase change materials in carbon nanoparticles. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(6): 2461–2467
https://doi.org/10.1039/C7TA09664J
13 Z Sun, T Shi, Y Wang, J Li, H Liu, X Wang. Hierarchical microencapsulation of phase change material with carbon-nanotubes/polydopamine/silica shell for synergistic enhancement of solar photothermal conversion and storage. Solar Energy Materials and Solar Cells, 2022, 236: 111539
https://doi.org/10.1016/j.solmat.2021.111539
14 L Zhang, L An, Y Wang, A Lee, Y Schuman, A Ural, A S Fleischer, G Feng. Thermal enhancement and shape stabilization of a phase-change energy-storage material via copper nanowire aerogel. Chemical Engineering Journal, 2019, 373: 857–869
https://doi.org/10.1016/j.cej.2019.05.104
15 A Arshad, M Jabbal, Y Yan, J Darkwa. The micro-/nano-PCMs for thermal energy storage systems: a state of art review. International Journal of Energy Research, 2019, 43(11): 5572–5620
https://doi.org/10.1002/er.4550
16 G Bahsi Kaya, Y Kim, K Callahan, S Kundu. Microencapsulated phase change material via Pickering emulsion stabilized by cellulose nanofibrils for thermal energy storage. Carbohydrate Polymers, 2022, 276: 118745
https://doi.org/10.1016/j.carbpol.2021.118745
17 F Wang, Y Zhang, X Li, B Wang, X Feng, H Xu, Z Mao, X Sui. Cellulose nanocrystals-composited poly (methyl methacrylate) encapsulated n-eicosane via a Pickering emulsion-templating approach for energy storage. Carbohydrate Polymers, 2020, 234: 115934
https://doi.org/10.1016/j.carbpol.2020.115934
18 Y Yoo, C Martinez, J P Youngblood. Synthesis and characterization of microencapsulated phase change materials with poly(urea-urethane) shells containing cellulose nanocrystals. ACS Applied Materials & Interfaces, 2017, 9(37): 31763–31776
https://doi.org/10.1021/acsami.7b06970
19 Z Zheng, H Liu, D Wu, X Wang. Polyimide/MXene hybrid aerogel-based phase-change composites for solar-driven seawater desalination. Chemical Engineering Journal, 2022, 440: 135862
https://doi.org/10.1016/j.cej.2022.135862
20 T Xu, K Liu, N Sheng, M Zhang, W Liu, H Liu, L Dai, X Zhang, C Si, H Du, K Zhang. Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: properties, applications, and perspectives. Energy Storage Materials, 2022, 48: 244–262
https://doi.org/10.1016/j.ensm.2022.03.013
21 H Liu, H Du, T Zheng, K Liu, X Ji, T Xu, X Zhang, C Si. Cellulose based composite foams and aerogels for advanced energy storage devices. Chemical Engineering Journal, 2021, 426: 130817
https://doi.org/10.1016/j.cej.2021.130817
22 M Cheng, J Hu, J Xia, Q Liu, T Wei, Y Ling, W Li, B Liu. One-step in-situ green synthesis of cellulose nanocrystal aerogel based shape stable phase change material. Chemical Engineering Journal, 2022, 431: 133935
https://doi.org/10.1016/j.cej.2021.133935
23 Y Qian, N Han, X Gao, X Gao, W Li, X Zhang. Cellulose-based phase change fibres for thermal energy storage and management applications. Chemical Engineering Journal, 2021, 412: 128596
https://doi.org/10.1016/j.cej.2021.128596
24 D Xiao, W Liang, Z Xie, J Cheng, Y Du, J Zhao. A temperature-responsive release cellulose-based microcapsule loaded with chlorpyrifos for sustainable pest control. Journal of Hazardous Materials, 2021, 403: 123654
https://doi.org/10.1016/j.jhazmat.2020.123654
25 K Yuan, J Liu, X Fang, Z Zhang. Novel facile self-assembly approach to construct graphene oxide-decorated phase-change microcapsules with enhanced photo-to-thermal conversion performance. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(10): 4535–4543
https://doi.org/10.1039/C8TA00215K
26 Y Lin, C Zhu, G Alva, G Fang. Microencapsulation and thermal properties of myristic acid with ethyl cellulose shell for thermal energy storage. Applied Energy, 2018, 231: 494–501
https://doi.org/10.1016/j.apenergy.2018.09.154
27 S Han, S Lyu, S Wang, F Fu. High-intensity ultrasound assisted manufacturing of melamine-urea-formaldehyde/paraffin nanocapsules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 568: 75–83
https://doi.org/10.1016/j.colsurfa.2019.01.054
28 L Jasmani, S Eyley, R Wallbridge, W Thielemans. A facile one-pot route to cationic cellulose nanocrystals. Nanoscale, 2013, 5(21): 10207–10211
https://doi.org/10.1039/c3nr03456a
29 J F S Pedrosa, M G Rasteiro, C P Neto, P J T Ferreira. Effect of cationization pretreatment on the properties of cationic Eucalyptus micro/nanofibrillated cellulose. International Journal of Biological Macromolecules, 2022, 201: 468–479
https://doi.org/10.1016/j.ijbiomac.2022.01.068
30 M Matandabuzo, P A Ajibade. Synthesis, characterization, and physicochemical properties of hydrophobic pyridinium-based ionic liquids with N-propyl and N-isopropyl. Zeitschrift für Anorganische und Allgemeine Chemie, 2018, 644(10): 489–495
https://doi.org/10.1002/zaac.201800006
31 W Tan, Q Li, F Dong, J Zhang, F Luan, L Wei, Y Chen, Z Guo. Novel cationic chitosan derivative bearing 1,2,3-triazolium and pyridinium: synthesis, characterization, and antifungal property. Carbohydrate Polymers, 2018, 182: 180–187
https://doi.org/10.1016/j.carbpol.2017.11.023
32 S Liu, K J Edgar. Water-soluble co-polyelectrolytes by selective modification of cellulose esters. Carbohydrate Polymers, 2017, 162: 1–9
https://doi.org/10.1016/j.carbpol.2017.01.008
33 T Rashid, C F Kait, I Regupathi, T Murugesan. Dissolution of kraft lignin using protic ionic liquids and characterization. Industrial Crops and Products, 2016, 84: 284–293
https://doi.org/10.1016/j.indcrop.2016.02.017
34 X Zhang, B Shen, S Zhu, H Xu, L Tian. UiO-66 and its Br-modified derivates for elemental mercury removal. Journal of Hazardous Materials, 2016, 320: 556–563
https://doi.org/10.1016/j.jhazmat.2016.08.039
35 H Mao, Y Fu, H Yang, S Zhang, J Liu, S Wu, Q Wu, T Ma, X M Song. Structure-activity relationship toward electrocatalytic nitrogen reduction of MoS2 growing on polypyrrole/graphene oxide affected by pyridinium-type ionic liquids. Chemical Engineering Journal, 2021, 425: 131769
https://doi.org/10.1016/j.cej.2021.131769
36 K Shimizu, A Shchukarev, P A Kozin, J F Boily. X-ray photoelectron spectroscopy of fast-frozen hematite colloids in aqueous solutions. 5. Halide ion (F‒, Cl‒, Br‒, I‒) adsorption. Langmuir, 2013, 29(8): 2623–2630
https://doi.org/10.1021/la3039973
37 W Shi, Y C Ching, C H Chuah. Preparation of aerogel beads and microspheres based on chitosan and cellulose for drug delivery: a review. International Journal of Biological Macromolecules, 2021, 170: 751–767
https://doi.org/10.1016/j.ijbiomac.2020.12.214
38 M Rasoulzadeh, H Namazi. Carboxymethyl cellulose/graphene oxide bio-nanocomposite hydrogel beads as anticancer drug carrier agent. Carbohydrate Polymers, 2017, 168: 320–326
https://doi.org/10.1016/j.carbpol.2017.03.014
39 M Yadollahi, S Farhoudian, S Barkhordari, I Gholamali, H Farhadnejad, H Motasadizadeh. Facile synthesis of chitosan/ZnO bio-nanocomposite hydrogel beads as drug delivery systems. International Journal of Biological Macromolecules, 2016, 82: 273–278
https://doi.org/10.1016/j.ijbiomac.2015.09.064
40 Y Li, K Sun, Y Kou, H Liu, L Wang, N Yin, H Dong, Q Shi. One-step synthesis of graphene-based composite phase change materials with high solar-thermal conversion efficiency. Chemical Engineering Journal, 2022, 429: 132439
https://doi.org/10.1016/j.cej.2021.132439
41 Y Fang, S Liu, X Li, X Hu, H Wu, X Lu, J Qu. Biomass porous potatoes/MXene encapsulated PEG-based PCMs with improved photo-to-thermal conversion capability. Solar Energy Materials and Solar Cells, 2022, 237: 111559
https://doi.org/10.1016/j.solmat.2021.111559
42 X Chen, P Cheng, Z Tang, X Xu, H Gao, G Wang. Carbon-based composite phase change materials for thermal energy storage, transfer, and conversion. Advanced Science, 2021, 8(9): 2001274
https://doi.org/10.1002/advs.202001274
43 F Xue, Y Lu, X D Qi, J H Yang, Y Wang. Melamine foam-templated graphene nanoplatelet framework toward phase change materials with multiple energy conversion abilities. Chemical Engineering Journal, 2019, 365: 20–29
https://doi.org/10.1016/j.cej.2019.02.023
44 Y Liu, Y Yang, S Li. Graphene oxide modified hydrate salt hydrogels: form-stable phase change materials for smart thermal management. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(46): 18134–18143
https://doi.org/10.1039/C6TA08850C
45 Y Wang, Z Qiu, Z Lang, Y Xie, Z Xiao, H Wang, D Liang, J Li, K Zhang. Multifunctional reversible self-assembled structures of cellulose-derived phase-change nanocrystals. Advanced Materials, 2021, 33(3): e2005263
https://doi.org/10.1002/adma.202005263
46 S Hou, M Wang, S Guo, M Su. Photothermally driven refreshable microactuators based on graphene oxide doped paraffin. ACS Applied Materials & Interfaces, 2017, 9(31): 26476–26482
https://doi.org/10.1021/acsami.7b08728
47 N Nandihalli, C J Liu, T Mori. Polymer based thermoelectric nanocomposite materials and devices: fabrication and characteristics. Nano Energy, 2020, 78: 105186
https://doi.org/10.1016/j.nanoen.2020.105186
48 Y Xie, W Li, H Huang, D Dong, X Zhang, L Zhang, Y Chen, X Sheng, X Lu. Bio-based radish@PDA/PEG sandwich composite with high efficiency solar thermal energy storage. ACS Sustainable Chemistry & Engineering, 2020, 8(22): 8448–8457
https://doi.org/10.1021/acssuschemeng.0c02959
[1] FCE-22104-OF-LJ_suppl_1 Download
[1] Ya-Ge Zhang, Ling-Zhi Huang, Qi Yuan, Ming-Guo Ma. Flexible, ultrathin, and multifunctional polypyrrole/cellulose nanofiber composite films with outstanding photothermal effect, excellent mechanical and electrochemical properties[J]. Front. Chem. Sci. Eng., 2023, 17(8): 1028-1037.
[2] Ying Zhang, Zhaohui Wang. Review on cellulose paper-based electrodes for sustainable batteries with high energy densities[J]. Front. Chem. Sci. Eng., 2023, 17(8): 1010-1027.
[3] Wenchang Wei, Haiqiang Chen, Junwei Zha, Yiyi Zhang. Research progress on low dielectric constant modification of cellulose insulating paper for power transformers[J]. Front. Chem. Sci. Eng., 2023, 17(8): 991-1009.
[4] Qizhao Shao, Lan Sun, Xinzhou Wu, Dafeng Zheng. Investigation of the roles of lignin in biomass-based hydrogel for efficient desalination[J]. Front. Chem. Sci. Eng., 2023, 17(7): 954-965.
[5] Xiuzhi Tian, Rui Yang, Chuanyin Xiong, Haibo Deng, Yonghao Ni, Xue Jiang. Dialdehyde cellulose nanocrystal cross-linked chitosan foam with high adsorption capacity for removal of acid red 134[J]. Front. Chem. Sci. Eng., 2023, 17(7): 853-866.
[6] Benjing Xu, Jinhang Dai, Ziting Du, Fukun Li, Huan Liu, Xingxing Gu, Xingmin Wang, Ning Li, Jun Zhao. Catalytic conversion of biomass-derived compounds to various amino acids: status and perspectives[J]. Front. Chem. Sci. Eng., 2023, 17(7): 817-829.
[7] Xuepeng Ni, Kunming Li, Changlei Li, Qianqian Wu, Chenglin Liu, Huifang Chen, Qilin Wu, Anqi Ju. Construction of NiCo2O4 nanoflake arrays on cellulose-derived carbon nanofibers as a freestanding electrode for high-performance supercapacitors[J]. Front. Chem. Sci. Eng., 2023, 17(6): 691-703.
[8] Yuyao Han, Lei Xia, Xupin Zhuang, Yuxia Liang. Integrating of metal-organic framework UiO-66-NH2 and cellulose nanofibers mat for high-performance adsorption of dye rose bengal[J]. Front. Chem. Sci. Eng., 2022, 16(9): 1387-1398.
[9] Jiajia Li, Shengcheng Zhai, Weibing Wu, Zhaoyang Xu. Hydrophobic nanocellulose aerogels with high loading of metal-organic framework particles as floating and reusable oil absorbents[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1158-1168.
[10] Bangxian Peng, Rusen Zhou, Ying Chen, Song Tu, Yingwu Yin, Liyi Ye. Immobilization of nano-zero-valent irons by carboxylated cellulose nanocrystals for wastewater remediation[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1006-1017.
[11] Chunyan Yang, Xiaoliang Yuan, Xueting Wang, Kejing Wu, Yingying Liu, Changjun Liu, Houfang Lu, Bin Liang. Ball milling promoted direct liquefaction of lignocellulosic biomass in supercritical ethanol[J]. Front. Chem. Sci. Eng., 2020, 14(4): 605-613.
[12] Songshan Jiang, Helen Daly, Huan Xiang, Ying Yan, Huiping Zhang, Christopher Hardacre, Xiaolei Fan. Microwave-assisted catalyst-free hydrolysis of fibrous cellulose for deriving sugars and biochemicals[J]. Front. Chem. Sci. Eng., 2019, 13(4): 718-726.
[13] Bilyaminu Suleiman, Qinghua Yu, Yulong Ding, Yongliang Li. Fabrication of form stable NaCl-Al2O3 composite for thermal energy storage by cold sintering process[J]. Front. Chem. Sci. Eng., 2019, 13(4): 727-735.
[14] Qing-Xi Wu, Yi-Xin Guan, Shan-Jing Yao. Sodium cellulose sulfate: A promising biomaterial used for microcarriers’ designing[J]. Front. Chem. Sci. Eng., 2019, 13(1): 46-58.
[15] Peiwen Liu, Carsten Mai, Kai Zhang. Preparation of hydrogels with uniform and gradient chemical structures using dialdehyde cellulose and diamine by aerating ammonia gas[J]. Front. Chem. Sci. Eng., 2018, 12(3): 383-389.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed