Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (1) : 10    https://doi.org/10.1007/s11705-023-2376-y
RESEARCH ARTICLE
Preparation of biomass-derived carbon loaded with MnO2 as lithium-ion battery anode for improving its reversible capacity and cycling performance
Likai Zhu1, Huaping Lin1, Wenli Zhang2, Qinhui Wang3, Yefeng Zhou1()
1. National & Local United Engineering Research Centre for Chemical Process Simulation and Intensification, Chemical Process Simulation and Optimization Engineering Research Center of Ministry of Education, Xiangtan University, Xiangtan 411100, China
2. Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
3. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
 Download: PDF(1723 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Biomass-derived carbon materials for lithium-ion batteries emerge as one of the most promising anodes from sustainable perspective. However, improving the reversible capacity and cycling performance remains a long-standing challenge. By combining the benefits of K2CO3 activation and KMnO4 hydrothermal treatment, this work proposes a two-step activation method to load MnO2 charge transfer onto biomass-derived carbon (KAC@MnO2). Comprehensive analysis reveals that KAC@MnO2 has a micro-mesoporous coexistence structure and uniform surface distribution of MnO2, thus providing an improved electrochemical performance. Specifically, KAC@MnO2 exhibits an initial charge-discharge capacity of 847.3/1813.2 mAh·g–1 at 0.2 A·g–1, which is significantly higher than that of direct pyrolysis carbon and K2CO3 activated carbon, respectively. Furthermore, the KAC@MnO2 maintains a reversible capacity of 652.6 mAh·g–1 after 100 cycles. Even at a high current density of 1.0 A·g–1, KAC@MnO2 still exhibits excellent long-term cycling stability and maintains a stable reversible capacity of 306.7 mAh·g–1 after 500 cycles. Compared with reported biochar anode materials, the KAC@MnO2 prepared in this work shows superior reversible capacity and cycling performance. Additionally, the Li+ insertion and de-insertion mechanisms are verified by ex situ X-ray diffraction analysis during the charge-discharge process, helping us better understand the energy storage mechanism of KAC@MnO2.

Keywords biomass-derived carbon      MnO2      lithium-ion batteries      anode material      high reversible capacity     
Corresponding Author(s): Yefeng Zhou   
Just Accepted Date: 01 November 2023   Issue Date: 27 December 2023
 Cite this article:   
Likai Zhu,Huaping Lin,Wenli Zhang, et al. Preparation of biomass-derived carbon loaded with MnO2 as lithium-ion battery anode for improving its reversible capacity and cycling performance[J]. Front. Chem. Sci. Eng., 2024, 18(1): 10.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-023-2376-y
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I1/10
SampleElemental analysis/wt %
COHSN
Camellia oleifera shells48.0741.445.530.740.32
Tab.1  Chemical composition of the Camellia oleifera shells
Fig.1  Schematic diagram of material synthesis.
Fig.2  Three different types of treated carbon materials: (a) XRD patterns and (b) Raman spectra.
SampleSBET/(m2·g–1)Vtotal/(cm3·g–1)Vmicro/(cm3·g–1)Vmicro/Vtotal/(%)XPS/(at%)
CONMn
BC465.30.20.284.285.712.51.8
KAC1606.50.70.575.389.29.71.2
KAC@MnO2575.20.40.243.938.042.11.418.5
Tab.2  Porosity parameters and elemental composition of BC, KAC and KAC@MnO2
Fig.3  XPS analysis curves for three different types of treated carbon materials: (a) XPS scores for BC, KAC, and KAC@MnO2 samples, (b) C 1s, (c) O 1s and (d) Mn 2p spectrum for KAC@MnO2 sample.
Fig.4  Three different types of treated carbon materials: (a) N2 adsorption-desorption isotherms, (b) pore diameter distribution.
Fig.5  SEM images of three different types of treated carbon materials and TEM images of KAC@MnO2: (a) BC, (b) KAC, (c) KAC@MnO2, (d–f) TEM images of KAC@MnO2, where (f) shows a magnified image of the strip structure.
Fig.6  Electrochemical properties of three different types of treated carbon materials: (a–c) charge-discharge curves for BC, KAC and KAC@MnO2, and (d–f) CV curves for BC, KAC and KAC@MnO2.
Fig.7  Charge-discharge cycling performance for three different types of treated carbon materials: (a) at 0.2 A·g–1 after 100 cycles, (b) rate performance at 0.2, 0.4, 0.6, 0.8, 1.0 A·g–1 and back to 0.2 A·g–1, (c) at 1.0 A·g–1 after 500 cycles, and (d) EIS profiles in a frequency range of 0.01 to 100 kHz.
MaterialsFirst charge/discharge capacity/(mAh·g–1)Current density/(mA·g–1)Cycle numbersSpecific discharge capacity after cycling/(mAh·g–1)Ref.
MnO2/CNFs703.0/1064.0180100365.0[41]
CF@MnO2745.0/1240.0100150648.0[42]
MnO2/RGO705.0/1048.010050427.7[43]
MnO2/CNT533.0/1390.0250150320.0[44]
MnO2@C PNSs624.0/1128.0200100641.0[45]
KAC@MnO2847.3/1813.2200100652.6This work
1000500306.7
Tab.3  Comparison of the electrochemical performance of the prepared KAC@MnO2 with previously reported different carbon/MnO2 composite anode materials for use in LIB
Fig.8  Field emission-SEM images of the KAC@MnO2 electrode: (a) planes and (b) cross-sections before cycling, (c) planes and (d) cross-sections after 500 cycles at 1.0 A·g–1.
Fig.9  KAC@MnO2 electrode: (a) first charge-discharge curve, (b) ex situ XRD patterns at various potentials during the charge-discharge process.
Fig.10  KAC@MnO2 the formation of materials and the mechanism of energy storage.
1 J M Tarascon , M Armand . Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(6861): 359–367
https://doi.org/10.1038/35104644
2 R Wang , X Cao , S Sui , B Li , Q Li . Study on the growth of platinum nanowires as cathode catalysts in proton exchange membrane fuel cells. Frontiers of Chemical Science and Engineering, 2022, 16(3): 364–375
https://doi.org/10.1007/s11705-021-2052-z
3 C Wang , C Yang , Z Zheng . Toward practical high-energy and high-power lithium battery anodes: present and future. Advanced Science, 2022, 9(9): 2105213
https://doi.org/10.1002/advs.202105213
4 Y Liu , Y Niu , X Ouyang , C Guo , P Han , R Zhou , A Heydari , Y Zhou , O Ikkala , G A Tigranovich . et al.. Progress of organic, inorganic redox flow battery and mechanism of electrode reaction. Nano Research Energy, 2023, 2: e9120081
https://doi.org/10.26599/NRE.2023.9120081
5 M A Rahman , Y C Wong , G S Song , C E Wen . A review on porous negative electrodes for high performance lithium-ion batteries. Journal of Porous Materials, 2015, 22(5): 1313–1343
https://doi.org/10.1007/s10934-015-0010-1
6 X Y Yang , R Li , J X Yang , H Z Liu , T Luo , X L Wang , L Yang . A novel route to constructing high-efficiency lithium sulfur batteries with spent graphite as the sulfur host. Carbon, 2022, 199: 215–223
https://doi.org/10.1016/j.carbon.2022.06.067
7 L Zhu , W Zhu , X B Cheng , J Q Huang , H J Peng , S H Yang , Q Zhang . Cathode materials based on carbon nanotubes for high-energy-density lithium-sulfur batteries. Carbon, 2014, 75: 161–168
https://doi.org/10.1016/j.carbon.2014.03.049
8 K P Lakshmi , K J Janas , M M Shaijumon . Antimony oxychloride/graphene aerogel composite as anode material for sodium and lithium ion batteries. Carbon, 2018, 131: 86–93
https://doi.org/10.1016/j.carbon.2018.01.095
9 W Zhang , J Yin , C Wang , L Zhao , W Jian , K Lu , H Lin , X Qiu , H N Alshareef . Lignin derived porous carbons: synthesis methods and supercapacitor applications. Small Methods, 2021, 5(11): 2100896
https://doi.org/10.1002/smtd.202100896
10 Y F Zhou , L K Zhu , S D Chen , L C Fu , L Cai , Q H Wang , Q G Xiong , F H Xie . In-depth study of synergism between torrefaction and catalyst for balanced production of bio-oil from rice husk pyrolysis based on hydrocarbons production, energy yield and deoxygenation degree. Biomass and Bioenergy, 2022, 162: 106494
https://doi.org/10.1016/j.biombioe.2022.106494
11 K Kim , R A Adams , P J Kim , A Arora , E Martinez , J P Youngblood , V G Pol . Li-ion storage in an amorphous, solid, spheroidal carbon anode produced by dry-autoclaving of coffee oil. Carbon, 2018, 133: 62–68
https://doi.org/10.1016/j.carbon.2018.03.013
12 F Luna-Lama , D Rodríguez-Padrón , A R Puente-Santiago , M J Muñoz-Batista , A Caballero , A M Balu , A A Romero , R Luque . Non-porous carbonaceous materials derived from coffee waste grounds as highly sustainable anodes for lithium-ion batteries. Journal of Cleaner Production, 2019, 207: 411–417
https://doi.org/10.1016/j.jclepro.2018.10.024
13 L P Wang , Z Schnepp , M M Titirici . Rice husk-derived carbon anodes for lithium ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(17): 5269–5273
https://doi.org/10.1039/c3ta10650k
14 J Y Xiang , W M Lv , C P Mu , J Zhao , B C Wang . Activated hard carbon from orange peel for lithium/sodium ion battery anode with long cycle life. Journal of Alloys and Compounds, 2017, 701: 870–874
https://doi.org/10.1016/j.jallcom.2017.01.206
15 G Jin , J Zhang , B Dang , F Wu , J Li . Engineering zirconium-based metal-organic framework-801 films on carbon cloth as shuttle-inhibiting interlayers for lithium-sulfur batteries. Frontiers of Chemical Science and Engineering, 2022, 16(4): 511–522
https://doi.org/10.1007/s11705-021-2068-4
16 G Q Mao , W J Yu , Q J Zhou , L J Li , Y D Huang , Y Y Yao , D W Chu , H Tong , X Y Guo . Improved electrochemical performance of high-nickel cathode material with electronic conductor RuO2 as the protecting layer for lithium-ion batteries. Applied Surface Science, 2020, 531: 147245
https://doi.org/10.1016/j.apsusc.2020.147245
17 X Li , C L Shao , X L Wang , J J Wang , G X Liu , W S Yu , X T Dong , J X Wang . Preparation of Fe3O4/fesheterostructures via electrochemical deposition method and their enhanced electrochemical performance for lithium-sulfur batteries. Chemical Engineering Journal, 2022, 446: 137267
https://doi.org/10.1016/j.cej.2022.137267
18 X Wang , J Wang , B Yu , W Jiang , J Wei , B Chen , R Xu , L Yang . Facile synthesis MnCo2O4.5@C nanospheres modifying PbO2 energy-saving electrode for zinc electrowinning. Journal of Hazardous Materials, 2022, 428: 128212
https://doi.org/10.1016/j.jhazmat.2021.128212
19 Y Q Ren , X C Xiao , J M Ni , H Zhao , H Yang , X Y Chen . RuO2 incorporated Co3O4 nanosheets as carbon-free integrated cathodes for lithium-oxygen battery application. Materials Letters, 2021, 304: 130634
https://doi.org/10.1016/j.matlet.2021.130634
20 H C Lee , Y A Kim , H J Lee , B H Kim . Improved electrochemical performance of sandwich-structured N-rich C@MnO@C electrodes. Carbon, 2023, 207: 154–161
https://doi.org/10.1016/j.carbon.2023.03.015
21 J Zhang , A Tahmasebi , J E Omoriyekomwan , J Yu . Microwave-assisted synthesis of biochar-carbon-nanotube-nio composite as high-performance anode materials for lithium-ion batteries. Fuel Processing Technology, 2021, 213: 106714
https://doi.org/10.1016/j.fuproc.2020.106714
22 F Luna-Lama , C Hernández-Rentero , A Caballero , J Morales . Biomass-derived carbon/γ-MnO2 nanorods/s composites prepared by facile procedures with improved performance for Li/S batteries. Electrochimica Acta, 2018, 292: 522–531
https://doi.org/10.1016/j.electacta.2018.09.176
23 T Li , X Bai , Y X Qi , N Lun , Y J Bai . Fe3O4 nanoparticles decorated on the biochar derived from pomelo pericarp as excellent anode materials for Li-ion batteries. Electrochimica Acta, 2016, 222: 1562–1568
https://doi.org/10.1016/j.electacta.2016.11.140
24 D Gueon , J H Moon . Mnonanoflake-shelled carbon nanotube particles for high-performance supercapacitors. ACS Sustainable Chemistry & Engineering, 2017, 5(3): 2445–2453
https://doi.org/10.1021/acssuschemeng.6b02803
25 Y You , X Zhang , P Li , F Lei , J Jiang . Co-production of xylooligosaccharides and activated carbons from Camellia oleifera shell treated by the catalysis and activation of zinc chloride. Bioresource Technology, 2020, 306: 123131
https://doi.org/10.1016/j.biortech.2020.123131
26 X Guo , S Yang , D H Wang , A Chen , Y B Wang , P Li , G J Liang , C Y Zhi . The energy storage mechanisms of MnO2 in batteries. Current Opinion in Electrochemistry, 2021, 30: 100769
https://doi.org/10.1016/j.coelec.2021.100769
27 K M Ji , G H Liang , Y H Shen , H X Dai , J H Han , Y Ito , T Fujita , J Fujita , C Y Wang , M M Chen . Ordered macroporous graphenic carbon-based framework materials and their low-temperature co-sacrificial template synthesis mechanism. Cell Reports. Physical Science, 2023, 4(2): 101283
https://doi.org/10.1016/j.xcrp.2023.101283
28 H Aghamohammadi , N Hassanzadeh , R Eslami-Farsani . A review study on the recent advances in developing the heteroatom-doped graphene and porous graphene as superior anode materials for Li-ion batteries. Ceramics International, 2021, 47(16): 22269–22301
https://doi.org/10.1016/j.ceramint.2021.05.048
29 N Yu , H Yin , W Zhang , Y Liu , Z Tang , M Q Zhu . High-performance fiber-shaped all-solid-state asymmetric supercapacitors based on ultrathin MnO2 nanosheet/carbon fiber cathodes for wearable electronics. Advanced Energy Materials, 2016, 6(2): 1501458
https://doi.org/10.1002/aenm.201501458
30 N Zhao , L B Deng , D W Luo , P X Zhang . One-step fabrication of biomass-derived hierarchically porous carbon/MnO nanosheets composites for symmetric hybrid supercapacitor. Applied Surface Science, 2020, 526: 146696
https://doi.org/10.1016/j.apsusc.2020.146696
31 Y Xie , C Yang , P Chen , D W Yuan , K K Guo . MnO2-decorated hierarchical porous carbon composites for high-performance asymmetric supercapacitors. Journal of Power Sources, 2019, 425: 1–9
https://doi.org/10.1016/j.jpowsour.2019.03.122
32 L Zhang , W Wang , S Lu , Y Xiang . Carbon anode materials: a detailed comparison between Na-ion and K-ion batteries. Advanced Energy Materials, 2021, 11(11): 2003640
https://doi.org/10.1002/aenm.202003640
33 Z Nie , Y Huang , B Ma , X Qiu , N Zhang , X Xie , Z Wu . Nitrogen-doped carbon with modulated surface chemistry and porous structure by a stepwise biomass activation process towards enhanced electrochemical lithium-ion storage. Scientific Reports, 2019, 9(1): 15032
https://doi.org/10.1038/s41598-019-50330-w
34 K F Yu , Z F Zhang , J C Liang , C Liang . Natural biomass-derived porous carbons from buckwheat hulls used as anode for lithium-ion batteries. Diamond and Related Materials, 2021, 119: 108553
https://doi.org/10.1016/j.diamond.2021.108553
35 C L Xia , C W Kang , M D Patel , L P Cai , B Gwalani , R Banerjee , S Q Shi , W Choi . Pine wood extracted activated carbon through self-activation process for high-performance lithium-ion battery. ChemistrySelect, 2016, 1(13): 4000–4007
https://doi.org/10.1002/slct.201600926
36 R Muruganantham , F M Wang , R A Yuwono , M Sabugaa , W R Liu . Biomass feedstock of waste mango-peel-derived porous hard carbon for sustainable high-performance lithium-ion energy storage devices. Energy & Fuels, 2021, 35(13): 10878–10889
https://doi.org/10.1021/acs.energyfuels.1c01226
37 Y Qin , H Tang , K Chang , B Li , Y Li , Y Hou , Z Chang . In situ synthesis of open hollow tubular MnO/C with high performance anode materials for lithium ion batteries using kapok fiber as carbon matrix. Nanotechnology, 2019, 30(1): 015403
https://doi.org/10.1088/1361-6528/aae69e
38 W Zhang , J Li , J Zhang , J Sheng , T He , M Tian , Y Zhao , C Xie , L Mai , S Mu . Top-down strategy to synthesize mesoporous dual carbon armored mno nanoparticles for lithium-ion battery anodes. ACS Applied Materials & Interfaces, 2017, 9(14): 12680–12686
https://doi.org/10.1021/acsami.6b16576
39 H L Qiu , H J Yue , T Zhang , T T Li , C Z Wang , G Chen , Y J Wei , D Zhang . Enhanced electrochemical performance of Li2FeSiO4/C cathode materials by surface modification with AlPO4 nanosheets. Electrochimica Acta, 2016, 222: 1870–1877
https://doi.org/10.1016/j.electacta.2016.11.180
40 Y Gao , R X Sun , A M Li , G Z Ji . Self-activation strategy toward highly porous biochar for supercapacitors: direct carbonization of marine algae. Journal of Electroanalytical Chemistry, 2021, 882: 114986
https://doi.org/10.1016/j.jelechem.2021.114986
41 D Liu , W M Choi . Hierarchical hollow urchin-like structured MnO2 microsphere/carbon nanofiber composites as anode materials for Li-ion batteries. Current Applied Physics, 2019, 19(6): 768–774
https://doi.org/10.1016/j.cap.2019.04.005
42 Q G Han , W Q Zhang , Z W Han , F X Wang , D Geng , X Li , Y Li , X Zhang . Preparation of PAN-based carbon fiber@MnO2 composite as an anode material for structural lithium-ion batteries. Journal of Materials Science, 2019, 54(18): 11972–11982
https://doi.org/10.1007/s10853-019-03751-x
43 X Wang , M Yin , H Xue , Y Su , S Tian . Simple microwave synthesis and improved electrochemical performance of Nb-doped MnO2/reduced graphene oxide composite as anode material for lithium-ion batteries. Ionics, 2018, 24(9): 2583–2590
https://doi.org/10.1007/s11581-017-2401-6
44 A Abdollahi , A Abnavi , F Ghasemi , S Ghasemi , Z Sanaee , S Mohajerzadeh . Facile synthesis and simulation of MnO2 nanoflakes on vertically aligned carbon nanotubes, as a high-performance electrode for Li-ion battery and supercapacitor. Electrochimica Acta, 2021, 390: 138826
https://doi.org/10.1016/j.electacta.2021.138826
45 C A Luo , Y J Chen , Q H Tian , W Zhang , Z Y Sui . Ultrathin porous MnO2@C nanosheets for high-performance lithium-ion battery anodes. Journal of Electroanalytical Chemistry, 2023, 930: 117173
https://doi.org/10.1016/j.jelechem.2023.117173
46 L C Fu , Q A Xiong , Q H Wang , L Cai , Z H Chen , Y F Zhou . Catalytic pyrolysis of waste polyethylene using combined CaO and Ga/ZSM-5 catalysts for high value-added aromatics production. ACS Sustainable Chemistry & Engineering, 2022, 10(29): 9612–9623
https://doi.org/10.1021/acssuschemeng.2c02881
47 D Zhan , T Wen , Y Q Li , Y Q Zhu , K Liu , P Cui , Z Y Jia , H J Liu , K L Lei , Z A Xiao . Using peanut shells to construct a porous MnO/C composite material with highly improved lithium storage performance. ChemElectroChem, 2020, 7(1): 347–354
https://doi.org/10.1002/celc.201901811
48 X P Fang , X Lu , X W Guo , Y Mao , Y S Hu , J Z Wang , Z X Wang , F Wu , H K Liu , L Q Chen . Electrode reactions of manganese oxides for secondary lithium batteries. Electrochemistry Communications, 2010, 12(11): 1520–1523
https://doi.org/10.1016/j.elecom.2010.08.023
49 W Zhang , B Zhang , H Jin , P Li , Y Zhang , S Ma , J Zhang . Waste eggshell as bio-template to synthesize high capacity δ-MnO2 nanoplatelets anode for lithium ion battery. Ceramics International, 2018, 44(16): 20441–20448
https://doi.org/10.1016/j.ceramint.2018.08.038
50 H P Chen , Z Y Tang , B Liu , W Chen , J H Hu , Y Q Chen , H P Yang . The new insight about mechanism of the influence of K2CO3 on cellulose pyrolysis. Fuel, 2021, 295: 120617
https://doi.org/10.1016/j.fuel.2021.120617
[1] FCE-23055-OF-ZL_suppl_1 Download
[1] Chenxi Xu, Shunli Li, Zhaohui Hou, Liming Yang, Wenbin Fu, Fujia Wang, Yafei Kuang, Haihui Zhou, Liang Chen. Direct pyrolysis to convert biomass to versatile 3D carbon nanotubes/mesoporous carbon architecture: conversion mechanism and electrochemical performance[J]. Front. Chem. Sci. Eng., 2023, 17(6): 679-690.
[2] Jiwei Xie, Guijing Liu, Kaikai Wang, Xueming Li, Yusen Bai, Shanmin Gao, Leqing Fan, Rundou Zheng. g-C3N4-coated MnO2 hollow nanorod cathode for stable aqueous Zn-ion batteries[J]. Front. Chem. Sci. Eng., 2023, 17(2): 217-225.
[3] Yunpeng Shang, Xiaohong Sun, Zhe Chen, Kunzhou Xiong, Yunmei Zhou, Shu Cai, Chunming Zheng. Carbon-doped surface unsaturated sulfur enriched CoS2@rGO aerogel pseudocapacitive anode and biomass-derived porous carbon cathode for advanced lithium-ion capacitors[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1500-1513.
[4] Feng Cheng, Dongwen Guo, Jinhua Lai, Meihui Long, Wenguang Zhao, Xianxiang Liu, Dulin Yin. Efficient base-free oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over copper-doped manganese oxide nanorods with tert-butanol as solvent[J]. Front. Chem. Sci. Eng., 2021, 15(4): 960-968.
[5] Wenxin Xu, Xin Zhao, Jiali Tang, Chao Zhang, Yu Gao, Shin-ichi Sasaki, Hitoshi Tamiaki, Aijun Li, Xiao-Feng Wang. Synthesis of Chl@Ti3C2 composites as an anode material for lithium storage[J]. Front. Chem. Sci. Eng., 2021, 15(3): 709-716.
[6] Xiaoyan Deng, Luxing Wang, Qihui Xiu, Ying Wang, Hong Han, Dongmei Dai, Yongji Xu, Hongtao Gao, Xien Liu. Adsorption performance and physicochemical mechanism of MnO2-polyethylenimine-tannic acid composites for the removal of Cu(II) and Cr(VI) from aqueous solution[J]. Front. Chem. Sci. Eng., 2021, 15(3): 538-551.
[7] Tongzhou Lu, Yongzheng Zhang, Chun Cheng, Yanbin Wang, Yongming Zhu. One-step synthesis of recoverable CuCo2S4 anode material for high-performance Li-ion batteries[J]. Front. Chem. Sci. Eng., 2020, 14(4): 595-604.
[8] Weixin ZHANG, Wenran ZHAO, Zaoyuan ZHOU, Zeheng YANG. Facile synthesis of α-MnO2 micronests composed of nanowires and their enhanced adsorption to Congo red[J]. Front Chem Sci Eng, 2014, 8(1): 64-72.
[9] ZHANG Weixin, REN Xiangbin, YANG Zeheng, WANG Hua, WANG Qiang, HUANG Fei. Hydrothermal synthesis of crystalline α-/β-MnO2 nanorods via γ-MnOOH nanorod precursors[J]. Front. Chem. Sci. Eng., 2007, 1(4): 365-371.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed