Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2013, Vol. 7 Issue (3) : 357-365    https://doi.org/10.1007/s11705-013-1336-3
RESEARCH ARTICL
Predicting the yield of pomegranate oil from supercritical extraction using artificial neural networks and an adaptive-network-based fuzzy inference system
J. Sargolzaei, A. Hedayati Moghaddam()
Department of chemical engineering, Ferdowsi university of Mashhad, Mashhad 9177948944, Iran
 Download: PDF(501 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Various simulation tools were used to develop an effective intelligent system to predict the effects of temperature and pressure on an oil extraction yield. Pomegranate oil was extracted using a supercritical CO2 (SC-CO2) process. Several simulation systems including a back-propagation neural network (BPNN), a radial basis function neural network (RBFNN) and an adaptive-network-based fuzzy inference system (ANFIS) were tested and their results were compared to determine the best predictive model. The performance of these networks was evaluated using the coefficient of determination (R2) and the mean square error (MSE). The best correlation between the predicted and the experimental data was achieved using the BPNN method with an R2 of 0.9948.

Keywords oil recovery      artificial intelligence      extraction      neural networks      supercritical extraction     
Corresponding Author(s): Moghaddam A. Hedayati,Email:a.hedayati1985@gmail.com   
Issue Date: 05 September 2013
 Cite this article:   
J. Sargolzaei,A. Hedayati Moghaddam. Predicting the yield of pomegranate oil from supercritical extraction using artificial neural networks and an adaptive-network-based fuzzy inference system[J]. Front Chem Sci Eng, 2013, 7(3): 357-365.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-013-1336-3
https://academic.hep.com.cn/fcse/EN/Y2013/V7/I3/357
Fig.1  The process diagram of the super critical extraction unit
Fig.2  The architecture of the feed forward neural network with n input and m output variables
Fig.3  Radial basis function (RBF) structure
Fig.4  (a) The complexity of the experimental data, (b) Input vector run number
Run No.Training algorithmNo. of neuronsR2MSE
TrainingValidationTestAll
1TRAINLM10-200.998580.973440.986850.991586.6547 e-6
2TRAINLM10-20-100.999390.996840.98910.996362.5086 e-6
3TRAINGDA20-40-200.975660.960020.989690.97799.8986 E-6
4TRAINLM20-40-200.998840.996340.994750.996975.1327 e-7
5TRAINLM30-50-7010.963850.868090.970871.9408 E-5
6TRAINLM30-50-300.999990.91710.985230.97943.8461 E-6
Tab.1  BPNN architecture
Fig.5  (a) predicted data by BPNN experimental data; (b) error run No. for best BPNN model
Fig.6  Comparison between experimental results and BPBB predicted results
Run No.Spread constantR2MSE
10.050.98184.7587 e-6
20.10.96209.9339 e-6
30.30.91672.1746 e-5
40.50.85773.7158 e-5
510.82074.6812 e-5
620.82064.6834 e-5
730.82064.6838 e-5
840.81534.8240 e-5
Tab.2  RBF architecture
Fig.7  (a) predicted RBFNN data experimental data; (b) error run No. for the best RBFNN model
Fig.8  Comparison between the experimental data and the data predicted by RBFNN and BPNN
Fig.9  (a) a plot of the range of influence for the testing data set; (b) a plot of MSE the range of influence for the testing data set for the ANFIS simulation
Fig.10  Comparison of experimental and simulated data normalized temperature at (a) 20 MPa, (b) 30 MPa, and (c) 40 MPa
1 Fadavi A, Barzegar M, Hossein Azizi M. Determination of fatty acids and total lipid content in oilseed of 25 pomegranates varieties grown in Iran. Journal of Food Composition and Analysis , 2006, 19(6): 676-680
doi: 10.1016/j.jfca.2004.09.002
2 Engin H, Erogul D, Aksehirli M, Hepaksoy S, Kukul Y. In leaf water potential of pomegranate (Punica Granatum l.) under different irrigation levels. Acta Horticulturae , 2006, 818: 193-198 (ISHS)
3 Kulkarni A P, Aradhya S M. Chemical changes and antioxidant activity in pomegranate arils during fruit development. Food Chemistry , 2005, 93(2): 319-324
doi: 10.1016/j.foodchem.2004.09.029
4 Abbasi H, Rezaei K, Emamdjomeh Z, Mousavi S M E. Effect of various extraction conditions on the phenolic contents of pomegranate seed oil. European Journal of Lipid Science and Technology , 2008, 110(5): 435-440
doi: 10.1002/ejlt.200700199
5 Abbasi H, Rezaei K, Rashidi L. Extraction of essential oils from the seeds of pomegranate using organic solvents and supercritical CO2. Journal of the American Oil Chemists'. Society , 2008, 85(1): 83-89
6 Ozgen M, Durga? C, Ser?e S, Kaya C. Chemical and antioxidant properties of pomegranate cultivars grown in the Mediterranean region of Turkey. Food Chemistry , 2008, 111(3): 703-706
doi: 10.1016/j.foodchem.2008.04.043
7 Gil M I, Tomás-Barberán F A, Hess-Pierce B, Holcroft D M, Kader A A. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. Journal of Agricultural and Food Chemistry , 2000, 48(10): 4581-4589
doi: 10.1021/jf000404a
8 Hora J J, Maydew E R, Lansky E P, Dwivedi C. Chemopreventive effects of pomegranate seed oil on skin tumor development in CD1 mice. Journal of Medicinal Food , 2003, 6(3): 157-161
doi: 10.1089/10966200360716553
9 Kassama L S, Shi J, Mittal G S. Optimization of supercritical fluid extraction of lycopene from tomato skin with central composite rotatable design model. Separation and Purification Technology , 2008, 60(3): 278-284
doi: 10.1016/j.seppur.2007.09.005
10 Sahena F, Zaidul I S M, Jinap S, Karim A A, Abbas K A, Norulaini N A N, Omar A K M. Application of supercritical CO2 in lipid extraction—A review. Journal of Food Engineering , 2009, 95(2): 240-253
doi: 10.1016/j.jfoodeng.2009.06.026
11 Macías-Sánchez M D, Serrano C M, Rodríguez M R, de la Ossa E M. Kinetics of the supercritical fluid extraction of carotenoids from microalgae with CO2 and ethanol as cosolvent. Chemical Engineering Journal , 2009, 150(1): 104-113
doi: 10.1016/j.cej.2008.12.006
12 Rodríguez N R, de Diego S M, Beltrán S, Jaime I, Sanz M T, Rovira J. Supercritical fluid extraction of the omega-3 rich oil contained in hake (Merluccius capensis-Merluccius paradoxus) by-products: Study of the influence of process parameters on the extraction yield and oil quality. Journal of Supercritical Fluids , 2008, 47(2): 215-226
doi: 10.1016/j.supflu.2008.07.007
13 Raasimman M, Govindarajan I, Karthikeyan C. Artificial neural network modeling of an inverse fluidized bed bioreactor. Journal of Applied Sciences and Environmental Management , 2010, 11(2): 65-69
doi: 10.4314/jasem.v11i2.54991
14 Jang J S R. ANFIS: Adaptive-network-based fuzzy inference system. Systems, Man and Cybernetics. IEEE Transactions on , 1993, 23(3): 665-685
15 Moghaddam A H, Sargolzaei J, Asl M H, Derakhshanfard F. Effect of different parameters on WEPS production and thermal behavior prediction using artificial neural network (ANN). Polymer-Plastics Technology and Engineering , 2012, 51(5): 480-486
doi: 10.1080/03602559.2011.651243
16 Yang S, Shi W, Zeng J. Modelling the supercritical fluid extraction of lycopene from tomato paste waste using neuro-fuzzy approaches. Advances in Neural Networks-ISNN , 2004, 3174: 129-140
17 Zahedi G, Azizia S, Hatamia T, Sheikhattar L. Gray box modeling of supercritical nimbin extraction from neem seeds using methanol as co-solvent. Open Chemical Engineering Journal , 2010, 4(1): 21-30
doi: 10.2174/1874123101004020021
18 Izadifar M, Abdolahi F. Comparison between neural network and mathematical modeling of supercritical CO2 extraction of black pepper essential oil. Journal of Supercritical Fluids , 2006, 38(1): 37-43
doi: 10.1016/j.supflu.2005.11.012
19 Mitra P, Barman P C, Chang K S. Coumarin extraction from cuscuta reflexa using supercritical fluid carbon dioxide and development of an artificial neural network model to predict the coumarin yield. Food and Bioprocess Technology , 2011, 4(5): 737-744
doi: 10.1007/s11947-008-0179-2
20 Menhaj M. Fundamentals of neural networks. Computational Intelligence , 1998, 2: 222-229
21 Kalavathi M S, Reddy B R, Singh B P. Modeling transformer internal short circuit faults using neural network techniques. 2005 Annual Report Conference on Electrical Insulation and Dielectric Phenomena , 2005, 601-604
22 Bors A G, Gabbouj M. Minimal topology for a radial basis functions neural network for pattern classification. Digital Signal Processing , 1994, 4(3): 173-188
doi: 10.1006/dspr.1994.1016
23 Poggio T, Girosi F. Networks for approximation and learning. Proceedings of the IEEE , 1990, 78(9): 1481-1497
doi: 10.1109/5.58326
24 Bors A G, Pitas I. Median radial basis function neural network. Neural Networks. IEEE Transactions on , 1996, 7(6): 1351-1364
25 Ni Y, Xia Z, Kokot S. A kinetic spectrophotometric method for simultaneous determination of phenol and its three derivatives with the aid of artificial neural network. Journal of Hazardous Materials , 2011, 192(2): 722-729
doi: 10.1016/j.jhazmat.2011.05.081
26 Wedge D C, Ingram D M, Mingham C G, McLean D A, Bandar Z A. Neural network architectures and overtopping predictions. Proceedings of the ICE-Maritime Engineering , 2005, 158(3): 123-133
doi: 10.1680/maen.2005.158.3.123
27 Liu F, Nie P C, Huang M, Kong W W, He Y. Nondestructive determination of nutritional information in oil seed rape leaves using visible/near infrared spectroscopy and multivariate calibrations. Science China Information Sciences , 2011, 54(3): 598-608
doi: 10.1007/s11432-011-4198-7
28 Pan Y, Jiang J, Wang Z. Quantitative structure-property relationship studies for predicting flash points of alkanes using group bond contribution method with back-propagation neural network. Journal of Hazardous Materials , 2007, 147(1-2): 424-430
doi: 10.1016/j.jhazmat.2007.01.025
29 Fazilat H, Ghatarband M, Mazinani S, Asadi Z, Shiri M, Kalaee M. Predicting the mechanical properties of glass fiber reinforced polymers via artificial neural network and adaptive neuro-fuzzy inference system. Computational Materials Science , 2012, 58: 31-37
doi: 10.1016/j.commatsci.2012.01.012
30 Iyatomi H, Hagiwara M. Adaptive fuzzy inference neural network. Pattern Recognition , 2004, 37(10): 2049-2057
doi: 10.1016/j.patcog.2004.04.003
31 Pomares H, Rojas I, González J, Prieto A. Structure identification in complete rule-based fuzzy systems. Fuzzy Systems. IEEE Transactions on , 2002, 10(3): 349-359
32 Pomares H, Rojas I, Gonzalez J, Prieto A. A method for structure identification in complete rule-based fuzzy systems. IEEE, 2001, pp: 376-379
33 Sargolzaei J, Saghatoleslami N, Mosavi S M, Khoshnoodi M. Comparative study of artificial neural networks (ANN) and statistical methods for predicting the performance of ultrafiltration process in the milk industry. Iranian Journal of Chemistry & Chemical Engineering , 2006, 25(2): 67-76
34 Sargolzaei J, Kianifar A. Modeling and simulation of wind turbine Savonius rotors using artificial neural networks for estimation of the power ratio and torque. Simulation Modelling Practice and Theory , 2009, 17(7): 1290-1298
doi: 10.1016/j.simpat.2009.05.003
35 Richard Bowen W, Jones M G, Yousef H N S. Prediction of the rate of crossflow membrane ultrafiltration of colloids: A neural network approach. Chemical Engineering Science , 1998, 53(22): 3793-3802
doi: 10.1016/S0009-2509(98)00183-3
36 Hagan M T, Menhaj M B. Training feedforward networks with the Marquardt algorithm. Neural Networks. IEEE Transactions on , 1994, 5(6): 989-993
37 Sharma A, Grover P, Kumar R. Reusability assessment for software components. ACM SIGSOFT Software Engineering Notes , 2009, 34(2): 1-6
doi: 10.1145/1507195.1507215
38 Tang L, Zeng G M, Shen G L, Zhang Y, Huang G H, Li J B. Simultaneous amperometric determination of lignin peroxidase and manganese peroxidase activities in compost bioremediation using artificial neural networks. Analytica Chimica Acta , 2006, 579(1): 109-116
doi: 10.1016/j.aca.2006.07.021
39 Zahra F, Jeyasurya B, Quaicoe J. High-speed transmission line relaying using artificial neural networks. Electric Power Systems Research , 2000, 53(3): 173-179
doi: 10.1016/S0378-7796(99)00058-9
40 Hosseini H G, Luo D, Xu G, Liu H, Benjamin D.Intelligent fish freshness assessment. Journal of Sensors , 2008, 2008: 1-8
41 Anwar N, Khan M S, Ahmed K, Ahmad A, Athar A. Speed scheduling of autonomous railway vehicle control system using ANN. International Journal of Scientific & Engineering Research , 2011, 2(6): 1-6
42 Tolba A, Abu-Rezq A. Combined classifiers for invariant face recognition. Pattern Analysis & Applications , 2000, 3(4): 289-302
doi: 10.1007/s100440070001
43 Lahsasna A, Ainon R, Wah T Y. Intelligent credit scoring model using soft computing approach. IEEE , 2008, 396-402
44 Venkatraghavan V, Acharya U R, Pal M, Paul R R, Min L C, Ray A K, Chatterjee J, Chakraborty C. Automated oral cancer identification using histopathological images: A hybrid feature extraction paradigm. Micron (Oxford, England) , 2011, 43(2-3): 352-364
[1] Boa Jin, Hyunmin Park, Yang Liu, Leijing Liu, Jongdeok An, Wenjing Tian, Chan Im. Charge-carrier photogeneration and extraction dynamics of polymer solar cells probed by a transient photocurrent nearby the regime of the space charge-limited current[J]. Front. Chem. Sci. Eng., 2021, 15(1): 164-179.
[2] Zishuai Liu, Yimin Zhang, Zilin Dai, Jing Huang, Cong Liu. Coextraction of vanadium and manganese from high-manganese containing vanadium wastewater by a solvent extraction-precipitation process[J]. Front. Chem. Sci. Eng., 2020, 14(5): 902-912.
[3] Elena Graczová, Branislav Šulgan, Samuel Barabas, Pavol Steltenpohl. Methyl acetate–methanol mixture separation by extractive distillation: Economic aspects[J]. Front. Chem. Sci. Eng., 2018, 12(4): 670-682.
[4] Weibin Kong, Qi Miao, Peiyong Qin, Jan Baeyens, Tianwei Tan. Environmental and economic assessment of vegetable oil production using membrane separation and vapor recompression[J]. Front. Chem. Sci. Eng., 2017, 11(2): 166-176.
[5] Yunzhao Li,Xingfu Song,Guilan Chen,Shuying Sun,Yanxia Xu,Jianguo Yu. Extraction of hydrogen chloride by a coupled reaction-solvent extraction process[J]. Front. Chem. Sci. Eng., 2015, 9(4): 479-487.
[6] Yunling Gao,Ying Hu,Kejian Yao. Surface molecularly imprinted polymers for solid-phase extraction of (--)-epigallocatechin gallate from toothpaste[J]. Front. Chem. Sci. Eng., 2015, 9(4): 467-478.
[7] Hua Zhao,Gary A. Baker. Oxidative desulfurization of fuels using ionic liquids: A review? ?[J]. Front. Chem. Sci. Eng., 2015, 9(3): 262-279.
[8] Pravin WAKTE,Ajit PATIL,Bhusari SACHIN,Munnaza QUAZI,Shraddha JABDE,Devanand SHINDE. Optimization of microwave-assisted extraction for picroside I and picroside II from Picrorrhiza kurroa using Box-Behnken experimental design[J]. Front. Chem. Sci. Eng., 2014, 8(4): 445-453.
[9] Chuanzhu LU,Hui FU,Huipeng LI,Hua ZHAO,Tianfeng CAI. Oxidation-extraction desulfurization of model oil over Zr-ZSM-5/SBA-15 and kinetic study[J]. Front. Chem. Sci. Eng., 2014, 8(2): 203-211.
[10] Huandong LI, Hongji ZHU, Jianjun QIAO, Junhu DU, Hua ZHANG. Optimization of the main liming process for inulin crude extract from Jerusalem artichoke tubers[J]. Front Chem Sci Eng, 2012, 6(3): 348-355.
[11] Hideyuki KATSUMATA, Yuta ODA, Satoshi KANECO, Tohru SUZUKI, Kiyohisa OHTA. Determination of aniline derivatives in water samples after preconcentration with oxidized multiwalled carbon nanotubes as solid-phase extraction disk[J]. Front Chem Sci Eng, 2012, 6(3): 270-275.
[12] Xiaomeng WANG, Mingjuan HAN, Hui WAN, Cao YANG, Guofeng GUAN. Study on extraction of thiophene from model gasoline with br?nsted acidic ionic liquids[J]. Front Chem Sci Eng, 2011, 5(1): 107-112.
[13] Yingdi CHEN, Peng XU, Jian CHENG. Supercritical carbon dioxide extraction of CLA-ethyl ester[J]. Front Chem Sci Eng, 2011, 5(1): 102-106.
[14] Xiaojuan NIU, Shuyi QIU, Yuangen WU, Jie YUAN, Yingying XU. Highly effective extraction of oil from soybean by pretreatment of solid-state fermentation with fungi[J]. Front Chem Sci Eng, 2011, 5(1): 122-125.
[15] CHENG Yongxi, LI Hongtao, WANG Li, LÜ Shuxiang. Reactive extraction for preparation of hydrogen peroxide under pressure[J]. Front. Chem. Sci. Eng., 2008, 2(3): 335-340.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed