Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2014, Vol. 8 Issue (2) : 203-211    https://doi.org/10.1007/s11705-014-1420-3
RESEARCH ARTICLE
Oxidation-extraction desulfurization of model oil over Zr-ZSM-5/SBA-15 and kinetic study
Chuanzhu LU,Hui FU,Huipeng LI(),Hua ZHAO,Tianfeng CAI
School of Petrochemical Engineering, Liaoning Shihua University, Fushun 113001, China
 Download: PDF(484 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

ZSM-5/SBA-15 composite molecular sieves were synthesized using post-synthesis method and characterized by X-ray diffraction and N2 adsorption-desorption. The oxidative-extration desulfurization of model oil was investigated by using hydrogen peroxide as the oxidant, tetrabutyl ammonium bromide as phase transfer catalyst, dimethyl sulfoxide as extractant, and Zr-ZSM-5/SBA-15, Ag-ZSM-5/SBA-15, Ce-ZSM-5/SBA-15 as catalyst. Under the optimal conditions, the desulfurization rate decreases in the order: Zr-ZSM-5/SBA-15>Ce-ZSM-5/SBA-15>Ag-ZSM-5/SBA-15. The highest desulfurization rate is 84.53% under the catalysis of Zr-ZSM-5/SBA-15. Kinetics analysis shows that the reaction is pseudo-first-order with the activation energy of 44.23 kJ/mol.

Keywords composite molecular sieve      oxidation desulfuration      extraction      kinetic     
Corresponding Author(s): Huipeng LI   
Issue Date: 22 May 2014
 Cite this article:   
Tianfeng CAI,Chuanzhu LU,Hui FU, et al. Oxidation-extraction desulfurization of model oil over Zr-ZSM-5/SBA-15 and kinetic study[J]. Front. Chem. Sci. Eng., 2014, 8(2): 203-211.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-014-1420-3
https://academic.hep.com.cn/fcse/EN/Y2014/V8/I2/203
Fig.1  (a) Small angle and (b) wide angle XRD patterns of SBA-15, ZSM-5/SBA-15 and Zr-ZSM-5/SBA-15
Fig.2  Adsorption-desorption isotherms of ZSM-5/SBA-15 and Zr(20%)-ZSM-5/SBA-15
Fig.3  The influence of different catalysts on desulfurization rate
Fig.4  The influence of different catalysts loaded by Zr on desulfurization rate
Fig.5  The influence of different metal modified ZSM-5/SBA-15 on desulfurization rate
Fig.6  The effects of (a) reaction temperature, (b) reaction time, (c) the dosage of oxidant and (d) ratio of catalyst to oil on the desulfurization rate
LevelsFactors
ABCD
160901 : 600.01
2701201 : 400.02
3801501 : 200.03
Tab.1  Factors and levels of L9(34) orthogonal test*
1234
FactorsABCDDesulfurization rate /%
Test 1111157.23
Test 2122281.35
Test 3133367.11
Test 4212376.45
Test 5223184.53
Test 6231264.32
Test 7313278.26
Test 8321360.33
Test 9332158.12
Mean 168.56370.64760.62766.627
Mean 275.10075.40371.97374.643
Mean 365.57063.18376.63367.963
Range9.53012.22016.0068.016
Tab.2  Arrangement and results of L9(34) orthogonal test
MethodSulfur content prior to treatment /(μg∙g-1)Sulfur content after treatment /(μg∙g-1)Desulfurization rate /%
Oxidation551.00284.5448.36
Extraction551.00351.8736.14
Oxidation-Extraction551.0085.2484.53
Tab.3  Influence of the different methods on desulfurization rate
Fig.7  The influence of catalyst used times on desulfurization rate
T /KnlnkT?1 /(K?1)
313.151.12-5.843.19×10?3
323.151.17-5.623.09×10?3
333.151.12-4.853.00×10?3
343.151.11-4.422.91×10?3
353.151.11-4.212.83×10?3
Tab.4  Reaction kinetic parameters under different temperatures
Fig.8  The activation energy of the reaction
1 FuY, DiwekarU M. Cost effective environmental control technology for utilities. Advances in Environmental Research, 2004, 8(2): 173–196
2 SrivastavaR K, HallR E, KhanS, CulliganK, LaniB W. Nitrogen oxides emission control options for coal-fired electric utility boilers. Journal of the Air & Waste Management Association, 2005, 55(9): 1367–1388
3 GonzalezL A, KrackeP, GreenW H, TesterJ W, ShaferL M, TimkoM T. Oxidative desulfurization of middle-distillate fuels using activated carbon and power ultrasound. Energy & Fuels, 2012, 26(8): 5164–5176
4 LiX, BaiJ, WangA, PrinsR, WangY. Hydrodesulfurization of dibenzothiophene and its hydrogenated intermediates over bulk Ni2P. Topics in Catalysis, 2011, 54(5–7): 290–298
5 FujikawaT. Highly active HDS catalyst for producing ultra-low sulfur diesel fuels. Topics in Catalysis, 2009, 52(6–7): 872–879
6 WangG, WenY, FanJ, XuC, GaoJ. Reactive characteristics and adsorption heat of Ni/ZnO-SiO2-Al2O3 adsorbent by reactive adsorption desulfurization. Industrial & Engineering Chemistry Research, 2011, 50(22): 12449–12459
7 LiuY, SheN, ZhaoJ, PengT, LiuC. Fabrication of hierarchical porous ZnO and its performance in Ni/ZnO reactive-adsorption desulfurization. Petroleum Science, 2013, 10(4): 589–595
8 HuangC, ChenB, ZhangJ, LiuZ, LiY. Desulfurization of gasoline by extraction with new ionic liquids. Energy & Fuels, 2004, 18(6): 1862–1864
9 MaS C, YaoJ J, JinX, ZhangB. Kinetic study on desulfurization and denitrification using microwave irradiation over activated carbon. Science China Technological Sciences, 2011, 54(9): 2321–2326
10 BaezaP, AguilaG, GraciaF, ArayaP. Desulfurization by adsorption with copper supported on zirconia. Catalysis Communications, 2008, 9(5): 751–755
11 OtsukiS, NonakaT, TakashimaN, QianW, IshiharaA, ImaiT, KabeT. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction. Energy & Fuels, 2000, 14(6): 1232–1239
12 ZannikosF, LoisE, StournasS. Desulfurization of petroleum fractions by oxidation and solvent extraction. Fuel Processing Technology, 1995, 42(1): 35–45
13 WangR, ZhangG, ZhaoH. Polyoxometalate as effective catalyst for the deep desulfurization of diesel oil. Catalysis Today, 2010, 149(1–2): 117–121
14 TeM, FairbridgeC, RingZ. Oxidation reactivities of dibenzothiophenes in polyoxometalate/H2O2 and formic acid/H2O2 systems. Applied Catalysis A: General, 2001, 219(1–2): 267–280
15 ZhangY, LuH, WangL, ZhangY, LiuP, HanH, JiangZ, LiC. The oxidation of benzothiophene using the Keggin-type lacunary polytungstophosphate as catalysts in emulsion. Journal of Molecular Catalysis A: Chemical, 2010, 332(1–2): 59–64
16 ZhangY, WangL, ZhangY, JiangZ, LiC. Ultra-deep oxidative desulfurization of fuel oil catalyzed by Dawson-Type polyoxotungstate emulsion catalysts. Chinese Journal of Catalysis, 2011, 32(1): 235–239
17 LiX, HuangS, XuQ, YangY. Preparation of WO3-SBA-15 mesoporous molecular sieve and its performance as an oxidative desulfurization catalyst. Transition Metal Chemistry, 2009, 34(8): 943–947
18 YingJ Y, SunT. Synthesis of microporous transition-metal-oxide molecular sieves by a supramoleculaur templating mechanism. Nature, 1997, 389(6652): 704–706
19 WangS, DouT, LiY, ZhangY, YanZ, LiX. Synthesis of a new meso/microporous composite molecular sieve of MCM-41 mordenite. Chinese Science Bulletin, 2005, 50(12): 1180–1184
20 PoladiR H P R, LandryC C. Synthesis, characterization and catalytic properties of a microporous/mesoporous material, MMM-1. Journal of Solid State Chemistry, 2002, 167(2): 363–369
21 Richard KloetstraK, JansenJ C. Mesoporous material containing framework tectosilicate by pore-wall recrystallization. Chemical Communications, 1997, (23): 2281–2282
22 TwaiqF A A, MohamadA R, BhatiaS. Performance of composite catalyst in palm oil cracking for the production of liquid fuels and chemicals. Fuel Processing Technology, 2004, 85(11): 1283–1300
23 LiangD, QinB, WangY, LiuJ H, LiR F. Direct preparation of Zr-SBA-15 microspheres and their catalytic performance on methanol dehydration. Journal of Fuel Chemistry and Technology, 2010, 38(5): 582–587
24 KrishnanC K, HayashiT, OguraM. A new method for post-synthesis coating of zirconia on the mesopore walls of SBA-15 without pore blocking. Advanced Materials, 2008, 20(11): 2131–2136
25 LiF, YuF, YiL, LiR, XieK. Direct synthesis of Zr-SBA-15 mesoporous molecular sieves with high zirconium loading: Characterization and catalytic performance after sulfated. Mieroporous Mesoporons Mater, 2007, 101(1–2): 250–255
26 LiangD, ChenJ, WangY J, LiuJ H, LiR F. Synthesis of Zr-containing SBA-15 with hollow spherical morphology. Chemistry Letters, 2009, 38(7): 672–673
27 JiS, LiaoS, WangL, VladmirL, LeslieP. Preparation and characterization of novel superacid catalyst SO42-/Zr-ZSM-5. Journal of Molecular Catalysis, 2002, 16(5): 379–383
28 XiaQ H, HidajatK, KawiS. Synthesis of SO42-/ZrO2/MCM-41 as a new superacid catalyst. Chemical Communications, 2000, (22): 2229–2230
29 XiaQ H, HidajatK, KawiS. Effect of ZrO2 loading on the structure,acidity and catalytic activity of the SO42-/ZrO2/MCM-41 acid catalyst. Journal of Catalysis, 2002, 205(2): 318–331
30 ZhaoD, FengJ, HuoQ, MeloshN, FredricksonG H, ChmelkaB F, StuckyG D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(5350): 548–552
31 CaoL, DongH, HuangL, MatyjaszewskiK, KrukM. Synthesis of large-pore SBA-15 silica using poly(ethylene oxide)-poly(methyl acrylate) diblock copolymers. Adsorption, 2009, 15(2): 156–166
32 DongareM K, SinghP, MogheP P, RatnasamyP. Synthesis,characterization and catalytic properties of [Zr]-ZSM-5. Zeolites, 1991, 11(7): 690–693
33 YanB, ZhengZ, ZhangJ, GongZ, ShenZ, HuangW, YuT. Orientation controllable growth of MoO3 nanoflakes: Micro-Raman, field emission and birefringence properties. Journal of Physical Chemistry C, 2009, 113(47): 20259–20263
34 JinC, MaB, ZhangX, LingF, ZhangZ, QinB. Study of hydrocracking of n-octane on Ni-Mo/Y-β catalyst. Industrial Catalysis, 2007, 15(12): 24–27 (in Chinese)
35 WangG, WangX, WangX, YuS. Synthesis and catalytic reaction of [Zr] ZSM-5. Studies in Surface Science and Catalysis, 1994, 83: 67–74
36 OthmanM R, MustafaN N N, AhmadA L. Effect of thermal treatment on the microstructure of sol-gel derived porous alumina modified platinum. Microporous and Mesoporous Materials, 2006, 91(1–3): 268–275
37 BozoC, GuilhaumeN, GarbowskiE, PrimetM. Combustion of methane on CeO2-ZrO2 based catalysts. Catalysis Today, 2000, 59(1–2): 33–45
38 ZhaoD, HuoQ, FengJ, ChmelkaB F, StuckyG D. Nonionic tribloek and star diblock copolymer and oligomeric surfactant syntheses of highly ordered,hydrothermally stable,mesoporous silica structures. Journal of the American Chemical Society, 1998, 120(24): 6024–6036
39 ZhengT, LuJ, ZhaoY. Review on cerium-based composite oxides as oxygen storage materials. Chinese Journal of Nonferrous Metals, 2013, 23(6): 1575–1581 (in Chinese)
40 KongL, LiG, WangX, WuB. Oxidative desulfurization of organic sulfur in gasoline overAg/TS-1. Energy & Fuels, 2006, 20(3): 896–902
41 YuX, RenX, DongZ, WangJ, WangY. Kinetics of the hydrodesulfurization of dibenzothiopyene over a commercial NiW/Al2O3 catalyst. Journal of Fuel Chemistry and Technology, 2005, 33(4): 483–486
[1] Boa Jin, Hyunmin Park, Yang Liu, Leijing Liu, Jongdeok An, Wenjing Tian, Chan Im. Charge-carrier photogeneration and extraction dynamics of polymer solar cells probed by a transient photocurrent nearby the regime of the space charge-limited current[J]. Front. Chem. Sci. Eng., 2021, 15(1): 164-179.
[2] Ehsan Rahmani, Mohammad Rahmani. Catalytic process modeling and sensitivity analysis of alkylation of benzene with ethanol over MIL-101(Fe) and MIL-88(Fe)[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1100-1111.
[3] Zishuai Liu, Yimin Zhang, Zilin Dai, Jing Huang, Cong Liu. Coextraction of vanadium and manganese from high-manganese containing vanadium wastewater by a solvent extraction-precipitation process[J]. Front. Chem. Sci. Eng., 2020, 14(5): 902-912.
[4] Xiuhui Huang, Junfeng Li, Jun Wang, Zeqiu Li, Jiayin Xu. Catalytic combustion of methane over a highly active and stable NiO/CeO2 catalyst[J]. Front. Chem. Sci. Eng., 2020, 14(4): 534-545.
[5] Daniil Marinov. Kinetic Monte Carlo simulations of plasma-surface reactions on heterogeneous surfaces[J]. Front. Chem. Sci. Eng., 2019, 13(4): 815-822.
[6] Xuantao Wu, Jie Wang. Intrinsic kinetics and external diffusion of catalytic steam gasification of fine coal char particles under pressurized and fluidized conditions[J]. Front. Chem. Sci. Eng., 2019, 13(2): 415-426.
[7] Elena Graczová, Branislav Šulgan, Samuel Barabas, Pavol Steltenpohl. Methyl acetate–methanol mixture separation by extractive distillation: Economic aspects[J]. Front. Chem. Sci. Eng., 2018, 12(4): 670-682.
[8] Attila Egedy, Lívia Gyurik, Tamás Varga, Jun Zou, Norbert Miskolczi, Haiping Yang. Kinetic-compartmental modelling of potassium-containing cellulose feedstock gasification[J]. Front. Chem. Sci. Eng., 2018, 12(4): 708-717.
[9] Weibin Kong, Qi Miao, Peiyong Qin, Jan Baeyens, Tianwei Tan. Environmental and economic assessment of vegetable oil production using membrane separation and vapor recompression[J]. Front. Chem. Sci. Eng., 2017, 11(2): 166-176.
[10] Shaojie Wang,Zhihong Ma,Ting Zhang,Meidan Bao,Haijia Su. Optimization and modeling of biohydrogen production by mixed bacterial cultures from raw cassava starch[J]. Front. Chem. Sci. Eng., 2017, 11(1): 100-106.
[11] Suvidha Gupta,R. A. Pandey,Sanjay B. Pawar. Microalgal bioremediation of food-processing industrial wastewater under mixotrophic conditions: Kinetics and scale-up approach[J]. Front. Chem. Sci. Eng., 2016, 10(4): 499-508.
[12] Renxing Wang,Zhenyu Liu,Leiming Ji,Xiaojin Guo,Xi Lin,Junfei Wu,Qingya Liu. Reaction kinetics of CaC2 formation from powder and compressed feeds[J]. Front. Chem. Sci. Eng., 2016, 10(4): 517-525.
[13] Yunzhao Li,Xingfu Song,Guilan Chen,Shuying Sun,Yanxia Xu,Jianguo Yu. Extraction of hydrogen chloride by a coupled reaction-solvent extraction process[J]. Front. Chem. Sci. Eng., 2015, 9(4): 479-487.
[14] Yunling Gao,Ying Hu,Kejian Yao. Surface molecularly imprinted polymers for solid-phase extraction of (--)-epigallocatechin gallate from toothpaste[J]. Front. Chem. Sci. Eng., 2015, 9(4): 467-478.
[15] Hua Zhao,Gary A. Baker. Oxidative desulfurization of fuels using ionic liquids: A review? ?[J]. Front. Chem. Sci. Eng., 2015, 9(3): 262-279.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed