Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2021, Vol. 15 Issue (4) : 882-891    https://doi.org/10.1007/s11705-020-1990-1
RESEARCH ARTICLE
Nickel(II) ion-intercalated MXene membranes for enhanced H2/CO2 separation
Yiyi Fan1, Jinyong Li1, Saidi Wang1, Xiuxia Meng1(), Yun Jin1, Naitao Yang1, Bo Meng1, Jiaquan Li2, Shaomin Liu2,3()
1. School of Chemical Engineering, Shandong University of Technology, Zibo 255049, China
2. Department of Chemical Engineering, Curtin University, Perth, WA 6845, Australia
3. College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
 Download: PDF(2016 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Hydrogen fuel has been embraced as a potential long-term solution to the growing demand for clean energy. A membrane-assisted separation is promising in producing high-purity H2. Molecular sieving membranes (MSMs) are endowed with high gas selectivity and permeability because their well-defined micropores can facilitate molecular exclusion, diffusion, and adsorption. In this work, MXene nanosheets intercalated with Ni2+ were assembled to form an MSM supported on Al2O3 hollow fiber via a vacuum-assisted filtration and drying process. The prepared membranes showed excellent H2/CO2 mixture separation performance at room temperature. Separation factor reached 615 with a hydrogen permeance of 8.35 × 108 mol·m2·s1·Pa1. Compared with the original Ti3C2Tx/Al2O3 hollow fiber membranes, the permeation of hydrogen through the Ni2+-Ti3C2Tx/Al2O3 membrane was considerably increased, stemming from the strong interaction between the negatively charged MXene nanosheets and Ni2+. The interlayer spacing of MSMs was tuned by Ni2+. During 200-hour testing, the resultant membrane maintained an excellent gas separation without any substantial performance decline. Our results indicate that the Ni2+ tailored Ti3C2Tx/Al2O3 hollow fiber membranes can inspire promising industrial applications.

Keywords MXene      H2/CO2 separation      nickel ions      hollow fiber     
Corresponding Author(s): Xiuxia Meng,Shaomin Liu   
Just Accepted Date: 29 September 2020   Online First Date: 07 December 2020    Issue Date: 04 June 2021
 Cite this article:   
Yiyi Fan,Jinyong Li,Saidi Wang, et al. Nickel(II) ion-intercalated MXene membranes for enhanced H2/CO2 separation[J]. Front. Chem. Sci. Eng., 2021, 15(4): 882-891.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-020-1990-1
https://academic.hep.com.cn/fcse/EN/Y2021/V15/I4/882
Fig.1  Schematic diagram of hydrogen and CO2 mixture separation by Ni2+-Ti3C2Tx/Al2O3 hollow fiber membrane.
Fig.2  Preparation of Al2O3 supported Ni2+-Ti3C2Tx membranes.
Fig.3  Diagram of the home-made device for mixture gas permeability test of composite membranes.
Fig.4  (a) SEM images of synthesized Ti3C2Tx powder, (b) Ni2+-Ti3C2Tx nanosheets (inset showing the Tyndall scattering effect of Ni2+-Ti3C2Tx colloidal solution), and (c) TEM and (d) AFM images of Ni2+-Ti3C2Tx nanosheets.
Fig.5  (a) XRD patterns of Ti3AlC2, Ti3C2Tx, and Ni2+-Ti3C2Tx power with inset of the magnified XRD pattern at low Bragg angles; (b) FTIR spectra of MXene and nickel ion functionalized MXene.
Fig.6  SEM images of the outer surface (a) of the of Al2O3 hollow fiber support (before deposition of MXene) with the inset showing the cross-section, the high magnification of the Ni2+-Ti3C2Tx/Al2O3 membrane, (b) showing the thickness around 2.7 mm with the inset showing the lower magnification, (c) the surface of the Ni2+-Ti3C2Tx/Al2O3 membrane, and (d) the TEM image of the Ni2+-Ti3C2Tx/Al2O3 membrane.
Mixed gasa) Knudsen constant MXene/Al2O3 Ni2+-Ti3C2Tx/Al2O3
Separation factor Permeability/(108 mol·m2·s1·Pa1) Separation factor Permeability/(108 mol·m2·s1·Pa1)
H2/CO2 4.69 215.25 5.29 615 8.35
H2/N2 3.74 99.13 6.76 154.48 8.79
H2/CH4 2.82 94.35 7.11 147.27 9.52
Tab.1  Separation performance of MXene/Al2O3 and Ni2+-Ti3C2Tx/Al2O3 membrane
Fig.7  (a) Single-gas permeance through the supported Ni2+-Ti3C2Tx membrane at room temperature, (b) separation performance of the Ni2+-Ti3C2Tx/Al2O3 membrane as a function of temperature in the equimolar mixed-gas H2/CO2, (c) long-term separation of equimolar mixed-gas H2/CO2 through a Ni2+-Ti3C2Tx/Al2O3 membrane at RT, H2/CO2 separation performance, and (d) of the Ti3C2Tx/Al2O3 membrane compared with state-of-the-art gas separation membranes. The red line indicates the Robeson 2008 upper bound of polymeric membranes for H2/CO2 separation, and the dashed green line represents the 2017 upper bound of the best current membranes for H2/CO2 separation. More information of the data is given in Table S1 (cf. ESM).
1 M Liu, P A Gurr, Q Fu, P A Webley, G G Qiao. Two-dimensional nanosheet-based gas separation membranes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(46): 23169–23196
https://doi.org/10.1039/C8TA09070J
2 J Wang, J Zhu, Y Zhang, J Liu, B Van der Bruggen. Nanoscale tailor-made membranes for precise and rapid molecular sieve separation. Nanoscale, 2017, 9(9): 2942–2957
https://doi.org/10.1039/C6NR08417F
3 J Sunarso, S S Hashim, Y S Lin, S Liu. Membranes for helium recovery: an overview on the context, materials and future directions. Separation and Purification Technology, 2017, 176: 335–383
https://doi.org/10.1016/j.seppur.2016.12.020
4 F A Nezhad, N Han, Y Jin, Z Shen, Y Wang, N Yang, S Liu. Experimental and theoretical exploration of gas permeation mechanism through 2D graphene (not graphene oxides) membranes. Journal of Membrane Science, 2020, 601: 117883
https://doi.org/10.1016/j.memsci.2020.117883
5 D L Gin, R D Noble. Designing the next generation of chemical separation membranes. Science, 2011, 332(6030): 674–676
https://doi.org/10.1126/science.1203771
6 H B Park, J Kamcev, L M Robeson, M Elimelech, B D Freeman. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science, 2017, 356(6343): eaab0530
https://doi.org/10.1126/science.aab0530
7 P Bernardo, E Drioli, G Golemme. Membrane gas separation: a review/state of the art. Industrial & Engineering Chemistry Research, 2009, 48(10): 4638–4663
https://doi.org/10.1021/ie8019032
8 C H Lau, P Li, F Li, T S Chung, D R Paul. Reverse-selective polymeric membranes for gas separations. Progress in Polymer Science, 2013, 38(5): 740–766
https://doi.org/10.1016/j.progpolymsci.2012.09.006
9 H Li, Z Song, X Zhang, Y Huang, S Li, Y Mao, H J Ploehn, Y Bao, M Yu. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science, 2013, 342(6154): 95–98
https://doi.org/10.1126/science.1236686
10 S Battersby, T Tasaki, S Smart, B Ladewig, S Liu, M C Duke, V Rudolph, J C Diniz da Costa. Performance of cobalt silica membranes in gas mixture separation. Journal of Membrane Science, 2009, 329(1-2): 91–98
https://doi.org/10.1016/j.memsci.2008.12.051
11 Y Liu, N Wang, Z Cao, J Caro. Molecular sieving through interlayer galleries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(5): 1235–1238
https://doi.org/10.1039/C3TA13792A
12 X Wang, C Chi, K Zhang, Y Qian, K M Gupta, Z Kang, J Jiang, D Zhao. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nature Communications, 2017, 8(1): 14460–14469
https://doi.org/10.1038/ncomms14460
13 H K Jeong, S Nair, T Vogt, L C Dickinson, M Tsapatsis. A highly crystalline layered silicate with three-dimensionally microporous layers. Nature Materials, 2003, 2(1): 53–58
https://doi.org/10.1038/nmat795
14 M Tsapatsis. 2-Dimensional zeolites. AIChE Journal, 2014, 60(7): 2374–2381
https://doi.org/10.1002/aic.14462
15 K V Agrawal, B Topuz, T C Pham, T H Nguyen, N Sauer, N Rangnekar, H Zhang, K Narasimharao, S N Basahel, L F Francis, C W Macosko, S Al-Thabaiti, M Tsapatsis, K B Yoon. Oriented MFI membranes by gel-less secondary growth of sub-100 nm MFI-Nanosheet seed layers. Advanced Materials, 2015, 27(21): 3243–3249
https://doi.org/10.1002/adma.201405893
16 S R Venna, M Lartey, T Li, A Spore, S Kumar, H B Nulwala, D R Luebke, N L Rosi, E Albenze. Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(9): 5014–5022
https://doi.org/10.1039/C4TA05225K
17 Y Peng, Y Li, Y Ban, H Jin, W Jiao, X Liu, W Yang. Membranes. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science, 2014, 346(6215): 1356–1359
https://doi.org/10.1126/science.1254227
18 Z Zhao, X Ma, A Kasik, Z Li, Y S Lin. Gas separation properties of metal organic framework (MOF-5) membranes. Industrial & Engineering Chemistry Research, 2012, 52(3): 1102–1108
19 D Cohen-Tanugi, J C Grossman. Water desalination across nanoporous graphene. Nano Letters, 2012, 12(7): 3602–3608
20 W Wang, E Eftekhari, G Zhu, X Zhang, Z Yan, Q Li. Graphene oxide membranes with tunable permeability due to embedded carbon dots. Chemical Communications, 2014, 50(86): 13089–13092
https://doi.org/10.1039/C4CC05295A
21 J Kang, H Zhang, X Duan, H Sun, X Tan, S Liu, S Wang. Magnetic Ni-Co alloy encapsulated N-doped carbon nanotubes for catalytic membrane degradation of emerging contaminants. Chemical Engineering Journal, 2019, 362: 251–261
https://doi.org/10.1016/j.cej.2019.01.035
22 J Shen, G Liu, K Huang, Z Chu, W Jin, N Xu. Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving. ACS Nano, 2016, 10(3): 3398–3409
https://doi.org/10.1021/acsnano.5b07304
23 F Shahzad, M Alhabeb, C B Hatter, B Anasori, S Man Hong, C M Koo, Y Gogotsi. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 2016, 353(6304): 1137–1140
https://doi.org/10.1126/science.aag2421
24 M Naguib, O Mashtalir, J Carle, V Presser, J Lu, L Hultman, Y Gogotsi, M W Barsoum. Two-dimensional transition metal carbides. ACS Nano, 2012, 6(2): 1322–1331
https://doi.org/10.1021/nn204153h
25 H W Wang, M Naguib, K Page, D J Wesolowski, Y Gogotsi. Resolving the structure of Ti3C2Tx MXenes through multilevel structural modeling of the atomic pair distribution function. Chemistry of Materials, 2015, 28(1): 349–359
https://doi.org/10.1021/acs.chemmater.5b04250
26 Y Fan, L Wei, X Meng, W Zhang, N Yang, Y Jin, X Wang, M Zhao, S Liu. An unprecedented high-temperature-tolerance 2D laminar MXene membrane for ultrafast hydrogen sieving. Journal of Membrane Science, 2019, 569: 117–123
https://doi.org/10.1016/j.memsci.2018.10.017
27 A Feng, Y Yu, F Jiang, Y Wang, L Mi, Y Yu, L Song. Fabrication and thermal stability of NH4HF2-etched Ti3C2 MXene. Ceramics International, 2017, 43(8): 6322–6328
https://doi.org/10.1016/j.ceramint.2017.02.039
28 J Li, X Li, B Van der Bruggen. MXene-based membrane for molecular separation. Environmental Science. Nano, 2020, 7(5): 1289–1304
https://doi.org/10.1039/C9EN01478K
29 C E Ren, K B Hatzell, M Alhabeb, Z Ling, K A Mahmoud, Y Gogotsi. Charge- and size-selective ion ieving through Ti3C2Tx MXene membranes. Journal of Physical Chemistry Letters, 2015, 6(20): 4026–4031
https://doi.org/10.1021/acs.jpclett.5b01895
30 L Ding, Y Wei, Y Wang, H Chen, J Caro, H Wang. A two-dimensional lamellar membrane: MXene nanosheet stacks. Angewandte Chemie International Edition, 2017, 56(7): 1825–1829
https://doi.org/10.1002/anie.201609306
31 L Ding, Y Wei, L Li, T Zhang, H Wang, J Xue, L X Ding, S Wang, J Caro, Y Gogotsi. MXene molecular sieving membranes for highly efficient gas separation. Nature Communications, 2018, 9(1): 155–161
https://doi.org/10.1038/s41467-017-02529-6
32 L Li, T Zhang, Y Duan, Y Wei, C Dong, L Ding, Z Qiao, H Wang. Selective gas diffusion in two-dimensional MXene lamellar membranes: insights from molecular dynamics simulations. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(25): 11734–11742
https://doi.org/10.1039/C8TA03701A
33 J Shen, G Liu, Y Ji, Q Liu, L Cheng, K Guan, M Zhang, G Liu, J Xiong, J Yang, W Jin. 2D MXene nanofilms with tunable gas transport channels. Advanced Functional Materials, 2018, 28(31): 1801511–1801523
https://doi.org/10.1002/adfm.201801511
34 F Zhou, H N Tien, Q Dong, W L Xu, H Li, S Li, M Yu. Ultrathin, ethylenediamine-functionalized graphene oxide membranes on hollow fibers for CO2 capture. Journal of Membrane Science, 2019, 573: 184–191
https://doi.org/10.1016/j.memsci.2018.11.080
35 J Shen, G Liu, K Huang, W Jin, K R Lee, N Xu. Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture. Angewandte Chemie International Edition, 2015, 54(2): 578–582
36 Z Kang, S Wang, L Fan, M Zhang, W Kang, J Pang, X Du, H Guo, R Wang, D Sun. In situ generation of intercalated membranes for efficient gas separation. Communications Chemistry, 2018, 1(1): 3–10
https://doi.org/10.1038/s42004-017-0002-y
37 Y Deng, T Shang, Z Wu, Y Tao, C Luo, J Liang, D Han, R Lyu, C Qi, W Lv, F Kang, Q H Yang. Fast gelation of Ti3C2Tx MXene initiated by metal ions. Advanced Materials, 2019, 31(43): 1902432–1902438
https://doi.org/10.1002/adma.201902432
38 M Naguib, R A Adams, Y Zhao, D Zemlyanov, A Varma, J Nanda, V G Pol. Electrochemical performance of MXenes as K-ion battery anodes. Chemical Communications, 2017, 53(51): 6883–6886
https://doi.org/10.1039/C7CC02026K
39 Y Xie, Y Dall’Agnese, M Naguib, Y Gogotsi, M W Barsoum, H L Zhuang, P R Kent. Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano, 2014, 8(9): 9606–9615
https://doi.org/10.1021/nn503921j
40 X Tan, K Li. Oxygen production using dense ceramic hollow fiber membrane modules with different operating modes. AIChE Journal. American Institute of Chemical Engineers, 2007, 53(4): 838–845
https://doi.org/10.1002/aic.11116
41 H Wang, A Feldhoff, J Caro, T Schiestel, S Werth. Oxygen selective ceramic hollow fiber membranes for partial oxidation of methane. AIChE Journal. American Institute of Chemical Engineers, 2009, 55(10): 2657–2664
https://doi.org/10.1002/aic.11856
42 J Zhu, X Meng, J Zhao, Y Jin, N Yang, S Zhang, J Sunarso, S Liu. Facile hydrogen/nitrogen separation through graphene oxide membranes supported on YSZ ceramic hollow fibers. Journal of Membrane Science, 2017, 535: 143–150
https://doi.org/10.1016/j.memsci.2017.04.032
43 M Alhabeb, K Maleski, B Anasori, P Lelyukh, L Clark, S Sin, Y Gogotsi. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chemistry of Materials, 2017, 29(18): 7633–7644
https://doi.org/10.1021/acs.chemmater.7b02847
44 M Ghidiu, M R Lukatskaya, M Q Zhao, Y Gogotsi, M W Barsoum. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 2014, 516(7529): 78–81
https://doi.org/10.1038/nature13970
45 L Huang, Y Li, Q Zhou, W Yuan, G Shi. Graphene oxide membranes with tunable semipermeability in organic solvents. Advanced Materials, 2015, 27(25): 3797–3802
https://doi.org/10.1002/adma.201500975
46 M R Lukatskaya, O Mashtalir, C E Ren, Y Dall’Agnese, P Rozier, P L Taberna, M Naguib, P Simon, M W Barsoum, Y Gogotsi. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 2013, 341(6153): 1502–1505
https://doi.org/10.1126/science.1241488
47 Z Ling, C E Ren, M Q Zhao, J Yang, J M Giammarco, J Qiu, M W Barsoum, Y Gogotsi. Flexible and conductive MXene films and nanocomposites with high capacitance. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(47): 16676–16681
https://doi.org/10.1073/pnas.1414215111
48 C Chi, X Wang, Y Peng, Y Qian, Z Hu, J Dong, D Zhao. Facile preparation of graphene oxide membranes for gas separation. Chemistry of Materials, 2016, 28(9): 2921–2927
https://doi.org/10.1021/acs.chemmater.5b04475
49 V McKoy, O Sinanoğlu. Theory of dissociation pressures of some gas hydrates. Journal of Chemical Physics, 1963, 38(12): 2946–2956
https://doi.org/10.1063/1.1733625
50 H W Kim, H W Yoon, S M Yoon, B M Yoo, B K Ahn, Y H Cho, H J Shin, H Yang, U Paik, S Kwon, J Y Choi, H B Park. Selective gas transport through few-layered graphene and graphene oxide membranes. Science, 2013, 342(6154): 91–95
https://doi.org/10.1126/science.1236098
51 E Shamsaei, Z X Low, X Lin, A Mayahi, H Liu, X Zhang, J Zhe Liu, H Wang. Rapid synthesis of ultrathin, defect-free ZIF-8 membranes via chemical vapour modification of a polymeric support. Chemical Communications, 2015, 51(57): 11474–11477
https://doi.org/10.1039/C5CC03537F
52 Y Li, F Liang, H Bux, W Yang, J Caro. Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation. Journal of Membrane Science, 2010, 354(1-2): 48–54
https://doi.org/10.1016/j.memsci.2010.02.074
53 M Jia, Y Feng, S Liu, J Qiu, J Yao. Graphene oxide gas separation membranes intercalated by UiO-66-NH2 with enhanced hydrogen separation performance. Journal of Membrane Science, 2017, 539: 172–177
https://doi.org/10.1016/j.memsci.2017.06.005
54 Z Hong, F Sun, D Chen, C Zhang, X Gu, N Xu. Improvement of hydrogen-separating performance by on-stream catalytic cracking of silane over hollow fiber MFI zeolite membrane. International Journal of Hydrogen Energy, 2013, 38(20): 8409–8414
https://doi.org/10.1016/j.ijhydene.2013.04.154
55 X Wang, C Chi, J Tao, Y Peng, S Ying, Y Qian, J Dong, Z Hu, Y Gu, D Zhao. Improving the hydrogen selectivity of graphene oxide membranes by reducing non-selective pores with intergrown ZIF-8 crystals. Chemical Communications, 2016, 52(52): 8087–8090
https://doi.org/10.1039/C6CC02013E
56 A Huang, Q Liu, N Wang, Y Zhu, J Caro. Bicontinuous zeolitic imidazolate framework ZIF-8@GO membrane with enhanced hydrogen selectivity. Journal of the American Chemical Society, 2014, 136(42): 14686–14689
https://doi.org/10.1021/ja5083602
57 B Elyassi, M Sahimi, T T Tsotsis. Silicon carbide membranes for gas separation applications. Journal of Membrane Science, 2007, 288(1-2): 290–297
https://doi.org/10.1016/j.memsci.2006.11.027
58 G Xu, J Yao, K Wang, L He, P A Webley, C Chen, H Wang. Preparation of ZIF-8 membranes supported on ceramic hollow fibers from a concentrated synthesis gel. Journal of Membrane Science, 2011, 385-386: 187–193
https://doi.org/10.1016/j.memsci.2011.09.040
59 Y Liu, Y Peng, N Wang, Y Li, J H Pan, W Yang, J Caro. Significantly enhanced separation using ZIF-8 membranes by partial conversion of calcined layered double hydroxide precursors. ChemSusChem, 2015, 8(21): 3582–3586
https://doi.org/10.1002/cssc.201500977
60 H J Park, M P Suh. Enhanced isosteric heat, selectivity, and uptake capacity of CO2 adsorption in a metal-organic framework by impregnated metal ions. Chemical Science (Cambridge), 2013, 4(2): 685–690
https://doi.org/10.1039/C2SC21253F
[1] FCE-20049-OF-FY_suppl_1 Download
[1] Kai Qu, Kang Huang, Zhi Xu. Recent progress in the design and fabrication of MXene-based membranes[J]. Front. Chem. Sci. Eng., 2021, 15(4): 820-836.
[2] Wenxin Xu, Xin Zhao, Jiali Tang, Chao Zhang, Yu Gao, Shin-ichi Sasaki, Hitoshi Tamiaki, Aijun Li, Xiao-Feng Wang. Synthesis of Chl@Ti3C2 composites as an anode material for lithium storage[J]. Front. Chem. Sci. Eng., 2021, 15(3): 709-716.
[3] Yingying Jian, Danyao Qu, Lihao Guo, Yujin Zhu, Chen Su, Huanran Feng, Guangjian Zhang, Jia Zhang, Weiwei Wu, Ming-Shui Yao. The prior rules of designing Ti3C2Tx MXene-based gas sensors[J]. Front. Chem. Sci. Eng., 2021, 15(3): 505-517.
[4] Tao WANG, Yuzhong ZHANG, Guangfen LI, Hong LI. Preparation and characterization of alumina hollow fiber membranes[J]. Front Chem Eng Chin, 2009, 3(3): 265-271.
[5] Zhihong YANG, Guoliang ZHANG, Lan LIN, Danping REN, Qin MENG, Hongzi ZHANG. Effects of baffles on separation of aqueous ethanol solution with hollow fibers[J]. Front Chem Eng Chin, 2009, 3(1): 68-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed