|
|
Nickel(II) ion-intercalated MXene membranes for enhanced H2/CO2 separation |
Yiyi Fan1, Jinyong Li1, Saidi Wang1, Xiuxia Meng1( ), Yun Jin1, Naitao Yang1, Bo Meng1, Jiaquan Li2, Shaomin Liu2,3( ) |
1. School of Chemical Engineering, Shandong University of Technology, Zibo 255049, China 2. Department of Chemical Engineering, Curtin University, Perth, WA 6845, Australia 3. College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China |
|
|
Abstract Hydrogen fuel has been embraced as a potential long-term solution to the growing demand for clean energy. A membrane-assisted separation is promising in producing high-purity H2. Molecular sieving membranes (MSMs) are endowed with high gas selectivity and permeability because their well-defined micropores can facilitate molecular exclusion, diffusion, and adsorption. In this work, MXene nanosheets intercalated with Ni2+ were assembled to form an MSM supported on Al2O3 hollow fiber via a vacuum-assisted filtration and drying process. The prepared membranes showed excellent H2/CO2 mixture separation performance at room temperature. Separation factor reached 615 with a hydrogen permeance of 8.35 × 10−8 mol·m−2·s−1·Pa−1. Compared with the original Ti3C2Tx/Al2O3 hollow fiber membranes, the permeation of hydrogen through the Ni2+-Ti3C2Tx/Al2O3 membrane was considerably increased, stemming from the strong interaction between the negatively charged MXene nanosheets and Ni2+. The interlayer spacing of MSMs was tuned by Ni2+. During 200-hour testing, the resultant membrane maintained an excellent gas separation without any substantial performance decline. Our results indicate that the Ni2+ tailored Ti3C2Tx/Al2O3 hollow fiber membranes can inspire promising industrial applications.
|
Keywords
MXene
H2/CO2 separation
nickel ions
hollow fiber
|
Corresponding Author(s):
Xiuxia Meng,Shaomin Liu
|
Just Accepted Date: 29 September 2020
Online First Date: 07 December 2020
Issue Date: 04 June 2021
|
|
1 |
M Liu, P A Gurr, Q Fu, P A Webley, G G Qiao. Two-dimensional nanosheet-based gas separation membranes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(46): 23169–23196
https://doi.org/10.1039/C8TA09070J
|
2 |
J Wang, J Zhu, Y Zhang, J Liu, B Van der Bruggen. Nanoscale tailor-made membranes for precise and rapid molecular sieve separation. Nanoscale, 2017, 9(9): 2942–2957
https://doi.org/10.1039/C6NR08417F
|
3 |
J Sunarso, S S Hashim, Y S Lin, S Liu. Membranes for helium recovery: an overview on the context, materials and future directions. Separation and Purification Technology, 2017, 176: 335–383
https://doi.org/10.1016/j.seppur.2016.12.020
|
4 |
F A Nezhad, N Han, Y Jin, Z Shen, Y Wang, N Yang, S Liu. Experimental and theoretical exploration of gas permeation mechanism through 2D graphene (not graphene oxides) membranes. Journal of Membrane Science, 2020, 601: 117883
https://doi.org/10.1016/j.memsci.2020.117883
|
5 |
D L Gin, R D Noble. Designing the next generation of chemical separation membranes. Science, 2011, 332(6030): 674–676
https://doi.org/10.1126/science.1203771
|
6 |
H B Park, J Kamcev, L M Robeson, M Elimelech, B D Freeman. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science, 2017, 356(6343): eaab0530
https://doi.org/10.1126/science.aab0530
|
7 |
P Bernardo, E Drioli, G Golemme. Membrane gas separation: a review/state of the art. Industrial & Engineering Chemistry Research, 2009, 48(10): 4638–4663
https://doi.org/10.1021/ie8019032
|
8 |
C H Lau, P Li, F Li, T S Chung, D R Paul. Reverse-selective polymeric membranes for gas separations. Progress in Polymer Science, 2013, 38(5): 740–766
https://doi.org/10.1016/j.progpolymsci.2012.09.006
|
9 |
H Li, Z Song, X Zhang, Y Huang, S Li, Y Mao, H J Ploehn, Y Bao, M Yu. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science, 2013, 342(6154): 95–98
https://doi.org/10.1126/science.1236686
|
10 |
S Battersby, T Tasaki, S Smart, B Ladewig, S Liu, M C Duke, V Rudolph, J C Diniz da Costa. Performance of cobalt silica membranes in gas mixture separation. Journal of Membrane Science, 2009, 329(1-2): 91–98
https://doi.org/10.1016/j.memsci.2008.12.051
|
11 |
Y Liu, N Wang, Z Cao, J Caro. Molecular sieving through interlayer galleries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(5): 1235–1238
https://doi.org/10.1039/C3TA13792A
|
12 |
X Wang, C Chi, K Zhang, Y Qian, K M Gupta, Z Kang, J Jiang, D Zhao. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nature Communications, 2017, 8(1): 14460–14469
https://doi.org/10.1038/ncomms14460
|
13 |
H K Jeong, S Nair, T Vogt, L C Dickinson, M Tsapatsis. A highly crystalline layered silicate with three-dimensionally microporous layers. Nature Materials, 2003, 2(1): 53–58
https://doi.org/10.1038/nmat795
|
14 |
M Tsapatsis. 2-Dimensional zeolites. AIChE Journal, 2014, 60(7): 2374–2381
https://doi.org/10.1002/aic.14462
|
15 |
K V Agrawal, B Topuz, T C Pham, T H Nguyen, N Sauer, N Rangnekar, H Zhang, K Narasimharao, S N Basahel, L F Francis, C W Macosko, S Al-Thabaiti, M Tsapatsis, K B Yoon. Oriented MFI membranes by gel-less secondary growth of sub-100 nm MFI-Nanosheet seed layers. Advanced Materials, 2015, 27(21): 3243–3249
https://doi.org/10.1002/adma.201405893
|
16 |
S R Venna, M Lartey, T Li, A Spore, S Kumar, H B Nulwala, D R Luebke, N L Rosi, E Albenze. Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(9): 5014–5022
https://doi.org/10.1039/C4TA05225K
|
17 |
Y Peng, Y Li, Y Ban, H Jin, W Jiao, X Liu, W Yang. Membranes. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science, 2014, 346(6215): 1356–1359
https://doi.org/10.1126/science.1254227
|
18 |
Z Zhao, X Ma, A Kasik, Z Li, Y S Lin. Gas separation properties of metal organic framework (MOF-5) membranes. Industrial & Engineering Chemistry Research, 2012, 52(3): 1102–1108
|
19 |
D Cohen-Tanugi, J C Grossman. Water desalination across nanoporous graphene. Nano Letters, 2012, 12(7): 3602–3608
|
20 |
W Wang, E Eftekhari, G Zhu, X Zhang, Z Yan, Q Li. Graphene oxide membranes with tunable permeability due to embedded carbon dots. Chemical Communications, 2014, 50(86): 13089–13092
https://doi.org/10.1039/C4CC05295A
|
21 |
J Kang, H Zhang, X Duan, H Sun, X Tan, S Liu, S Wang. Magnetic Ni-Co alloy encapsulated N-doped carbon nanotubes for catalytic membrane degradation of emerging contaminants. Chemical Engineering Journal, 2019, 362: 251–261
https://doi.org/10.1016/j.cej.2019.01.035
|
22 |
J Shen, G Liu, K Huang, Z Chu, W Jin, N Xu. Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving. ACS Nano, 2016, 10(3): 3398–3409
https://doi.org/10.1021/acsnano.5b07304
|
23 |
F Shahzad, M Alhabeb, C B Hatter, B Anasori, S Man Hong, C M Koo, Y Gogotsi. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 2016, 353(6304): 1137–1140
https://doi.org/10.1126/science.aag2421
|
24 |
M Naguib, O Mashtalir, J Carle, V Presser, J Lu, L Hultman, Y Gogotsi, M W Barsoum. Two-dimensional transition metal carbides. ACS Nano, 2012, 6(2): 1322–1331
https://doi.org/10.1021/nn204153h
|
25 |
H W Wang, M Naguib, K Page, D J Wesolowski, Y Gogotsi. Resolving the structure of Ti3C2Tx MXenes through multilevel structural modeling of the atomic pair distribution function. Chemistry of Materials, 2015, 28(1): 349–359
https://doi.org/10.1021/acs.chemmater.5b04250
|
26 |
Y Fan, L Wei, X Meng, W Zhang, N Yang, Y Jin, X Wang, M Zhao, S Liu. An unprecedented high-temperature-tolerance 2D laminar MXene membrane for ultrafast hydrogen sieving. Journal of Membrane Science, 2019, 569: 117–123
https://doi.org/10.1016/j.memsci.2018.10.017
|
27 |
A Feng, Y Yu, F Jiang, Y Wang, L Mi, Y Yu, L Song. Fabrication and thermal stability of NH4HF2-etched Ti3C2 MXene. Ceramics International, 2017, 43(8): 6322–6328
https://doi.org/10.1016/j.ceramint.2017.02.039
|
28 |
J Li, X Li, B Van der Bruggen. MXene-based membrane for molecular separation. Environmental Science. Nano, 2020, 7(5): 1289–1304
https://doi.org/10.1039/C9EN01478K
|
29 |
C E Ren, K B Hatzell, M Alhabeb, Z Ling, K A Mahmoud, Y Gogotsi. Charge- and size-selective ion ieving through Ti3C2Tx MXene membranes. Journal of Physical Chemistry Letters, 2015, 6(20): 4026–4031
https://doi.org/10.1021/acs.jpclett.5b01895
|
30 |
L Ding, Y Wei, Y Wang, H Chen, J Caro, H Wang. A two-dimensional lamellar membrane: MXene nanosheet stacks. Angewandte Chemie International Edition, 2017, 56(7): 1825–1829
https://doi.org/10.1002/anie.201609306
|
31 |
L Ding, Y Wei, L Li, T Zhang, H Wang, J Xue, L X Ding, S Wang, J Caro, Y Gogotsi. MXene molecular sieving membranes for highly efficient gas separation. Nature Communications, 2018, 9(1): 155–161
https://doi.org/10.1038/s41467-017-02529-6
|
32 |
L Li, T Zhang, Y Duan, Y Wei, C Dong, L Ding, Z Qiao, H Wang. Selective gas diffusion in two-dimensional MXene lamellar membranes: insights from molecular dynamics simulations. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(25): 11734–11742
https://doi.org/10.1039/C8TA03701A
|
33 |
J Shen, G Liu, Y Ji, Q Liu, L Cheng, K Guan, M Zhang, G Liu, J Xiong, J Yang, W Jin. 2D MXene nanofilms with tunable gas transport channels. Advanced Functional Materials, 2018, 28(31): 1801511–1801523
https://doi.org/10.1002/adfm.201801511
|
34 |
F Zhou, H N Tien, Q Dong, W L Xu, H Li, S Li, M Yu. Ultrathin, ethylenediamine-functionalized graphene oxide membranes on hollow fibers for CO2 capture. Journal of Membrane Science, 2019, 573: 184–191
https://doi.org/10.1016/j.memsci.2018.11.080
|
35 |
J Shen, G Liu, K Huang, W Jin, K R Lee, N Xu. Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture. Angewandte Chemie International Edition, 2015, 54(2): 578–582
|
36 |
Z Kang, S Wang, L Fan, M Zhang, W Kang, J Pang, X Du, H Guo, R Wang, D Sun. In situ generation of intercalated membranes for efficient gas separation. Communications Chemistry, 2018, 1(1): 3–10
https://doi.org/10.1038/s42004-017-0002-y
|
37 |
Y Deng, T Shang, Z Wu, Y Tao, C Luo, J Liang, D Han, R Lyu, C Qi, W Lv, F Kang, Q H Yang. Fast gelation of Ti3C2Tx MXene initiated by metal ions. Advanced Materials, 2019, 31(43): 1902432–1902438
https://doi.org/10.1002/adma.201902432
|
38 |
M Naguib, R A Adams, Y Zhao, D Zemlyanov, A Varma, J Nanda, V G Pol. Electrochemical performance of MXenes as K-ion battery anodes. Chemical Communications, 2017, 53(51): 6883–6886
https://doi.org/10.1039/C7CC02026K
|
39 |
Y Xie, Y Dall’Agnese, M Naguib, Y Gogotsi, M W Barsoum, H L Zhuang, P R Kent. Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano, 2014, 8(9): 9606–9615
https://doi.org/10.1021/nn503921j
|
40 |
X Tan, K Li. Oxygen production using dense ceramic hollow fiber membrane modules with different operating modes. AIChE Journal. American Institute of Chemical Engineers, 2007, 53(4): 838–845
https://doi.org/10.1002/aic.11116
|
41 |
H Wang, A Feldhoff, J Caro, T Schiestel, S Werth. Oxygen selective ceramic hollow fiber membranes for partial oxidation of methane. AIChE Journal. American Institute of Chemical Engineers, 2009, 55(10): 2657–2664
https://doi.org/10.1002/aic.11856
|
42 |
J Zhu, X Meng, J Zhao, Y Jin, N Yang, S Zhang, J Sunarso, S Liu. Facile hydrogen/nitrogen separation through graphene oxide membranes supported on YSZ ceramic hollow fibers. Journal of Membrane Science, 2017, 535: 143–150
https://doi.org/10.1016/j.memsci.2017.04.032
|
43 |
M Alhabeb, K Maleski, B Anasori, P Lelyukh, L Clark, S Sin, Y Gogotsi. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chemistry of Materials, 2017, 29(18): 7633–7644
https://doi.org/10.1021/acs.chemmater.7b02847
|
44 |
M Ghidiu, M R Lukatskaya, M Q Zhao, Y Gogotsi, M W Barsoum. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 2014, 516(7529): 78–81
https://doi.org/10.1038/nature13970
|
45 |
L Huang, Y Li, Q Zhou, W Yuan, G Shi. Graphene oxide membranes with tunable semipermeability in organic solvents. Advanced Materials, 2015, 27(25): 3797–3802
https://doi.org/10.1002/adma.201500975
|
46 |
M R Lukatskaya, O Mashtalir, C E Ren, Y Dall’Agnese, P Rozier, P L Taberna, M Naguib, P Simon, M W Barsoum, Y Gogotsi. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 2013, 341(6153): 1502–1505
https://doi.org/10.1126/science.1241488
|
47 |
Z Ling, C E Ren, M Q Zhao, J Yang, J M Giammarco, J Qiu, M W Barsoum, Y Gogotsi. Flexible and conductive MXene films and nanocomposites with high capacitance. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(47): 16676–16681
https://doi.org/10.1073/pnas.1414215111
|
48 |
C Chi, X Wang, Y Peng, Y Qian, Z Hu, J Dong, D Zhao. Facile preparation of graphene oxide membranes for gas separation. Chemistry of Materials, 2016, 28(9): 2921–2927
https://doi.org/10.1021/acs.chemmater.5b04475
|
49 |
V McKoy, O Sinanoğlu. Theory of dissociation pressures of some gas hydrates. Journal of Chemical Physics, 1963, 38(12): 2946–2956
https://doi.org/10.1063/1.1733625
|
50 |
H W Kim, H W Yoon, S M Yoon, B M Yoo, B K Ahn, Y H Cho, H J Shin, H Yang, U Paik, S Kwon, J Y Choi, H B Park. Selective gas transport through few-layered graphene and graphene oxide membranes. Science, 2013, 342(6154): 91–95
https://doi.org/10.1126/science.1236098
|
51 |
E Shamsaei, Z X Low, X Lin, A Mayahi, H Liu, X Zhang, J Zhe Liu, H Wang. Rapid synthesis of ultrathin, defect-free ZIF-8 membranes via chemical vapour modification of a polymeric support. Chemical Communications, 2015, 51(57): 11474–11477
https://doi.org/10.1039/C5CC03537F
|
52 |
Y Li, F Liang, H Bux, W Yang, J Caro. Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation. Journal of Membrane Science, 2010, 354(1-2): 48–54
https://doi.org/10.1016/j.memsci.2010.02.074
|
53 |
M Jia, Y Feng, S Liu, J Qiu, J Yao. Graphene oxide gas separation membranes intercalated by UiO-66-NH2 with enhanced hydrogen separation performance. Journal of Membrane Science, 2017, 539: 172–177
https://doi.org/10.1016/j.memsci.2017.06.005
|
54 |
Z Hong, F Sun, D Chen, C Zhang, X Gu, N Xu. Improvement of hydrogen-separating performance by on-stream catalytic cracking of silane over hollow fiber MFI zeolite membrane. International Journal of Hydrogen Energy, 2013, 38(20): 8409–8414
https://doi.org/10.1016/j.ijhydene.2013.04.154
|
55 |
X Wang, C Chi, J Tao, Y Peng, S Ying, Y Qian, J Dong, Z Hu, Y Gu, D Zhao. Improving the hydrogen selectivity of graphene oxide membranes by reducing non-selective pores with intergrown ZIF-8 crystals. Chemical Communications, 2016, 52(52): 8087–8090
https://doi.org/10.1039/C6CC02013E
|
56 |
A Huang, Q Liu, N Wang, Y Zhu, J Caro. Bicontinuous zeolitic imidazolate framework ZIF-8@GO membrane with enhanced hydrogen selectivity. Journal of the American Chemical Society, 2014, 136(42): 14686–14689
https://doi.org/10.1021/ja5083602
|
57 |
B Elyassi, M Sahimi, T T Tsotsis. Silicon carbide membranes for gas separation applications. Journal of Membrane Science, 2007, 288(1-2): 290–297
https://doi.org/10.1016/j.memsci.2006.11.027
|
58 |
G Xu, J Yao, K Wang, L He, P A Webley, C Chen, H Wang. Preparation of ZIF-8 membranes supported on ceramic hollow fibers from a concentrated synthesis gel. Journal of Membrane Science, 2011, 385-386: 187–193
https://doi.org/10.1016/j.memsci.2011.09.040
|
59 |
Y Liu, Y Peng, N Wang, Y Li, J H Pan, W Yang, J Caro. Significantly enhanced separation using ZIF-8 membranes by partial conversion of calcined layered double hydroxide precursors. ChemSusChem, 2015, 8(21): 3582–3586
https://doi.org/10.1002/cssc.201500977
|
60 |
H J Park, M P Suh. Enhanced isosteric heat, selectivity, and uptake capacity of CO2 adsorption in a metal-organic framework by impregnated metal ions. Chemical Science (Cambridge), 2013, 4(2): 685–690
https://doi.org/10.1039/C2SC21253F
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|