Please wait a minute...
Frontiers of Electrical and Electronic Engineering

ISSN 2095-2732

ISSN 2095-2740(Online)

CN 10-1028/TM

Front Elect Electr Eng Chin    2009, Vol. 4 Issue (3) : 342-347    https://doi.org/10.1007/s11460-009-0050-x
RESEARCH ARTICLE
Simulation of inhomogeneous strain in Ge-Si core-shell nanowires
Yuhui HE1, Yuning ZHAO1, Chun FAN2, Xiaoyan LIU1, Ruqi HAN1()
1. Institute of Microelectronics, Peking University, Beijing 100871, China; 2. Computer Center of Peking University, Beijing 100871, China
 Download: PDF(287 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper studies the elastic deformation field in lattice-mismatched Ge-Si core-shell nanowires (NWs). Infinite wires with a cylindrical cross section under the assumption of translational symmetry are considered. The strain distributions are found by minimizing the elastic energy per unit cell using finite element method. This paper finds that the trace of the strain is discontinuous with a simple, almost piecewise variation between core and shell, whereas the individual components of the strain can exhibit complex variations. The simulation results are prerequisite of strained band structure calculation, and pave a way for further investigation of strain effect on the related transport property simulation.

Keywords core-shell nanowire      strain      continuum elasticity     
Corresponding Author(s): HAN Ruqi,Email:hanrq@ime.pku.edu.cn   
Issue Date: 05 September 2009
 Cite this article:   
Yuhui HE,Yuning ZHAO,Chun FAN, et al. Simulation of inhomogeneous strain in Ge-Si core-shell nanowires[J]. Front Elect Electr Eng Chin, 2009, 4(3): 342-347.
 URL:  
https://academic.hep.com.cn/fee/EN/10.1007/s11460-009-0050-x
https://academic.hep.com.cn/fee/EN/Y2009/V4/I3/342
Fig.1  Schematic view of Ge-Si core-shell nanowires. (a) Side view of Ge-Si core-shell nanowire; (b) top view of Ge-Si core-shell nanowire
Fig.2  distribution of strain energy in NW cross-section. (a) Ge core radius= 7 nm and Si shell thicknesses = 1 nm; (b) = 7 nm and = 2 nm; (c) = 7 nm and = 3 nm
Fig.3  distribution of strain tensor components () in NW cross-section, with = 6 nm and = 2 nm. (a) (); (b) (); (c) ()
Fig.4  NW axial strain in Ge core (: dash-triangle line) and in Si shell (: solid-square line) versus Si shell thickness . Here = 6 nm
Fig.5  distribution of strain energy () and strain tensor components () in cross-section of Ge-Si-Ge core-multishell NW, with Ge core radius = 6 nm, Si shell thickness = 3 nm, and outer Ge shell thickness . (a) Strain energy; (b) (); (c) (); (d) ()
1 Lauhon L J, Gudiksen M S, Wang D, Lieber C M. Epitaxial core-shell and core-multishell nanowire heterostructures. Nature , 2002, 420(6911): 57–61
doi: 10.1038/nature01141
2 Lu W, Xiang J, Timko B P, Wu Y, Lieber C M. One-dimensional hole gas in germanium/silicon nanowire heterostructures. Proceedings of the National Academy of Sciences of the United States of America , 2005, 102(29): 10046–10051
doi: 10.1073/pnas.0504581102
3 Lin H M, Chen Y L, Yang J, Liu Y C, Yin K M, Kai J J, Chen F R, Chen L C, Chen Y F, Chen C C. Synthesis and characterization of core-shell GaP@GaN and GaN@GaP nanowires. Nano Letters , 2003, 3(4): 537–541
doi: 10.1021/nl0340125
4 Tateno K, Gotoh H, Watanabe Y. GaAs/AlGaAs nanowires capped with AlGaAs layers on GaAs(311)B substrates. Applied Physics Letters , 2004, 85(10): 1808–1810
doi: 10.1063/1.1789234
5 Sk?ld N, Karlsson L S, Larsson M W, Pistol M E, Seifert W, Tragardh J, Samuelson L. Growth and optical properties of strained GaAs-GaxIn1-xP core-shell nanowires. Nano Letters , 2005, 5(10): 1943–1947
6 Xiang J, Lu W, Hu Y, Wu Y, Yan H, Lieber C M. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature , 2006, 441(7092): 489–493
doi: 10.1038/nature04796
7 Liang G, Xiang J, Kharche N, Klimeck G, Lieber C M, Lundstrom M. Performance analysis of a Ge/Si core/shell nanowire field-effect transistor. Nano Letters , 2007, 7(3): 642–646
doi: 10.1021/nl062596f
8 Liu X W, Hu J, Pan B C. The composition-dependent mechanical properties of Ge/Si core-shell nanowires. Physica E: Low-dimensional Systems and Nanostructures , 2008, 40(10): 3042–3048
doi: 10.1016/j.physe.2008.03.011
9 De Caro L, Tapfer L. Elastic lattice deformation of semiconductor heterostructures grown on arbitrarily oriented substrate surfaces. Physical Review B , 1993, 48(4): 2298–2303
doi: 10.1103/PhysRevB.48.2298
10 Landau L, Lifshitz E. Theory of Elasticity. New York: Pergamon, 1959
11 Pryor C, Kim J, Wang L W, Williamson A J, Zunger A. Comparison of two methods for describing the strain profiles in quantum dots. Journal of Applied Physics , 1998, 83(5): 2548–2550
doi: 10.1063/1.366631
12 Jogai B. Three-dimensional strain field calculations in coupled InAs/GaAs quantum dots. Journal of Applied Physics , 2000, 88(9): 5050–5055
doi: 10.1063/1.1313780
13 Cleland A N. Foundations of Nanomechanics. Berlin: Springer, 2003
14 S?ndergaard N, He Y H, Fan C, Han R Q, Guhr T, Xu H Q. Strain distributions in lattice mismatched semiconductor core-shell nanowires. Journal of Vacuum Science and Technology B , 2009, 27(2): 827–830
doi: 10.1116/1.3054200
15 Zienkiewicz O C, Taylor R L. The Finite Element Method. Maidenhead: McGraw-Hill, 1994
16 Vurgaftman I, Meyer J R, Ram-Mohan L R. Band parameters for III-V compound semiconductors and their alloys. Journal of Applied Physics , 2001, 89(11): 5815–5875
doi: 10.1063/1.1368156
[1] Xinbo GAO, Xiumei WANG. Dimensionality reduction with latent variable model[J]. Front Elect Electr Eng, 2012, 7(1): 116-126.
[2] Jing JIN, Chongsheng LIN, Qixing WANG, Hongwen YANG, Yafeng WANG. Power allocation for collaborative transmission in LTE-Advanced[J]. Front Elect Electr Eng Chin, 2011, 6(4): 515-520.
[3] Lianggui LIU, Weiqiang XU, Huiling JIA, Jie WU. A novel and effective multi-constrained QoS routing scheme in WMNs[J]. Front Elect Electr Eng Chin, 2011, 6(4): 507-514.
[4] Chen SONG, Xiaohong GUAN, Qianchuan ZHAO, Qing-Shan JIA. Remanufacturing planning based on constrained ordinal optimization[J]. Front Elect Electr Eng Chin, 2011, 6(3): 443-452.
[5] LI Wei, ZHANG Xiaopin, ZHANG Min, YE Peida. Resolving the problem of cross sensitivity in fiber Bragg grating sensor based on the principle of polarized-light interference[J]. Front. Electr. Electron. Eng., 2007, 2(2): 234-239.
[6] ZHOU Zhi, LI Jilong, OU Jinping. Interface transferring mechanism and error modification of embedded FBG strain sensors[J]. Front. Electr. Electron. Eng., 2007, 2(1): 92-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed