Please wait a minute...
Frontiers of Electrical and Electronic Engineering

ISSN 2095-2732

ISSN 2095-2740(Online)

CN 10-1028/TM

Front Elect Electr Eng    2012, Vol. 7 Issue (1) : 116-126    https://doi.org/10.1007/s11460-012-0179-x
RESEARCH ARTICLE
Dimensionality reduction with latent variable model
Xinbo GAO(), Xiumei WANG
School of Electronic Engineering, Xidian University, Xi’an 710071, China
 Download: PDF(627 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Over the past few decades, latent variable model (LVM)-based algorithms have attracted considerable attention for the purpose of data dimensionality reduction, which plays an important role in machine learning, pattern recognition, and computer vision. LVM is an effective tool for modeling density of the observed data. It has been used in dimensionality reduction for dealing with the sparse observed samples. In this paper, two LVM-based dimensionality reduction algorithms are presented firstly, i.e., supervised Gaussian process latent variable model and semi-supervised Gaussian process latent variable model. Then, we propose an LVMbased transfer learning model to cope with the case that samples are not independent identically distributed. In the end of each part, experimental results are given to demonstrate the validity of the proposed dimensionality reduction algorithms.

Keywords dimensionality reduction      latent variable model      pairwise constraints      Bregman divergence     
Corresponding Author(s): GAO Xinbo,Email:xbgao@mail.xidian.edu.cn   
Issue Date: 05 March 2012
 Cite this article:   
Xinbo GAO,Xiumei WANG. Dimensionality reduction with latent variable model[J]. Front Elect Electr Eng, 2012, 7(1): 116-126.
 URL:  
https://academic.hep.com.cn/fee/EN/10.1007/s11460-012-0179-x
https://academic.hep.com.cn/fee/EN/Y2012/V7/I1/116
1 Koren Y, Carmel L. Robust linear dimensionality reduction. IEEE Transactions on Visualization and Computer Graphics , 2004, 10(4): 459-470
doi: 10.1109/TVCG.2004.17
2 Duda R O, Hart P E, Stork D G. Pattern Classification. 2nd ed. New York: Wiley, 2000
3 Tao D, Li X, Wu X, HuW, Maybank S J. Supervised tensor learning. Knowledge and Information Systems , 2007, 13(1): 1-42
doi: 10.1007/s10115-006-0050-6
4 Tao D, Li X, Wu X, Maybank S J. General averaged divergences analysis. In: Proceedings of IEEE International Conference on Data Mining . 2007, 302-311
5 He X. Laplacian regularized D-optimal design for active learning and its application to image retrieval. IEEE Transactions on Image Processing , 2010, 19(1): 254-263
doi: 10.1109/TIP.2009.2032342
6 Tao D, Tang X, Li X, Rui Y. Direct kernel biased discriminant analysis: A new content-based image retrieval relevance feedback algorithm. IEEE Transactions on Multimedia , 2006, 8(4): 716-727
doi: 10.1109/TMM.2005.861375
7 Joliffe I. Principal Component Analysis. New York: Springer, 1986
8 Anderson T W. Asymptotic theory for principal component analysis. Annals of Mathematical Statistics , 1963, 34(1): 122-148
doi: 10.1214/aoms/1177704248
9 Sch?lkopf B, Smola A, Müller K R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation , 1998, 10(5): 1299-1319
doi: 10.1162/089976698300017467
10 Fiori S. Visualization of Riemannian-manifold-valued elements by multidimensional scaling. Neurocomputing , 2011, 74(6): 983-992
doi: 10.1016/j.neucom.2010.11.015
11 Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding. Science , 2000, 290(5500): 2323-2326
doi: 10.1126/science.290.5500.2323
12 Li X, Lin S, Yan S, Xu D. Discriminant locally linear embedding with high-order tensor data. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics , 2008, 38(2): 342-352
doi: 10.1109/TSMCB.2007.911536
13 Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation , 2003, 15(6): 1373-1396
doi: 10.1162/089976603321780317
14 Tenenbaum J B, de Silva V, Langford J C. A global geometric framework for nonlinear dimensionality reduction. Science , 2000, 290(5500): 2319-2323
doi: 10.1126/science.290.5500.2319
15 de Silva V, Tenenbaum J B. Global versus local methods in nonlinear dimensionality reduction. Advances in Neural Information Processing Systems , 2003, 15: 705-712
16 He X, Niyogi P. Locality preserving projections. Advances in Neural Information Processing Systems , 2003, 16: 153-160
17 He X, Yan S, Hu Y, Niyogi P, Zhang H-J. Face recognition using Laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2005, 27(3): 328-340
doi: 10.1109/TPAMI.2005.55
18 He X, Cai D, Yan S, Zhang H-J. Neighborhood preserving embedding. In: Proceedings of the 10th International Conference on Computer Vision . 2005, 2: 1208-1213
19 Bar-Hillel A, Hertz T, Shental N, Weinshall D. Learning a Mahalanobis metric from equivalence constraints. Journal of Machine Learning Research , 2005, 6(1): 937-965
20 Mika S, R?tsch G,Weston J, Sch?lkopf B, Müller K R. Fisher discriminant analysis with kernels. In: Proceedings of IEEE Signal Processing Society Workshop (Neural Networks for Signal Processing IX) . 1999, 41-48
21 Baudat G, Anouar F. Generalized discriminant analysis using a kernel approach. Neural Computation , 2000, 12(10): 2385-2404
doi: 10.1162/089976600300014980
22 Yan S, Xu D, Zhang B, Zhang H-J, Yang Q, Lin S. Graph embedding and extensions: A general framework for dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2007, 29(1): 40-51
doi: 10.1109/TPAMI.2007.250598
23 Sugiyama M. Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis. Journal of Machine Learning Research , 2007, 8: 1027-1061
24 Tipping M E, Bishop C M. Probabilistic principal component analysis. Journal of the Royal Statistical Society, Series B: Methodological , 1999, 61(3): 611-622
doi: 10.1111/1467-9868.00196
25 Bartholomew D J. Statistical Factor Analysis and Related Methods. New York: Wiley, 2004
26 Bishop C M, Svensen M, Williams C K I. GTM: The generative topographic mapping. Neural Computation , 1998, 10(1): 215-234
doi: 10.1162/089976698300017953
27 Lawrence N D. Gaussian process models for visualization of high dimensional data. Advances in Neural Information Processing Systems , 2004, 16: 329-336
28 Lawrence N D. Probabilistic non-linear principal component analysis with Gaussian process latent variable models. Journal of Machine Learning Research , 2005, 6: 1783-1816
29 Bishop C M. Learning in Graphical Models. Cambridge: MIT Press, 1999
30 Rabiner L R, Juang B H. An introduction to hidden Markov models. IEEE ASSP Magazine , 1986, 3(1): 4-16
doi: 10.1109/MASSP.1986.1165342
31 Blei D M, Ng A Y, Jordan M I. Latent Dirichlet allocation. Journal of Machine Learning Research , 2003, 3: 993-1022
32 Blei D M, Jordan M I. Variational methods for the Dirichlet process. In: Proceedings of the 21st International Conference on Machine Learning . 2004
33 Rabiner L R. A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE , 1989, 77(2): 257-286
doi: 10.1109/5.18626
34 Baker J K. The DRAGON system — An overview. IEEE Transactions on Acoustics, Speech, and Signal Processing , 1975, 23(1): 24-29
doi: 10.1109/TASSP.1975.1162650
35 Zhong J, Gao X, Tian C. Face sketch synthesis using E-HMM and selective ensemble. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing . 2007, 1: 485-488
36 Gao X, Zhong J, Li J, Tian C. Face sketch synthesis algorithm based on E-HMM and selective ensemble. IEEE Transactions on Circuits and Systems for Video Technology , 2008, 18(4): 487-496
doi: 10.1109/TCSVT.2008.918770
37 Fritz M, Schiele B. Decomposition, discovery and detection of visual categories using topic models. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition . 2008, 1-8
38 Blei D M, Griffiths T L, Jordan M I. The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies. Journal of the Association for Computing Machinery , 2010, 57(2): 21-30
doi: 10.1145/1667053.1667056
39 Li F, Perona P. A Bayesian hierarchical model for learning natural scene categories. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition . 2005, 2: 524-531
40 Wang C, Blei D, Li F. Simultaneous image classification and annotation. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition . 2009, 1903-1910
41 Niu Z, Hua G, Gao X, Tian Q. Spatial-DiscLDA for visual recognition. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition . 2011, 1769-1776
42 Wang J M, Fleet D J, Hertzmann A. Gaussian process dynamical models for human motion. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2008, 30(2): 283-298
doi: 10.1109/TPAMI.2007.1167
43 Urtasun R, Fleet D J, Fua P. 3D people tracking with Gaussian process dynamical models. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition . 2006, 1: 238-245
44 Navaratnam R, Fitzgibbon A W, Cipolla R. The joint manifold model for semi-supervised multi-valued regression. In: Proceedings of the 11th IEEE International Conference on Computer Vision . 2007, 1-8
doi: 10.1109/ICCV.2007.4408976
45 Gupta A, Chen T, Chen F, Kimber D, Davis L S. Context and observation driven latent variable model for human pose estimation. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition . 2008, 1-8
46 Salzmann M, Urtasun R, Fua P. Local deformation models for monocular 3D shape recovery. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition . 2008, 1-8
47 Gao X, Wang X, Tao D, Li X. Supervised Gaussian process latent variable model for dimensionality reduction. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics , 2011, 41(2): 425-434
doi: 10.1109/TSMCB.2010.2057422
48 Wang X, Gao X, Yuan Y, Tao D, Li J. Semi-supervised Gaussian process latent variable model with pairwise constraints. Neurocomputing , 2010, 73(10-12): 2186-2195
doi: 10.1016/j.neucom.2010.01.021
49 Gao X, Wang X, Li X, Tao D. Transfer latent variable model based on divergence analysis. Pattern Recognition , 2011, 44(10-11): 2358-2366
doi: 10.1016/j.patcog.2010.06.013
50 Nock R, Nielsen F. On weighting clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2006, 28(8): 1223-1235
doi: 10.1109/TPAMI.2006.168
51 Cayton L. Fast nearest neighbor retrieval for Bregman divergences. In: Proceedings of the 25th International Conference on Machine Learning . 2008, 112-119
doi: 10.1145/1390156.1390171
[1] Liang LIAO, Yanning ZHANG. MRI image segmentation based on fast kernel clustering analysis[J]. Front Elect Electr Eng Chin, 2011, 6(2): 363-373.
[2] Lijun ZHANG, Zhengguang CHEN, Miao ZHENG, Xiaofei HE. Robust non-negative matrix factorization[J]. Front Elect Electr Eng Chin, 2011, 6(2): 192-200.
[3] Hujun YIN. Advances in adaptive nonlinear manifolds and dimensionality reduction[J]. Front Elect Electr Eng Chin, 2011, 6(1): 72-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed