Please wait a minute...
Frontiers of Electrical and Electronic Engineering

ISSN 2095-2732

ISSN 2095-2740(Online)

CN 10-1028/TM

Front Elect Electr Eng Chin    2011, Vol. 6 Issue (1) : 72-85    https://doi.org/10.1007/s11460-011-0131-5
RESEARCH ARTICLE
Advances in adaptive nonlinear manifolds and dimensionality reduction
Hujun YIN()
The University of Manchester, Manchester, UK
 Download: PDF(384 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Recent decades have witnessed a much increased demand for advanced, effective and efficient methods and tools for analyzing, understanding and dealing with data of increasingly complex, high dimensionality and large volume. Whether it is in biology, neuroscience, modern medicine and social sciences or in engineering and computer vision, data are being sampled, collected and cumulated in an unprecedented speed. It is no longer a trivial task to analyze huge amounts of high dimensional data. A systematic, automated way of interpreting data and representing them has become a great challenge facing almost all fields and research in this emerging area has flourished. Several lines of research have embarked on this timely challenge and tremendous progresses and advances have been made recently. Traditional and linear methods are being extended or enhanced in order to meet the new challenges. This paper elaborates on these recent advances and discusses various state-of-the-art algorithms proposed from statistics, geometry and adaptive neural networks. The developments mainly follow three lines: multidimensional scaling, eigen-decomposition as well as principal manifolds. Neural approaches and adaptive or incremental methods are also reviewed. In the first line, traditional multidimensional scaling (MDS) has been extended not only to be more adaptive such as neural scale, curvilinear component analysis (CCA) and visualization induced self-organizing map (ViSOM) for online learning, but also to be more local scaling such as Isomap for enhanced flexibility for nonlinear data sets. The second line extends linear principal component analysis (PCA) and has attracted a huge amount of interest and enjoyed flourishing advances with methods like kernel PCA (KPCA), locally linear embedding (LLE) and Laplacian eigenmap. The advantage is obvious: a nonlinear problem is transformed into a linear one and a unique solution can then be sought. The third line starts with the nonlinear principal curve and surface and links up with adaptive neural network approaches such as self-organizing map (SOM) and ViSOM. Many of these frameworks have been further improved and enhanced for incremental learning and mapping function generalization. This paper discusses these recent advances and their connections. Their application issues and implementation matters will also be briefly enlightened and commented on.

Keywords dimensionality reduction      multidimensional scaling      nonlinear principal component analysis (PCA)      principal manifold      neural networks      selforganizing maps (SOM)      biologically inspired models      data projection      embedding and visualisation     
Corresponding Author(s): YIN Hujun,Email:h.yin@manchester.ac.uk   
Issue Date: 05 March 2011
 Cite this article:   
Hujun YIN. Advances in adaptive nonlinear manifolds and dimensionality reduction[J]. Front Elect Electr Eng Chin, 2011, 6(1): 72-85.
 URL:  
https://academic.hep.com.cn/fee/EN/10.1007/s11460-011-0131-5
https://academic.hep.com.cn/fee/EN/Y2011/V6/I1/72
1 Fodor I K. A survey of dimension reduction techniques. Technical Report UCRL-ID-148494 . San Francisco: Lawrence Livermore National Laboratory, 2002
2 Gorban A N, Kégl B, Wunsch D C, Zinovyev A. Principal Manifolds for Data Visualization and Dimension Reduction. Berlin: Springer, 2008
doi: 10.1007/978-3-540-73750-6
3 Van der Maaten L J P, Postma E O, van den Herik H J. Dimensionality reduction: a comparative review. Online Preprint (2008)
4 Yin H. Nonlinear dimensionality reduction and data visualization: A review. International Journal on Automation and Computing , 2007, 3(3): 294-303
doi: 10.1007/s11633-007-0294-y
5 Yin H, Huang W. Adaptive nonlinear manifolds and their applications to pattern recognition. Information Science , 2010, 180(14): 2649-2662
doi: 10.1016/j.ins.2010.04.004
6 Cox T F, Cox M A A. Multidimensional Scaling. London: Chapman & Hall, 1994
7 Tenenbaum J B, de Silva V, Langford J C. A global geometric framework for nonlinear dimensionality reduction. Science , 2000, 290(5500): 2319-2323
doi: 10.1126/science.290.5500.2319
8 Mao J, Jain A K. Artificial neural networks for feature extraction and multivariate data projection. IEEE Transactions on Neural Networks , 1995, 6(2): 296-317
doi: 10.1109/72.363467
9 Lowe D, Tipping M E. Feed-forward neural networks and topographic mappings for exploratory data analysis. Neural Computing & Applications , 1996, 4(2): 83-95
doi: 10.1007/BF01413744
10 Malthouse E C. Limitations of nonlinear PCA as performed with generic neural networks. IEEE Transactions on Neural Networks , 1998, 9(1): 165-173
doi: 10.1109/72.655038
11 Kramer M A. Nonlinear principal component analysis using autoassociative neural networks. American Institute of Chemical Engineers Journal , 1991, 37(1): 233-243
12 Karhunen J, Joutsensalo J. Generalization of principal component analysis, optimization problems, and neural networks. Neural Networks , 1995, 8(4): 549-562
doi: 10.1016/0893-6080(94)00098-7
13 Sch?lkopf B, Smola A, Müller K R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation , 1998, 10(5): 1299-1319
doi: 10.1162/089976698300017467
14 Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding. Science , 2000, 290(5500): 2323-2326
doi: 10.1126/science.290.5500.2323
15 Kouropteva O, Okun O, Pietik?inen M. Incremental locally linear embedding. Pattern Recognition , 2005, 38(10): 1764-1767
doi: 10.1016/j.patcog.2005.04.006
16 Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation , 2003, 15(6): 1373-1396
doi: 10.1162/089976603321780317
17 Weiss Y. Segmentation using eigenvectors: a unified view. In: Proceedings of IEEE International Conference on Computer Vision . 1999, 975-982
doi: 10.1109/ICCV.1999.790354
18 Hastie T, Stuetzle W. Principal curves. Journal of the American Statistical Association , 1989, 84(406): 502-516
doi: 10.2307/2289936
19 Banfield J D, Raftery A E. Ice floe identification in satellite images using mathematical morphology and clustering about principal curves. Journal of the American Statistical Association , 1992, 87(417): 7-16
doi: 10.2307/2290446
20 Delicado P. Another look at principal curves and surfaces. Journal of Multivariate Analysis , 2001, 77(1): 84-116
doi: 10.1006/jmva.2000.1917
21 Kégl B, Krzyzak A, Linder T, Zeger K. A polygonal line algorithm for constructing principal curves. Advances in Neural Information Processing Systems , 1998, 11: 501-507
22 Chang K Y, Ghosh J. A unified model for probabilistic principal surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2001, 23(1): 22-41
doi: 10.1109/34.899944
23 Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science , 2006, 313(5786): 504-507
doi: 10.1126/science.1127647
24 Kohonen T. Self-organized formation of topologically cor rect feature map. Biological Cybernetics , 1982, 43(1): 56-69
doi: 10.1007/BF00337288
25 Kohonen T. Self-Organizing Maps. 2nd ed. Berlin: Springer, 1997
26 Willshaw D J, von der Malsburg C. How patterned neural connections can be set up by self-organization. Proceedings of the Royal Society of London. Series B. Biological Sciences , 1976, 194(1117): 431-445
doi: 10.1098/rspb.1976.0087
27 Yin H. ViSOM-A novel method for multivariate data projection and structure visualization. IEEE Transactions on Neural Networks , 2002, 13(1): 237-243
doi: 10.1109/72.977314
28 Ritter H, Martinetz T, Schulten K. Neural Computation and Self-Organizing Maps: An Introduction. Menlo Park: Addison-Wesley Publishing Company, 1992
29 Yin H. Data visualization and manifold mapping using the ViSOM. Neural Networks , 2002, 15(8-9): 1005-1016
doi: 10.1016/S0893-6080(02)00075-8
30 Yin H. On multidimensional scaling and the embedding of self-organizing maps. Neural Networks , 2008, 21(2-3): 160-169
doi: 10.1016/j.neunet.2007.12.027
31 Borg I, Groenen P J F. Modern Multidimensional Scaling: Theory and Applications, 2nd ed. New York: Springer, 2005
32 Sammon J W. A nonlinear mapping for data structure analysis. IEEE Transactions on Computers , 1969, 18(5): 401-409
doi: 10.1109/T-C.1969.222678
33 Bronstein A M, Bronstein M M, Kimmel R. Generalized multidimensional scaling: A framework for isometryinvariant partial surface matching. Proceedings of the National Academy of Sciences of the United States of America , 2006, 103(5): 1168-1172
doi: 10.1073/pnas.0508601103
34 Lee R C T, Slagle J R, Blum H. A triangulation method for the sequential mapping of points from n-space to two-space. IEEE Transactions on Computers , 1977, 27(3): 288-292
doi: 10.1109/TC.1977.1674822
35 De Ridder D, Duin R P W. Sammon mapping using neural networks: a comparison. Pattern Recognition Letters , 1997, 18(11-13): 1307-1316
doi: 10.1016/S0167-8655(97)00093-7
36 Balasubramanian M, Schwartz E L. The Isomap algorithm and topological stability. Science , 2002, 295(5552): 7
doi: 10.1126/science.295.5552.7a
37 De Silva V, Tenenbaum J B. Global versus local methods in nonlinear dimensionality reduction. Advances in Neural Information Processing Systems , 2003, 15: 705-712
38 Agrafiotis D K. Stochastic proximity embedding. Journal of Computational Chemistry , 2003, 24(10): 1215-1221
doi: 10.1002/jcc.10234
39 Demartines P, Hérault J. Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets. IEEE Transactions on Neural Networks , 1997, 8(1): 148-154
doi: 10.1109/72.554199
40 Law M H, Jain A K. Incremental nonlinear dimensionality reduction by manifold learning. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2006, 28(3): 377-391
doi: 10.1109/TPAMI.2006.56
41 Goodhill G J, Sejnowski T. A unifying objective function for topographic mappings. Neural Computation , 1997, 9(6): 1291-1303
doi: 10.1162/neco.1997.9.6.1291
42 Oja E. Neural networks, principal components, and subspaces. International Journal of Neural Systems , 1989, 1(1): 61-68
doi: 10.1142/S0129065789000475
43 Sanger T D. Optimal unsupervised learning in a singlelayer linear feedforward network. Neural Networks , 1991, 2(6): 459-473
doi: 10.1016/0893-6080(89)90044-0
44 Ham J, Lee D D, Mika S, Sch?lkopf B. A kernel view of the dimensionality reduction of manifolds. In: Proceedings of the 21st International Conference on Machine Learning . 2004, 369-376
45 Saul L K, Roweis S T, Singer Y. Think globally, fit locally: unsupervised learning of nonlinear manifolds. Journal of Machine Learning Research , 2003, 4(2): 119-155
doi: 10.1162/153244304322972667
46 De Ridder D, Duin R P W. Locally linear embedding for classification. Technical Report PH-2002–01 . Netherlands: Delft University of Technology, 2002
47 Bengio Y, Paiement J F, Vincent P, Delalleau O, Le Roux N, Ouimet M. Out-of-sample extensions for LLE, Isomap, MDS, eigenmaps, and spectral clustering. Advances in Neural Information Processing Systems , 2004, 16: 177-184
48 Donoho D L, Grimes C E. Hessian eigenmaps: locally linear embedding techniques for high-dimensional data. Proceedings of the National Academy of Sciences of the United States of America , 2003, 100(10): 5591-5596
doi: 10.1073/pnas.1031596100
49 He X, Niyogi P. Locality preserving projections. Advances in Neural Information Processing Systems , 2003, 16: 152-160
50 Smola A J, Mika S, Sch?lkopf B, Williamson R C. Regularized principal manifolds. In: Proceedings of the 4th European Conference on Computational Learning Theory . 1999, 214-229
51 Yan S C, Xu D, Zhang B, Zhang H, Yang Q, Lin S. Graph embedding and extension: a general framework for dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2007, 29(1): 40-51
doi: 10.1109/TPAMI.2007.250598
52 Zhang Z, Zha H. Principal manifolds and nonlinear dimension reduction via local tangent space alignment. SIAM Journal on Scientific Computing , 2005, 26(1): 313-338
doi: 10.1137/S1064827502419154
53 Weinberger K Q, Saul L K. Unsupervised learning of image manifolds by semidefinite programming. International Journal of Computer Vision , 2006, 70(1): 77-90
doi: 10.1007/s11263-005-4939-z
54 LeBlanc M, Tibshirani R J. Adaptive principal surfaces. Journal of the American Statistical Association , 1994, 89(425): 53-64
doi: 10.2307/2291200
55 Tibshirani R. Principal curves revisited. Statistics and Computing , 1992, 2(4): 183-190
doi: 10.1007/BF01889678
56 Bishop C M, Svensén M, Williams C K I. GTM: The generative topographic mapping. Neural Computation , 1998, 10(1): 215-235
doi: 10.1162/089976698300017953
57 Kohonen T. Self-organization and associative memory. Berlin: Springer-Verlag, 1984
58 Yin H, Allinson N M. On the distribution and convergence of the feature space in self-organizing maps. Neural Computation , 1995, 7(6): 1178-1187
doi: 10.1162/neco.1995.7.6.1178
59 Luttrell S P. Derivation of a class of training algorithms. IEEE Transactions on Neural Networks , 1990, 1(2): 229-232
doi: 10.1109/72.80234
60 Luttrell S P. A Bayesian analysis of self-organizing maps. Neural Computation , 1994, 6(5): 767-794
doi: 10.1162/neco.1994.6.5.767
61 Durbin R, Mitchison G. A dimension reduction framework for understanding cortical maps. Nature , 1990, 343(6259): 644-647
doi: 10.1038/343644a0
62 Mitchison G. A type of duality between self-organizing maps and minimal wiring. Neural Computation , 1995, 7(1): 25-35
doi: 10.1162/neco.1995.7.1.25
63 Ripley B D. Pattern Recognition and Neural Networks. Cambridge: Cambridge University Press , 1996
64 Flexer A. Limitations of self-organizing maps for vector quantization and multidimensional scaling. Advances in Neural Information Processing Systems , 1997, 10: 445-451
65 Yin H. Resolution enhancement for the ViSOM. In: Proceedings of Workshop on Self-Organizing Maps . 2003, 208-212
66 Wu S, Chow T W S. PRSOM: A new visualization method by hybridizing multidimensional scaling and self-organizing map. IEEE Transactions on Neural Networks , 2005, 16(6): 1362-1380
doi: 10.1109/TNN.2005.853574
67 Estévez P A, Figueroa C J. Online data visualization using the neural gas network. Neural Networks , 2006, 19(6-7): 923-934
doi: 10.1016/j.neunet.2006.05.024
68 Kohonen T. The adaptive-subspace SOM (ASSOM) and its use for the implementation of invariant feature detection. In: Proceedings of International Conference on Artificial Neural Networks . 1995, 3-10
69 Yin H, Allinson N M. Self-organizing mixture networks for probability density estimation. IEEE Transactions on Neural Networks , 2001, 12(2): 405-411
doi: 10.1109/72.914534
70 Fyfe C. Two topographic maps for data visualization. Data Mining and Knowledge Discovery , 2007, 14(2): 207-224
doi: 10.1007/s10618-006-0047-5
71 Gorban A, Zinovyev A. Method of elastic maps and its applications in data visualization and data modeling. International Journal of Computing Anticipatory Systems , 2001, 12: 353-369
72 Tan X, Chen S, Zhou Z, Zhang F. Recognizing partially occluded, expression variant faces from single training image per person with SOM and soft k-NN ensemble. IEEE Transactions on Neural Networks , 2005, 16(4): 875-886
doi: 10.1109/TNN.2005.849817
73 Fisher R A. The use of multiple measures in taxonomic problems. Annals of Eugenics , 1936, 7(2): 179-188
74 Kim M, Kim D, Lee S. Face recognition using the embedded HMM with second-order block specific observations. Pattern Recognition , 2003, 36(11): 2723-2735
doi: 10.1016/S0031-3203(03)00137-7
75 Yang J, Zhang D, Frangi A F, Yang J. Two-dimensional PCA: A new approach to appearance-based face representation and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2004, 26(1): 131-137
doi: 10.1109/TPAMI.2004.1261097
76 Huang W, Yin H. Nonlinear dimensionality reduction for face recognition. In: Proceedings of the 10th International Conference on Intelligent Data Engineering and Automated Learning . 2009, 424-432
doi: 10.1007/978-3-642-04394-9_52
77 Ji S, Ye J. Generalized linear discriminant analysis: a unified framework and efficient model selection. IEEE Transactions on Neural Networks , 2008, 19(10): 1768-1782
doi: 10.1109/TNN.2008.2002078
[1] K. SRI RAMA KRISHNA, K. JAGADEESH BABU, J. LAKSHMI NARAYANA, L. PRATAP REDDY, G. V. SUBRAHMANYAM. Artificial neural network approach for analyzing mutual coupling in a rectangular MIMO antenna[J]. Front Elect Electr Eng, 2012, 7(3): 293-298.
[2] Xinbo GAO, Xiumei WANG. Dimensionality reduction with latent variable model[J]. Front Elect Electr Eng, 2012, 7(1): 116-126.
[3] Liang LIAO, Yanning ZHANG. MRI image segmentation based on fast kernel clustering analysis[J]. Front Elect Electr Eng Chin, 2011, 6(2): 363-373.
[4] Lijun ZHANG, Zhengguang CHEN, Miao ZHENG, Xiaofei HE. Robust non-negative matrix factorization[J]. Front Elect Electr Eng Chin, 2011, 6(2): 192-200.
[5] ZHANG Yan, WANG Fanzhen, SONG Ying, CHEN Zengqiang, YUAN Zhuzhi. Recurrent neural networks-based multivariable system PID predictive control[J]. Front. Electr. Electron. Eng., 2007, 2(2): 197-201.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed