Please wait a minute...
Frontiers of Electrical and Electronic Engineering

ISSN 2095-2732

ISSN 2095-2740(Online)

CN 10-1028/TM

Front Elect Electr Eng Chin    2011, Vol. 6 Issue (1) : 86-119    https://doi.org/10.1007/s11460-011-0135-1
RESEARCH ARTICLE
Codimensional matrix pairing perspective of BYY harmony learning: hierarchy of bilinear systems, joint decomposition of data-covariance, and applications of network biology
Lei XU()
Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
 Download: PDF(2339 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

One paper in a preceding issue of this journal has introduced the Bayesian Ying-Yang (BYY) harmony learning from a perspective of problem solving, parameter learning, and model selection. In a complementary role, the paper provides further insights from another perspective that a co-dimensional matrix pair (shortly co-dim matrix pair) forms a building unit and a hierarchy of such building units sets up the BYY system. The BYY harmony learning is re-examined via exploring the nature of a co-dim matrix pair, which leads to improved learning performance with refined model selection criteria and a modified mechanism that coordinates automatic model selection and sparse learning. Besides updating typical algorithms of factor analysis (FA), binary FA (BFA), binary matrix factorization (BMF), and nonnegative matrix factorization (NMF) to share such a mechanism, we are also led to (a) a new parametrization that embeds a de-noise nature to Gaussian mixture and local FA (LFA); (b) an alternative formulation of graph Laplacian based linear manifold learning; (c) a codecomposition of data and covariance for learning regularization and data integration; and (d) a co-dim matrix pair based generalization of temporal FA and state space model. Moreover, with help of a co-dim matrix pair in Hadamard product, we are led to a semi-supervised formation for regression analysis and a semi-blind learning formation for temporal FA and state space model. Furthermore, we address that these advances provide with new tools for network biology studies, including learning transcriptional regulatory, Protein-Protein Interaction network alignment, and network integration.

Keywords Bayesian Ying-Yang (BYY) harmony learning      automatic model selection      bi-linear stochastic system      co-dimensional matrix pair      sparse learning      denoise embedded Gaussian mixture      de-noise embedded local factor analysis (LFA)      bi-clustering      manifold learning      temporal factor analysis (TFA)      semi-blind learning      attributed graph matching      generalized linear model (GLM)      gene transcriptional regulatory      network alignment      network integration     
Corresponding Author(s): XU Lei,Email:lxu@cse.cuhk.edu.hk   
Issue Date: 05 March 2011
 Cite this article:   
Lei XU. Codimensional matrix pairing perspective of BYY harmony learning: hierarchy of bilinear systems, joint decomposition of data-covariance, and applications of network biology[J]. Front Elect Electr Eng Chin, 2011, 6(1): 86-119.
 URL:  
https://academic.hep.com.cn/fee/EN/10.1007/s11460-011-0135-1
https://academic.hep.com.cn/fee/EN/Y2011/V6/I1/86
1 Xu L. Bayesian Ying-Yang system, best harmony learning, and five action circling. A special issue on Emerging Themes on Information Theory and Bayesian Approach, Frontiers of Electrical and Electronic Engineering in China , 2010, 5(3): 281-328
doi: 10.1007/s11460-010-0108-9
2 Anderson T W, Rubin H. Statistical inference in factor analysis. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability . 1956, 5: 111-150
3 Rubi D, Thayer D. EM algorithm for ML factor analysis. Psychometrika , 1976, 57: 69-76
4 Bozdogan H, Ramirez D E. FACAIC: model selection algorithm for the orthogonal factor model using AIC and FACAIC. Psychometrika , 1988, 53(3): 407-415
doi: 10.1007/BF02294221
5 Belouchrani A, Cardoso J. Maximum likelihood source separation by the expectation maximization technique: deterministic and stochastic implementation. In: Proceedings of NOLTA95 . 1995, 49-53
6 Xu L. Bayesian Kullback Ying-Yang dependence reduction theory. Neurocomputing , 1998, 22(1-3): 81-111
doi: 10.1016/S0925-2312(98)00051-4
7 Xu L. BYY learning, regularized implementation, and model selection on modular networks with one hidden layer of binary units, Neurocomputing , 2003, 51:277-301
doi: 10.1016/S0925-2312(02)00622-7
8 Xu L. Advances on BYY harmony learning: Information theoretic perspective, generalized projection geometry, and independent factor auto-determination. IEEE Transactions on Neural Networks , 2004, 15(4): 885-902
doi: 10.1109/TNN.2004.828767
9 Xu L. Independent component analysis and extensions with noise and time: a Bayesian Ying-Yang learning perspective. Neural Information Processing-Letters and Reviews , 2003, 1(1): 1-52
10 Moulines E, Cardoso J, Gassiat E. Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models. In: Proc. ICASSP97 . 1997, 3617-3620
11 Attias H. Independent factor analysis. Neural Computation , 1999, 11(4): 803-851
doi: 10.1162/089976699300016458
12 Liu Z Y, Chiu K C, Xu L. Investigations on non-Gaussian factor analysis. IEEE Signal Processing Letters , 2004, 11(7): 597-600
doi: 10.1109/LSP.2004.828928
13 Xu L. Independent subspaces. In: Ramón J, Dopico R, Dorado J, Pazos A, eds. Encyclopedia of Artificial Intelligence, Hershey (PA): IGI Global . 2008, 903-912
doi: 10.4018/9781599048499.ch132
14 Saund E. A multiple cause mixture model for unsupervised learning. Neural Computation , 1995, 7(1): 51-71
doi: 10.1162/neco.1995.7.1.51
15 Zhang B L, Xu L, Fu M Y. Learning multiple causes by competition enhanced least mean square error reconstruction. International Journal of Neural Systems , 1996, 7(3): 223-236
doi: 10.1142/S0129065796000208
16 Reckase M D. The past and future of multidimensional item response theory. Applied Psychological Measurement , 1997, 21(1): 25-36
doi: 10.1177/0146621697211002
17 Moustaki I, Knott M. Generalized latent trait models. Psychometrika , 2000, 65(3): 391-411
doi: 10.1007/BF02296153
18 Bartholomew D J, Knott M. Latent variable models and factor analysis, Kendalls, Library of Statistics, Vol. 7. New York: Oxford University Press, 1999
19 Paatero P, Tapper U. Positive matrix factorization: a nonnegative factor model with optimal utilization of error estimates of data values. Environmetrics , 1994, 5(2): 111-126
doi: 10.1002/env.3170050203
20 Lee D D, Seung H S. Learning the parts of objects by nonnegative matrix factorization. Nature , 1999, 401(6755): 788-791
doi: 10.1038/44565
21 Lee D D, Seung H S. Algorithms for non-negative matrix factorization. Adv. Neural Inf. Process , 2001, 13: 556-562
22 Kim H, Park H. Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method. SIAM Journal on Matrix Analysis and Applications , 2008, 30(2): 713-730
doi: 10.1137/07069239X
23 Kim H, Park H. Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinformatics (Oxford, England) , 2007, 23(12): 1495-1502
doi: 10.1093/bioinformatics/btm134
24 Chen Y, Rege M, Dong M, Hua J. Non-negative matrix factorization for semi-supervised data clustering. Knowledge and Information Systems , 2008, 17(3): 355-379
doi: 10.1007/s10115-008-0134-6
25 Ho N, Vandooren P. Non-negative matrix factorization with fixed row and column sums. Linear Algebra and Its Applications , 2008, 429(5-6): 1020-1025
doi: 10.1016/j.laa.2007.02.026
26 Cemgil A T. Bayesian Inference for Nonnegative Matrix Factorisation Models, Computational Intelligence and Neuroscience, 2009
27 Yang Z, Zhu Z, Oja E. Automatic rank determination in projective nonnegative matrix factorization. Lecture Notes in Computer Science: Latent Variable Analysis and Signal Separation , 2010, (6365): 514-521
28 Tu S, Chen R, Xu L. A binary matrix factorization algorithm for protein complex prediction. In: Proceedings of the BIBM 2010 International Workshop on Computational Proteomics, Hong Kong, December 18-21 , 2010
29 Redner R A,Walker H F. Mixture densities, maximum likelihood, and the EM algorithm. SIAM Review , 1984, 26(2): 195-239
doi: 10.1137/1026034
30 Xu L, Jordan M I. On convergence properties of the EM algorithm for Gaussian mixtures. Neural Computation , 1996, 8(1): 129-151
doi: 10.1162/neco.1996.8.1.129
31 McLachlan G J, Geoffrey J. The EM Algorithms and Extensions. Wiley , 1997
32 Xu L. Multisets modeling learning: a unified theory for supervised and unsupervised learning. In: Proceedings of IEEE ICNN94 . 1994, I: 315-320
33 Xu L. A unified learning framework: multisets modeling learning. In: Proceedings of WCNN95 . 1995, 1: 35-42
34 Xu L. Rival penalized competitive learning, finite mixture, and multisets clustering. In: Proceedings of IEEE-INNS IJCNN98, Anchorage, Alaska, vol. II . 1998, 2525-2530
35 Xu L. BYY harmony learning, structural RPCL, and topological self-organizing on unsupervised and supervised mixture models. Neural Networks , 2002, (8-9): 1125-1151
doi: 10.1016/S0893-6080(02)00084-9
36 Xu L. Data smoothing regularization, multi-sets-learning, and problem solving strategies. Neural Networks , 2003, 16(5-6): 817-825
doi: 10.1016/S0893-6080(03)00119-9
37 Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation , 2003, 15(6): 1373-1396
doi: 10.1162/089976603321780317
38 He X, Niyogi P. Locality Preserving Projections. In: Advances in Neural Information Processing Systems 16. Cambridge , MA: MIT Press, 2003, 152-160
39 Wallace C S, Dowe D R. Minimum message length and Kolmogorov complexity. Computer Journal , 1999, 42(4): 270-283
doi: 10.1093/comjnl/42.4.270
40 Figueiredo M A F, Jain A K. Unsupervised learning of finite mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2002, 24(3): 381-396
doi: 10.1109/34.990138
41 Williams P M. Bayesian regularization and pruning using a Laplace prior. Neural Computation , 1995, 7(1): 117-143
doi: 10.1162/neco.1995.7.1.117
42 Tibshirani R. Regression shrinkage and selection via the lasso. J. Royal. Statist. Soc B. , 1996, 58(1): 267-288
43 Hansen L K, Goutte C. Regularization with a pruning prior. Neural Networks , 1997, 10(6): 1053-1059
doi: 10.1016/S0893-6080(97)00027-0
44 Schwarz G. Estimating the dimension of a model. Annals of Statistics , 1978, 6(2): 461-464
doi: 10.1214/aos/1176344136
45 Rissanen J. Modeling by shortest data description. Automatica , 1978, 14: 465-471
doi: 10.1016/0005-1098(78)90005-5
46 Rissanen J. Basics of estimation. Frontiers of Electrical and Electronic Engineering in China , 2010, 5(3): 274-280
doi: 10.1007/s11460-010-0104-0
47 Corduneanu A, Bishop CM. Variational Bayesian model selection for mixture distributions. In: Jaakkola T, Richardson T, eds. Artificial Intelligence and Statistics, Morgan Kaufmann . 2001, 27-34
48 Choudrey R A, Roberts S J. Variational mixture of Bayesian independent component analyzers. Neural Computation , 2003, 15(1): 213-252
doi: 10.1162/089976603321043766
49 McGrory C A, Titterington D M. Variational approximations in Bayesian model selection for finite mixture distributions. Computational Statistics & Data Analysis , 2007, 51(11): 5352-5367
50 Umeyama S. An eigendecomposition approach to weighted graph matching problems. IEEE Transactions on Pattern Analysis and Machine Intelligence , 1988, 10(5): 695-703
doi: 10.1109/34.6778
51 Xu L, Oja E. Improved Simulated Annealing, Boltzmann Machine and Attributed Graph Matching. In: Goos G, Hartmanis J, eds. Lecture Notes in Computer Sciences, Springer-Verlag , 1989, 412: 151-160
52 Conte D, Foggiay P, Sansoney C, Vento M. Thirty years of Graph Matching in Pattern Recognition. International Journal of Pattern Recognition and Artificial Intelligence , 2004, 18(3): 265-298
doi: 10.1142/S0218001404003228
53 Xu L, Klasa S. A PCA like rule for pattern classification based on attributed graph. In: Proceedings of 1993 International Joint Conference on Neural Networks (IJCNN93), Nagoya . 1993, 1281-1284
54 Xu L, King I. A PCA approach for fast retrieval of structural patterns in attributed graphs. IEEE Transactions on Systems, Man and Cybernetics, Part B , 2001, 31(5): 812-817
55 Li H B, Stoica P, Li J. Computationally efficient maximum likelihood estimation of structured covariance matrices. IEEE Transactions on Signal Processing , 1999, 47(5): 1314-1323
doi: 10.1109/78.757219
56 Burg J, Luenberger D, Wenger D. Estimation of structured covariance matrices. Proceedings of the IEEE , 1982, 70(9): 963-974
doi: 10.1109/PROC.1982.12427
57 Xu L. Beyond PCA learning: from linear to nonlinear and from global representation to local representation. In: Proceedings of ICONIP94 . 1994, 2: 943-949
58 Xu L. Vector quantization by local and hierarchical LMSER. In: Proceedings of 1995 Intl Conf.on Artificial Neural Networks (ICANN95), Paris . 1995, II: 575-579
59 Hinton G E, Dayan P, Revow M. Modeling the manifolds of images of handwritten digits. IEEE Transactions on Neural Networks , 1997, 8(1): 65-74
doi: 10.1109/72.554192
60 Liu Z Y, Chiu K C, Xu L. Strip line detection and thinning by RPCL-based local PCA. Pattern Recognition Letters , 2003, 24(14): 2335-2344
doi: 10.1016/S0167-8655(03)00059-X
61 Liu Z Y, Xu L. Topological local principal component analysis. Neurocomputing , 2003, 55(3-4): 739-745
doi: 10.1016/S0925-2312(03)00414-4
62 Tipping M E, Bishop C M. Mixtures of probabilistic principal component analyzers. Neural Computation , 1999, 11(2): 443-482
doi: 10.1162/089976699300016728
63 Salah A A, Alpaydin E. Incremental mixtures of factor analyzers. In: Proceedings of the 17th International Conference on Pattern Recognition . Cambridge: IEEE Press, 2004, 1: 276-279
doi: 10.1109/ICPR.2004.1334106
64 Utsugi A, Kumagai T. Bayesian analysis of mixtures of factor analyzers. Neural Computation , 2001, 13(5): 993-1002
doi: 10.1162/08997660151134299
65 Ghahramani Z, Beal M. Variational inference for Bayesian mixtures of factor analysers, Advances in neural information processing systems 12. Cambridge , MA: MIT Press, 2000, 449-455
66 Xu L, Bayesian Ying Yang System, Best Harmony Learning, and Gaussian Manifold Based Family. In: Zurada , eds. Computational Intelligence: Research Frontiers (WCCI2008 Plenary/Invited Lectures), LNCS5050 , 2008, 48-78
doi: 10.1007/978-3-540-68860-0_3
67 Xu L. Learning algorithms for RBF functions and subspace based functions. In: Olivas E S, , eds. Handbook of Research on Machine Learning, Applications and Trends: Algorithms, Methods and Techniques, Hershey (PA): IGI Global . 2009, 60-94
68 Brown R G, Hwang P Y C. Introduction to random signals and applied Kalman filtering. John Wiley & Sons, Inc., 1997
69 Xu L. Bayesian Ying Yang System and Theory as a Unified Statistical Learning Approach (II): From Unsupervised Learning to Supervised Learning and Temporal Modeling. In: Wong K M, Yeung D Y, King I, , eds. Theoretical Aspects of Neural Computation: A Multidisciplinary Perspective . Berlin: Springer-Verlag, 1997, 25-60
70 Xu L. Temporal BYY learning and its applications to extended Kalman filtering, hidden Markov model, and sensormotor integration. In: Proceedings of IEEE-INNS 1999 Intl J. Conf on Neural Networks, Washington . 1999, 2: 949-954
71 Xu L. Bayesian Ying-Yang system and theory as a unified statistical learning approach:(V) temporal modeling for temporal perception and control. In: Proceedings of ICONIP98, Kitakyushu . 1998, 2: 877-884
72 Ghahramani Z, Hinton G E. Variational learning for switching state-space models. Neural Computation , 2000, 12(4): 831-864
doi: 10.1162/089976600300015619
73 Xu L. Temporal BYY learning for state space approach, hidden Markov model and blind source separation. IEEE Transactions on Signal Processing , 2000, 48(7): 2132-2144
doi: 10.1109/78.847796
74 Xu L. BYY harmony learning, independent state space, and generalized APT financial analyses. IEEE Transactions on Neural Networks , 2001, 12(4): 822-849
doi: 10.1109/72.935094
75 Xu L. Temporal BYY encoding, Markovian state spaces, and space dimension determination. IEEE Transactions on Neural Networks , 2004, 15(5): 1276-1295
doi: 10.1109/TNN.2004.833302
76 Liao J C, Boscolo R, Yang Y L, Tran L M, Sabatti C, Roychowdhury V P. Network component analysis: reconstruction of regulatory signals in biological systems. Proceedings of the National Academy of Sciences of the United States of America , 2003, 100(26): 15522-15527
doi: 10.1073/pnas.2136632100
77 Boulesteix A L, Strimmer K. Predicting transcription factor activities from combined analysis of microarray and ChIP data: a partial least squares approach. Theoretical Biology & Medical Modelling , 2005, 2(1): 23
doi: 10.1186/1742-4682-2-23
78 Brynildsen M P, Tran L M, Liao J C. A Gibbs sampler for the identification of gene expression and network connectivity consistency. Bioinformatics (Oxford, England) , 2006, 22(24): 3040-3046
doi: 10.1093/bioinformatics/btl541
79 Brynildsen M P, Wu T Y, Jang S S, Liao J C. Biological network mapping and source signal deduction. Bioinformatics (Oxford, England) , 2007, 23(14): 1783-1791
doi: 10.1093/bioinformatics/btm246
80 Stockham T G, Cannon T M, Ingebretsen R B. Blind deconvolution through digital signal processing. Proceedings of the IEEE , 1975, 63(4): 678-692
doi: 10.1109/PROC.1975.9800
81 Kundur D, Hatzinakos D. Blind image deconvolution revisited. IEEE Signal Processing Magazine , 1996, 13(6): 61-63
doi: 10.1109/79.543976
82 Xu L, Yan P F, Chang T. Semi-blind deconvolution of finite length sequence: (I) linear problem & (II). Nonlinear Problem, SCIENTIA SINICA, Series A , 1987, (12): 1318-1344
83 Zhou Z H. When semi-supervised learning meets ensemble learning. Frontiers of Electrical and Electronic Engineering in China , 2011, 6(1): 6-16
doi: 10.1007/s11460-011-0126-2
84 De Las Rivas J, Fontanillo C. Protein–protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput Biol , 2010, 6(6): e1000807
doi: 10.1371/journal.pcbi.1000807
85 Han J D. Understanding biological functions through molecular networks. Cell Research , 2008, 18(2): 224-237
doi: 10.1038/cr.2008.16
86 Davies M. Identifiability Issues in Noisy ICA. IEEE SIGNAL PROCESSING LETTERS , 2004, 11(5): 470-473
doi: 10.1109/LSP.2004.826508
87 Morris C. Natural exponential families with quadratic variance functions. Annals of Statistics , 1982, 10(1): 65-80
doi: 10.1214/aos/1176345690
88 McCullagh P, Nelder J. Generalized Linear Models. 2nd ed. Boca Raton: Chapman and Hall/CRC, 1989
89 Gorman J W, Toman R J. Selection of variables for fitting equations to data. Technometrics , 1966, 8: 27-51
doi: 10.2307/1266260
90 Mallows C L. Some comments on Cp. Technometrics , 1973, 15: 661-675
doi: 10.2307/1267380
91 Wallace C S, Boulton D M. An information measure for classification. Computer Journal , 1968, 11(2): 185-194
92 Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control , 1974, 19(6): 714-723
doi: 10.1109/TAC.1974.1100705
93 Solomonoff R J. A formal theory of inductive inference. Part I. Information and Control , 1964, 7(1): 1-22
doi: 10.1016/S0019-9958(64)90223-2
94 Kolmogorov A N. Three approaches to the quantitative definition of information. Problems of Information Transmission , 1965, 1(1): 1-11
95 Vapnik V. The Nature of Statistical Learning Theory, Springer-Verlag, New York, 1995
96 Xu L, Krzyzak A, Oja E. Rival penalized competitive learning for clustering analysis, RBF net and curve detection. IEEE Transactions on Neural Networks , 1993, 4(4): 636-649
doi: 10.1109/72.238318
97 Xu L, Krzyzak A, Oja E. Unsupervised and supervised classifications by rival penalized competitive learning. In: Proceedings of the 11th International Conference on Pattern Recognition . 1992, I: 672-675
98 Tu S K, Xu L. Parameterizations make different model selections: empirical findings from factor analysis, to appear on Frontiers of Electrical and Electronic Engineering in China, 2011
99 Sun K, Tu S, Gao D Y, Xu L. Canonical dual approach to binary factor analysis. In: Adali T, Jutten C, Romano J M T, Barros A K, eds. Independent Component Analysis and Signal Separation. Lecture Notes in Computer Science , 2009, 5441: 346-353
100 Xu L. Machine learning problems from optimization perspective. Journal of Global Optimization , 2010, 47(3): 369-401
doi: 10.1007/s10898-008-9364-0
101 He X F, Lin B B. Tangent space learning and generalization. Frontiers of Electrical and Electronic Engineering in China , 2011, 6(1): 27-42
doi: 10.1007/s11460-011-0124-4
102 Luxburg U. A tutorial on spectral clustering. Statistics and Computing , 2007, 17(4): 395-416
doi: 10.1007/s11222-007-9033-z
103 Chung F R. Spectral Graph Theory. Amer.Math. Soc., Providence, RI. MR1421568 , 1997
104 Xu L. Distribution approximation, combinatorial optimization, and Lagrange-Barrier. In: Proceedings of International Joint Conference on Neural Networks 2003 (IJCNN 03), Jantzen Beach, Portland . 2003, 2354-2359
105 Xu L. Combinatorial optimization neural nets based on a hybrid of Lagrange and transformation approaches. In: Proceedings Of World Congress on Neural Networks. San Diego, CA . 1994, 399-404
106 Xu L. On the hybrid LT combinatorial optimization: new U-shape barrier, sigmoid activation, least leaking energy and maximum entropy. In: Proceedings of Intl. Conf. on Neural Information Processing, Beijing . 1995, 309-312
107 Xu L. One-bit-matching ICA theorem, convex-concave programming, and combinatorial optimization. In: Advances in neural networks: ISNN 2005, LNCS 3496 . Berlin: Springer-Verlag, 2005, 5-20
doi: 10.1007/11427391_2
108 Xu L. One-bit-matching theorem for ICA, convex-concave programming on polyhedral set, and distribution approximation for combinatorics. Neural Computation , 2007, 19(2): 546-569
doi: 10.1162/neco.2007.19.2.546
109 Xu L, Amari S I. Combining Classifiers and Learning Mixture-of-Experts, In: Ramón J, Dopico R, Dorado J, Pazos A, eds. Encyclopedia of Artificial Intelligence. IGI Global (IGI) publishing company , 2008, 318-326
doi: 10.4018/9781599048499.ch049
110 Xu L. A unified perspective and new results on RHT computing, mixture based learning, and multi-learner based problem solving. Pattern Recognition , 2007, 40(8): 2129-2153
doi: 10.1016/j.patcog.2006.12.016
111 Sun N, Zhao H Y. Reconstructing transcriptional regulatory networks through genomics data. Statistical Methods in Medical Research , 2009, 18(6): 595-617
doi: 10.1177/0962280209351890
112 Bar-Joseph Z, Gerber G K, Lee T I, Rinaldi N J, Yoo J Y, Robert F, Gordon D B, Fraenkel E, Jaakkola T S, Young R A, Gifford D K. Computational discovery of gene modules and regulatory networks. Nature Biotechnology , 2003, 21(11): 1337-1342
doi: 10.1038/nbt890
114 Singh R, Xu J B, Berger B. Global alignment of multiple protein interaction networks with application to functional orthology detection. Proceedings of the National Academy of Sciences of the United States of America , 2008, 105(35): 12763-12768
doi: 10.1073/pnas.0806627105
115 Spirin V, Mirny L A. Protein complexes and functional modules in molecular networks. Proceedings of the National Academy of Sciences of the United States of America , 2003, 100(21): 12123-12128
doi: 10.1073/pnas.2032324100
116 Bu D, Zhao Y, Cai L, Xue H, Zhu X, Lu H, Zhang J, Sun S, Ling L, Zhang N, Li G, Chen R. Topological structure analysis of the protein-protein interaction network in budding yeast. Nucleic Acids Research , 2003, 31(9): 2443-2450
doi: 10.1093/nar/gkg340
117 Sharan R, Ulitsky I, Shamir R. Network-based prediction of protein function. Molecular Systems Biology , 2007, 3: 88
doi: 10.1038/msb4100129
118 Pinkert S, Schultz J, Reichardt J. Protein interaction networks more than mere modules. PLoS Computational Biology , 2010, 6(1): e1000659
doi: 10.1371/journal.pcbi.1000659
119 Segal E, Shapira M, Regev A, Peer D, Botstein D, Koller D, Friedman N. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genetics , 2003, 34(2): 166-176
doi: 10.1038/ng1165
120 Reiss D J, Baliga N S, Bonneau R. Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks. BMC Bioinformatics , 2006, 7(1): 280
doi: 10.1186/1471-2105-7-280
121 Lemmens K, Dhollander T, De Bie T, Monsieurs P, Engelen K, Smets B, Winderickx J, De Moor B, Marchal K. Inferring transcriptional modules from ChIP-chip, motif and microarray data. Genome Biology , 2006, 7(5): R37 (1-14)
122 Youn A, Reiss D J, Stuetzle W. Learning transcriptional networks from the integration of ChIP-chip and expression data in a non-parametric model. Bioinformatics (Oxford, England) , 2010, 26(15): 1879-1886
doi: 10.1093/bioinformatics/btq289
123 Holter N S, Mitra M, Maritan A, Cieplak M, Banavar J R, Fedoroff N V. Fundamental patterns underlying gene expression profiles: simplicity from complexity. Proceedings of the National Academy of Sciences of the United States of America , 2000, 97(15): 8409-8414
doi: 10.1073/pnas.150242097
124 Yeung M K, Tegnr J, Collins J J. Reverse engineering gene networks using singular value decomposition and robust regression. Proceedings of the National Academy of Sciences of the United States of America , 2002, 99(9): 6163-6168
doi: 10.1073/pnas.092576199
125 Alter O, Brown P O, Botstein D. Singular value decomposition for genome-wide expression data processing and modeling. Proceedings of the National Academy of Sciences of the United States of America , 2000, 97(18): 10101-10106
doi: 10.1073/pnas.97.18.10101
126 Alter O, Brown P O, Botstein D. Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms. Proceedings of the National Academy of Sciences of the United States of America , 2003, 100(6): 3351-3356
doi: 10.1073/pnas.0530258100
127 Bussemaker H J, Li H, Siggia E D. Regulatory element detection using correlation with expression. Nature Genetics , 2001, 27(2): 167-174
doi: 10.1038/84792
128 Lee S I, Batzoglou S. Application of independent component analysis to microarrays. Genome Biology , 2003, 4(11): R76
doi: 10.1186/gb-2003-4-11-r76
129 Liebermeister W. Linear modes of gene expression determined by independent component analysis. Bioinformatics (Oxford, England) , 2002, 18(1): 51-60
doi: 10.1093/bioinformatics/18.1.51
130 Sun N, Carroll R J, Zhao H. Bayesian error analysis model for reconstructing transcriptional regulatory networks. Proceedings of the National Academy of Sciences of the United States of America , 2006, 103(21): 7988-7993
doi: 10.1073/pnas.0600164103
131 Sabatti C, James G M. Bayesian sparse hidden components analysis for transcription regulation networks. Bioinformatics , 2006, 22(6): 739-746
doi: 10.1093/bioinformatics/btk017
132 Liu X, Jessen WJ, Sivaganesan S, Aronow B J, Medvedovic M. Bayesian hierarchical model for transcriptional module discovery by jointly modeling gene expression and ChIPchip data. BMC Bioinformatics , 2007, 8(1): 283
doi: 10.1186/1471-2105-8-283
133 Xing B, van der Laan M J. A statistical method for constructing transcriptional regulatory networks using gene expression and sequence data. Journal of Computational Biology , 2005, 12(2): 229-246
doi: 10.1089/cmb.2005.12.229
134 Pournara I, Wernisch L. Factor analysis for gene regulatory networks and transcription factor activity profiles. BMC Bioinformatics , 2007, 8(1): 61
doi: 10.1186/1471-2105-8-61
135 Gardner T S, di Bernardo D, Lorenz D, Collins J J. Inferring genetic networks and identifying compound mode of action via expression profiling. Science , 2003, 301(5629): 102-105
doi: 10.1126/science.1081900
136 Rangel C, Angus J, Ghahramani Z, Lioumi M, Sotheran E, Gaiba A, Wild D L, Falciani F. Modeling T-cell activation using gene expression profiling and state-space models. Bioinformatics (Oxford, England) , 2004, 20(9): 1361-1372
doi: 10.1093/bioinformatics/bth093
137 Beal M J, Falciani F, Ghahramani Z, Rangel C, Wild D L. A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics (Oxford, England) , 2005, 21(3): 349-356
doi: 10.1093/bioinformatics/bti014
138 Sanguinetti G, Lawrence N D, Rattray M. Probabilistic inference of transcription factor concentrations and genespecific regulatory activities. Bioinformatics (Oxford, England) , 2006, 22(22): 2775-2781
doi: 10.1093/bioinformatics/btl473
139 Yamaguchi R, Higuchi T. State-space approach with the maximum likelihood principle to identify the system generating time-course gene expression data of yeast. International Journal of Data Mining and Bioinformatics , 2006, 1(1): 77-87
doi: 10.1504/IJDMB.2006.009922
140 Li Z, Shaw S M, Yedwabnick M J, Chan C. Using a statespace model with hidden variables to infer transcription factor activities. Bioinformatics (Oxford, England) , 2006, 22(6): 747-754
doi: 10.1093/bioinformatics/btk034
141 Inoue L Y, Neira M, Nelson C, Gleave M, Etzioni R. Cluster-based network model for time-course gene expression data. Biostatistics (Oxford, England) , 2007, 8(3): 507-525
doi: 10.1093/biostatistics/kxl026
142 Martin S, Zhang Z, Martino A, Faulon J L. Boolean dynam ics of genetic regulatory networks inferred from microarray time series data. Bioinformatics (Oxford, England) , 2007, 23(7): 866-874
doi: 10.1093/bioinformatics/btm021
143 Hirose O, Yoshida R, Imoto S, Yamaguchi R, Higuchi T, Charnock-Jones D S, Print C, Miyano S. Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models. Bioinformatics (Oxford, England) , 2008, 24(7): 932-942
doi: 10.1093/bioinformatics/btm639
144 Xiong H, Choe Y. Structural systems identification of genetic regulatory networks. Bioinformatics (Oxford, England) , 2008, 24(4): 553-560
doi: 10.1093/bioinformatics/btm623
145 Wu F X, Zhang W J, Kusalik A J. State-space model with time delays for gene regulatory networks. Journal of Biological System , 2004, 12(4): 483-500
doi: 10.1142/S0218339004001324
146 Shiraishi Y, Kimura S, Okada M. Inferring cluster-based networks from differently stimulated multiple time-course gene expression data. Bioinformatics (Oxford, England) , 2010, 26(8): 1073-1081
doi: 10.1093/bioinformatics/btq094
147 Kim T Y, Kim H U, Lee S Y. Data integration and analysis of biological networks. Current Opinion in Biotechnology , 2010, 21(1): 78-84
doi: 10.1016/j.copbio.2010.01.003
148 Xu L, Pearl J. Structuring causal tree models with continuous variables. In: Proceedings of the 3rd Annual Conference on Uncertainty in Artificial Intelligence . 1987, 170-179
149 Xu L, Pearl J. Structuring Causal Tree Models with Continuous Variables. In: Kanal L N, Levitt T S, Lemmer J F, eds. Uncertainty in Artificial Intelligence 3. North Holland, Amsterdam , 1989, 209-219
[1] Lei XU. On essential topics of BYY harmony learning: Current status, challenging issues, and gene analysis applications[J]. Front Elect Electr Eng, 2012, 7(1): 147-196.
[2] Penghui WANG, Lei SHI, Lan DU, Hongwei LIU, Lei XU, Zheng BAO. Radar HRRP statistical recognition with temporal factor analysis by automatic Bayesian Ying-Yang harmony learning[J]. Front Elect Electr Eng Chin, 2011, 6(2): 300-317.
[3] Lei SHI, Shikui TU, Lei XU. Learning Gaussian mixture with automatic model selection: A comparative study on three Bayesian related approaches[J]. Front Elect Electr Eng Chin, 2011, 6(2): 215-244.
[4] Xiaofei HE, Binbin LIN. Tangent space learning and generalization[J]. Front Elect Electr Eng Chin, 2011, 6(1): 27-42.
[5] Lei XU. Bayesian Ying-Yang system, best harmony learning, and five action circling[J]. Front Elect Electr Eng Chin, 2010, 5(3): 281-328.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed