Please wait a minute...
Frontiers of Electrical and Electronic Engineering

ISSN 2095-2732

ISSN 2095-2740(Online)

CN 10-1028/TM

Front Elect Electr Eng Chin    2011, Vol. 6 Issue (2) : 300-317    https://doi.org/10.1007/s11460-011-0149-8
RESEARCH ARTICLE
Radar HRRP statistical recognition with temporal factor analysis by automatic Bayesian Ying-Yang harmony learning
Penghui WANG1, Lei SHI2, Lan DU1, Hongwei LIU1, Lei XU2(), Zheng BAO1
1. National Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China; 2. Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
 Download: PDF(524 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Radar high-resolution range profiles (HRRPs) are typical high-dimensional and interdimension dependently distributed data, the statistical modeling of which is a challenging task for HRRP-based target recognition. Supposing that HRRP samples are independent and jointly Gaussian distributed, a recent work [Du L, Liu H W, Bao Z. IEEE Transactions on Signal Processing, 2008, 56(5): 1931-1944] applied factor analysis (FA) to model HRRP data with a two-phase approach for model selection, which achieved satisfactory recognition performance. The theoretical analysis and experimental results reveal that there exists high temporal correlation among adjacent HRRPs. This paper is thus motivated to model the spatial and temporal structure of HRRP data simultaneously by employing temporal factor analysis (TFA) model. For a limited size of high-dimensional HRRP data, the two-phase approach for parameter learning and model selection suffers from intensive computation burden and deteriorated evaluation. To tackle these problems, this work adopts the Bayesian Ying-Yang (BYY) harmony learning that has automatic model selection ability during parameter learning. Experimental results show stepwise improved recognition and rejection performances from the two-phase learning based FA, to the two-phase learning based TFA and to the BYY harmony learning based TFA with automatic model selection. In addition, adding many extra free parameters to the classic FA model and thus becoming even worse in identifiability, the model of a general linear dynamical system is even inferior to the classic FA model.

Keywords radar automatic target recognition (RATR)      high-resolution range profile (HRRP)      temporal factor analysis (TFA)      Bayesian Ying-Yang (BYY) harmony learning      automatic model selection     
Corresponding Author(s): XU Lei,Email:lxu@cse.cuhk.edu.hk   
Issue Date: 05 June 2011
 Cite this article:   
Hongwei LIU,Lei XU,Zheng BAO, et al. Radar HRRP statistical recognition with temporal factor analysis by automatic Bayesian Ying-Yang harmony learning[J]. Front Elect Electr Eng Chin, 2011, 6(2): 300-317.
 URL:  
https://academic.hep.com.cn/fee/EN/10.1007/s11460-011-0149-8
https://academic.hep.com.cn/fee/EN/Y2011/V6/I2/300
1 Kosir P, DeWal R. Feature alignment techniques for pattern recognition. In: Proceedings of IEEE National Conference on Aerospace and Electronics . 1994, 1: 128-132
2 Webb A R. Gamma mixture models for target recognition. Pattern Recognition , 2000, 33(12): 2045-2054
doi: 10.1016/S0031-3203(99)00195-8
3 Copsey K, Webb A R. Bayesian Gamma mixture model approach to radar target recognition. IEEE Transactions on Aerospace and Electronic Systems , 2003, 39(4): 1201-1217
doi: 10.1109/TAES.2003.1261122
4 Seibert M, Waxman A M. Adaptive 3-D object recognition from multiple views. IEEE Transactions on Pattern Analysis and Machine Intelligence , 1992, 14(2): 107-124
doi: 10.1109/34.121784
5 Jacobs S P. Automatic target recognition using highresolution radar range profiles. Dissertation for the Doctoral Degree. St . Louis: Washington University, 1999
6 Du L, Liu H W, Bao Z, Zhang J Y. A two-distribution compounded statistical model for radar HRRP target recognition. IEEE Transactions on Signal Processing , 2006, 54(6): 2226-2238
doi: 10.1109/TSP.2006.873534
7 Du L, Liu H W, Bao Z. Radar HRRP statistical recognition based on hypersphere model. Signal Processing , 2008, 88(5): 1176-1190
doi: 10.1016/j.sigpro.2007.11.003
8 Du L, Liu H W, Bao Z. Radar HRRP statistical recognition: parametric model and model selection. IEEE Transactions on Signal Processing , 2008, 56(5): 1931-1944
doi: 10.1109/TSP.2007.912283
9 Zhu F, Zhang X D, Hu Y F. Gabor filter approach to joint feature extraction and target recognition. IEEE Transactions on Aerospace and Electronic Systems , 2009, 45(1): 17-30
doi: 10.1109/TAES.2009.4805260
10 Wong S K. High range resolution profiles as motion-invariant features for moving ground targets identification in SAR based automatic target recognition. IEEE Transactions on Aerospace and Electronic Systems , 2009, 45(3): 1017-1039
doi: 10.1109/TAES.2009.5259180
11 Xu L. Bayesian Ying-Yang system and theory as a unified statistical learning approach: (v) temporal modeling for temporal perception and control. In: Proceedings of the International Conference on Neural Information Processing . 1998, 2: 877-884
12 Xu L. Temporal Bayesian Ying-Yang dependence reduction, blind source separation and principal independent components. In: Proceedings of International Joint Conference on Neural Networks . 1999, 2: 1071-1076
13 Xu L. Temporal BYY learning for state space approach, hidden Markov model, and blind source separation. IEEE Transactions on Signal Processing , 2000, 48(7): 2132-2144
doi: 10.1109/78.847796
14 Xu L. BYY harmony learning, independent state space, and generalized APT financial analyses. IEEE Transactions on Neural Networks , 2001, 12(4): 822-849
doi: 10.1109/72.935094
15 Xu L. Temporal factor analysis: stable-identifiable family, orthogonal flow learning, and automated model selection. In: Proceedings of International Joint Conference on Neural Networks . 2002, 472-476
16 Xu L. Independent component analysis and extensions with noise and time: a Bayesian Ying-Yang learning perspective. Neural Information Processing—Letters and Reviews , 2003, 1(1): 1-52
17 Xu L. Temporal BYY encoding, Markovian state spaces, and space dimension determination. IEEE Transactions on Neural Networks , 2004, 15(5): 1276-1295
doi: 10.1109/TNN.2004.833302
18 Xu L. Learning algorithms for RBF functions and subspace based functions. Handbook of Research on Machine Learning, Applications and Trends: Algorithms, Methods and Techniques . Hershey: IGI Global, 2009, 60-94
doi: 10.4018/978-1-60566-766-9.ch003
19 Xu L. Bayesian Ying-Yang system, best harmony learning and five action circling. Frontiers of Electrical and Electronic Engineering in China , 2010, 5(3): 281-328
doi: 10.1007/s11460-010-0108-9
20 Chiu K C, Xu L. Arbitrage pricing theory based Gaussian temporal factor analysis for adaptive portfolio management. Decision Support Systems , 2004, 37(4): 485-500
doi: 10.1016/S0167-9236(03)00082-4
21 Chiu K C, Xu L. Optimizing financial portfolios from the perspective of mining temporal structures of stock returns. In: Proceedings of the 3rd International Conference on Machine Learning . 2003, 266-275
22 Burnham K P, Anderson D. Model Selection and Multi-Model Inference. New York: Springer, 2002
23 Akaike H. Factor analysis and AIC. Psychometrika , 1987, 52(3): 317-332
doi: 10.1007/BF02294359
24 Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control , 1974, 19(6): 714-723
doi: 10.1109/TAC.1974.1100705
25 Bozdogan H. Model selection and Akaike’s information criterion (AIC): the general theory and its analytical extension. Psychometrika , 1987, 52(3): 345-370
doi: 10.1007/BF02294361
26 Anderson T W, Rubin H. Statistical inference in factor analysis. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability . 1956, 5: 111-150
27 Ghahramani Z, Hinton G. Parameter estimation for linear dynamical systems. Technical Report CRG-TR-96-2 , 1996
28 Roweis S, Ghahramani Z. A unifying review of linear Gaussian models. Neural Computation , 1999, 11(2): 305-345
doi: 10.1162/089976699300016674
29 Ghahramani Z, Hinton G E. Variational learning for switching state-space models. Neural Computation , 2000, 12(4): 831-864
doi: 10.1162/089976600300015619
30 Carrara W G, Goodman R S, Majewski R M. Spotlight Synthetic Aperture Radar — Signal Processing Algorithms. Boston: Arthech House, 1995
31 Parzen E. On the estimation of a probability density function and mode. Annals of Mathematical Statistics , 1962, 33(3): 1065-1076
doi: 10.1214/aoms/1177704472
32 Rubin D B, Thayer D T. EM algorithms for ML factor analysis. Psychometrika , 1982, 47(1): 69-76
doi: 10.1007/BF02293851
33 Schwarz G. Estimating the dimension of a model. Annals of Statistics , 1978, 6(2): 461-464
doi: 10.1214/aos/1176344136
34 Shi L, Wang P, Liu H, Xu L, Bao Z. Radar HRRP statistical recognition with local factor analysis by automatic Bayesian Ying-Yang harmony learning. IEEE Transactions on Signal Processing , 2011, 59(2): 610-617
doi: 10.1109/TSP.2010.2088391
35 Salah A A, Alpaydin E. Incremental mixtures of factor analyzers. In: Proceedings of the 17th International Conference on Pattern Recognition . 2004, 1: 276-279
doi: 10.1109/ICPR.2004.1334106
36 Tipping M E, Bishop C M. Mixtures of probabilistic principal component analyzers. Neural Computation , 1999, 11(2): 443-482
doi: 10.1162/089976699300016728
37 Shumway R H, Stoffer D S. An approach to time series smoothing and forecasting using the EM algorithm. Journal of Time Series Analysis , 1982, 3(4): 253-264
doi: 10.1111/j.1467-9892.1982.tb00349.x
38 Xu L. YING-YANG machine for temporal signals. In: Proceedings of 1995 IEEE International Conference on Neural Networks and Signal Processing . 1995, I: 644-651
39 Xu L. Bayesian Ying Yang system and theory as a unified statistical learning approach: (ii) from unsupervised learning to supervised learning and temporal modeling. In: Wong K M, King I, Yeung D Y, eds. Proceedings of Theoretical Aspects of Neural Computation: A Multidisciplinary Perspective . 1997, 25-42
40 Xu L. Temporal BYY learning and its applications to extended Kalman filtering, hidden Markov model, and sensormotor integration. In: Proceedings of International Joint Conference on Neural Networks . 1999, 2: 949-954
41 Shumway R H, Stoffer D S. Dynamic linear models with switching. Journal of the American Statistical Association , 1991, 86(415): 763-769
doi: 10.2307/2290410
42 Elliott R J, Aggoun L, Moore J B. Hidden Markov Models: Estimation and Control. New York: Springer-Verlag, 1995
43 Digalakis V, Rohlicek J R, Ostendorf M. ML estimation of a stochastic linear system with the EM algorithm and its application to speech recognition. IEEE Transactions on Speech and Audio Processing , 1993, 1(4): 431-442
doi: 10.1109/89.242489
44 Xu L. Bayesian-Kullback coupled YING-YANG machines: unified learning and new results on vector quantization. In: Proceedings of the International Conference on Neural Information Processing . 1995, 977-988 (A further version in NIPS8. In: Touretzky D S, . eds. Cambridge: MIT Press, 444-450)
45 Xu L. Another perspective of BYY harmony learning: representation in multiple layers, co-decomposition of data covariance matrices, and applications to network biology. Frontiers of Electrical and Electronic Engineering in China , 2011, 6(1): 86-119
46 Xu L. Bayesian Ying Yang system and theory as a unified statistical learning approach: (i) unsupervised and semiunsupervised learning. In: Amari S, Kassabov N, eds. Brain-Like Computing and Intelligent Information Systems . New Zealand: Springer-Verlag, 1997, 241-274
47 Tu S, Xu L. Parameterizations make different model selections: empirical findings from factor analysis. Frontiers of Electrical and Electronic Engineering in China , 2011 (in Press)
48 Xu L. Data smoothing regularization, multi-sets-learning, and problem solving strategies. Neural Networks , 2003, 16(5-6): 817-825
doi: 10.1016/S0893-6080(03)00119-9
49 Egan J P. Signal Detection Theory and ROC Analysis. San Diego: Academic Press, 1975
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed