Please wait a minute...
Frontiers of Electrical and Electronic Engineering

ISSN 2095-2732

ISSN 2095-2740(Online)

CN 10-1028/TM

Front Elect Electr Eng Chin    2011, Vol. 6 Issue (2) : 328-338    https://doi.org/10.1007/s11460-011-0139-x
RESEARCH ARTICLE
Thresholding-based detection of fine and sparse details
Alexander DROBCHENKO, Joni-Kristian KAMARAINEN, Lasse LENSU, Jarkko VARTIAINEN, Heikki K?LVI?INEN, Tuomas EEROLA()
Machine Vision and Pattern Recognition Laboratory, Department of Information Technology, Faculty of Technology Management, Lappeenranta University of Technology, P.O. Box 20, FI-53851 Lappeenranta, Finland
 Download: PDF(678 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Fine and sparse details appear in many quality inspection applications requiring machine vision. Especially on flat surfaces, such as paper or board, the details can be made detectable by oblique illumination. In this study, a general definition of such details is given by defining sufficient statistical properties from histograms. The statistical model allows simulation of data and comparison of methods designed for detail detection. Based on the definition, utilization of the existing thresholding methods is shown to be well motivated. The comparison shows that minimum error thresholding outperforms the other standard methods. Finally, the results are successfully applied to a paper printability inspection application, and the IGT picking assessment, in which small surface defects must be detected. The provided method and measurement system prototype provide automated assessment with results comparable to manual expert evaluations in this laborious task.

Keywords adaptive thresholding      paper quality inspection      picking      machine vision     
Corresponding Author(s): EEROLA Tuomas,Email:tuomas.eerola@lut.fi   
Issue Date: 05 June 2011
 Cite this article:   
Joni-Kristian KAMARAINEN,Lasse LENSU,Jarkko VARTIAINEN, et al. Thresholding-based detection of fine and sparse details[J]. Front Elect Electr Eng Chin, 2011, 6(2): 328-338.
 URL:  
https://academic.hep.com.cn/fee/EN/10.1007/s11460-011-0139-x
https://academic.hep.com.cn/fee/EN/Y2011/V6/I2/328
1 De La Escalera A, Moreno L E, Salichs M A, Armingol J M. Road traffic sign detection and classification. IEEE Transactions on Industrial Electronics , 1997, 44(6): 848-859
doi: 10.1109/41.649946
2 Lia Q, Wang M, Gu W. Computer vision based system for apple surface defect detection. Computers and Electronics in Agriculture , 2002, 36(2-3): 215-223
doi: 10.1016/S0168-1699(02)00093-5
3 Medina-Carnicer R, Madrid-Cuevas F J, Fernández-García N L, Carmona-Poyato A. Evaluation of global thresholding techniques in non-contextual edge detection. Pattern Recognition Letters , 2005, 26(10): 1423-1434
doi: 10.1016/j.patrec.2004.11.024
4 Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronical Imaging , 2004, 13(1): 146-165
doi: 10.1117/1.1631315
5 Chan C H, Pang G K H. Fabric defect detection by Fourier analysis. IEEE Transactions on Industry Applications , 2000, 36(5): 1267-1276
doi: 10.1109/28.871274
6 Iivarinen J, Rauhamaa J, Visa A. Unsupervised segmentation of surface defects. In: Proceedings of the 13th International Conference on Pattern Recognition . 1996, 356-360
doi: 10.1109/ICPR.1996.547445
7 Otsu N. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics , 1979, 9(1): 62-66
doi: 10.1109/TSMC.1979.4310076
8 Kittler J, Illingworth J. Minimum error thresholding. Pattern Recognition , 1986, 19(1): 41-47
doi: 10.1016/0031-3203(86)90030-0
9 Kapur J N, Sahoo P K, Wong A K C. A new method for gray-level picture thresholding using the entropy of the histogram. Computer Vision, Graphics, and Image Processing , 1985, 29(3): 273-285
doi: 10.1016/0734-189X(85)90125-2
10 Tsai D M. A fast thresholding selection procedure for multimodal and unimodal histograms. Pattern Recognition Letters , 1995, 16(6): 653-666
doi: 10.1016/0167-8655(95)80011-H
11 Rosin P L. Unimodal thresholding. Pattern Recognition , 2001, 34(11): 2083-2096
doi: 10.1016/S0031-3203(00)00136-9
12 Fernández-García N L, Medina-Carnicer R, Carmona-Poyato A, Madris-Cuevas F J, Prieto-Villegas M. Characterization of empirical discrepancy evaluation measures. Pattern Recognition Letters , 2004, 25(5): 35-47
13 Baradez M O, McGuckin C P, Forraz N, Pettengell R, Hoppe A. Robust and automated unimodal histogram thresholding and potential applications. Pattern Recognition , 2004, 37(6): 1131-1148
doi: 10.1016/j.patcog.2003.12.008
[1] Huanjun LIU. Empty glass bottle inspection method based on fuzzy support vector machine neural network and machine vision[J]. Front Elect Electr Eng Chin, 2010, 5(4): 430-440.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed