Please wait a minute...
Frontiers of Electrical and Electronic Engineering

ISSN 2095-2732

ISSN 2095-2740(Online)

CN 10-1028/TM

Front Elect Electr Eng Chin    2010, Vol. 5 Issue (4) : 430-440    https://doi.org/10.1007/s11460-010-0114-y
RESEARCH ARTICLE
Empty glass bottle inspection method based on fuzzy support vector machine neural network and machine vision
Huanjun LIU()
Faculty of Automation, Guangdong University of Technology, Guangzhou 510006, China
 Download: PDF(389 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper develops a computerized empty glass bottle inspection method. Wavelet transform and morphologic methods were employed to extract features of the bottle body and the finish from images. Fuzzy support vector machine neural network was adopted as classifiers for the extracted features. Experimental results indicated that the accuracy rate can reach up to 97% by using the method developed to inspect empty glass bottles.

Keywords machine vision      support vector machine (SVM)      neural network (NN)      morphologic method      wavelet transform     
Corresponding Author(s): LIU Huanjun,Email:hjliu74@163.com   
Issue Date: 05 December 2010
 Cite this article:   
Huanjun LIU. Empty glass bottle inspection method based on fuzzy support vector machine neural network and machine vision[J]. Front Elect Electr Eng Chin, 2010, 5(4): 430-440.
 URL:  
https://academic.hep.com.cn/fee/EN/10.1007/s11460-010-0114-y
https://academic.hep.com.cn/fee/EN/Y2010/V5/I4/430
Fig.1  Illumination of bottle body. (a) Illumination; (b) captured image
Fig.2  Illumination of bottle finish. (a) Illumination; (b) captured image
Fig.3  Regions of interest. (a) ROI of bottle body; (b) ROI of bottle finish
Fig.4  Results of watershed transform. (a) Images of bottle wall; (b) results of modified watershed transform; (c) results of classic watershed transform
Fig.5  () of bottle finish. (a) Bottle finish; (b) ()
Fig.6  Multilevel approximations. (a) Originality; (b) level 2 approximation; (c) level 3 approximation; (d) level 4 approximation
Fig.7  Structure of FSVM
Fig.8  Flow chart of proposed algorithm
Fig.9  Fuzzy neural network
samplesaccuracy/%
SVMNNfuzzy support vector machine neural network
Good (112)95.094.897.0
bad (88)96.895.097.7
Tab.1  Comparison of accuracy of detecting glass bottle body using three methods
samplesaccuracy
SVMNNfuzzy support vector machine neural network
good (121)96.596.397.7
bad (79)97.497.398.5
Tab.2  Accuracy comparison of detected glass bottle finish using three methods
1 Aleixos N. Blasco J, Molto E, Navarron F. Assessment of citrus fruit quality using a real-time machine vision system. In: Proceedings of the 15th International Conference on Pattern Recognition . 2000, 1: 482–485
2 Du C J, Sun D W. Comparison of three methods for classification of pizza topping using different colour space transformations. Journal of Food Engineering , 2005, 68(3): 277–287
doi: 10.1016/j.jfoodeng.2004.05.044
3 Shankar N G, Zhong Z W. Defect detection on semiconductor wafer surfaces. Microelectronic Engineering , 2005, 77(3-4): 337–346
doi: 10.1016/j.mee.2004.12.003
4 Jiang B C, Tasi S L, Wang C C. Machine vision-based gray relational theory applied to IC marking inspection. IEEE Transactions on Semiconductor Manufacturing , 2002, 15(4): 531–539
doi: 10.1109/TSM.2002.804906
5 Ma H M, Su G D, Wang J Y, Ni Z. A glass bottle defect detection system without touching. In: Proceedings of the First International Conference on Machine Learning and Cybernetics . 2002, 2: 628–632
6 Shafait F, Imran S M, Klette-Matzat S. Fault detection and localization in empty water bottles through machine vision. In: Proceedings of E-Tech 2004 . 2004, 30–34
7 Vapnik V N. Statistical Learning Theory. New York: John Wiley & Sons Inc, 1998
8 Otsu N. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics , 1979, 9(1): 62–66
doi: 10.1109/TSMC.1979.4310076
9 Gonzale R C, Woods R E. Digital Image Processing. 2nd ed. Upper Saddle River: Prentice Hall, 2002
10 Mallet S. A Wavelet Tour of Signal Processing. 2nd ed. New York: Academic Press, 1999
11 Vapnik V, Levin E, Le Cun Y. Measuring the VC-dimension of a learning machine. Neural Computation , 1994, 6(5): 851–876
doi: 10.1162/neco.1994.6.5.851
12 Dumais S, Platt J, Heckerman D, Sahami M. Inductive learning algorithms and representations for text categorization. In: Proceedings of the Seventh International Conference on Information and Knowledge Management . 1998, 148–155
doi: 10.1145/288627.288651
13 Hsu C W, Lin C J. A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks , 2002, 13(2): 415–425
doi: 10.1109/72.991427
14 Tan Y, Wang J. A support vector machine with a hybrid kernel and minimal Vapnik-Chervonenkis dimension. IEEE Transactions on Knowledge and Data Engineering , 2004, 16(4): 385–395
doi: 10.1109/TKDE.2004.1269664
15 Smola A J, Sch?lkopf B, Müller K R. The connection between regularization operators and support vector kernels. Neural Networks , 1998, 11(4): 637–649
doi: 10.1016/S0893-6080(98)00032-X
16 András P. The equivalence of support vector machine and regularization neural networks. Neural Processing Letters , 2002, 15(2): 97–104
doi: 10.1023/A:1015292818897
[1] Yafeng WANG, Fuchun SUN, Huaping LIU, Dongfang YANG. Maximal terminal region approach for MPC using subsets sequence[J]. Front Elect Electr Eng, 2012, 7(2): 270-278.
[2] Lubin WANG, Hui SHEN, Baojuan LI, Dewen HU. Classification of schizophrenic patients and healthy controls using multiple spatially independent components of structural MRI data[J]. Front Elect Electr Eng Chin, 2011, 6(2): 353-362.
[3] Alexander DROBCHENKO, Joni-Kristian KAMARAINEN, Lasse LENSU, Jarkko VARTIAINEN, Heikki K?LVI?INEN, Tuomas EEROLA. Thresholding-based detection of fine and sparse details[J]. Front Elect Electr Eng Chin, 2011, 6(2): 328-338.
[4] Xiaobo CHEN, Jian YANG. Optimal locality preserving least square support vector machine[J]. Front Elect Electr Eng Chin, 2011, 6(2): 201-207.
[5] Bao-Liang LU, Xiao-Lin WANG, Yang YANG, Hai ZHAO. Learning from imbalanced data sets with a Min-Max modular support vector machine[J]. Front Elect Electr Eng Chin, 2011, 6(1): 56-71.
[6] Na SUN, Yajian ZHOU, Yixian YANG. Consistency of weighted feature set and polyspectral kernels in individual communication transmitter identification[J]. Front Elect Electr Eng Chin, 2010, 5(4): 488-492.
[7] Ying CAO, Xin HAO, Xiaoen ZHU, Shunren XIA, . An adaptive region growing algorithm for breast masses in mammograms[J]. Front. Electr. Electron. Eng., 2010, 5(2): 128-136.
[8] Rongyan WANG, Gang LIU, Jun GUO, Yu FANG, . Multi-class classifier of non-speech audio based on Fisher kernel[J]. Front. Electr. Electron. Eng., 2010, 5(1): 72-76.
[9] Lihong ZHAO, Yanan TIAN, Yonggang SHA, Jinghua LI. Medical image lossless compression based on combining an integer wavelet transform with DPCM[J]. Front Elect Electr Eng Chin, 2009, 4(1): 1-4.
[10] LU Qinghua, ZHANG Xianmin, LU Qinghua. Multi-image gradient-based algorithms for motion measurement using wavelet transform[J]. Front. Electr. Electron. Eng., 2008, 3(2): 183-187.
[11] ZHANG Jie. A non-linear spatial hearing model based on bases pursuit algorithm[J]. Front. Electr. Electron. Eng., 2007, 2(4): 388-394.
[12] MA Jing, WU Chengke, CHEN Dong, ZHOU Youxi. Embedded coding of medical images with regions of interest based on 3-D zerotree[J]. Front. Electr. Electron. Eng., 2007, 2(1): 8-12.
[13] REN Xunyi, WANG Ruchuan, WANG Haiyan. Wavelet analysis method for detection of DDoS attack on the basis of self-similarity[J]. Front. Electr. Electron. Eng., 2007, 2(1): 73-77.
[14] WEI Xiao-wei, CAO Zhi-gang. Fast identification of digital amplitude modulation level at low signal-to-noise ratio[J]. Front. Electr. Electron. Eng., 2006, 1(4): 421-424.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed