Please wait a minute...
Frontiers of Electrical and Electronic Engineering

ISSN 2095-2732

ISSN 2095-2740(Online)

CN 10-1028/TM

Front Elect Electr Eng Chin    2011, Vol. 6 Issue (2) : 353-362    https://doi.org/10.1007/s11460-011-0142-2
RESEARCH ARTICLE
Classification of schizophrenic patients and healthy controls using multiple spatially independent components of structural MRI data
Lubin WANG, Hui SHEN, Baojuan LI, Dewen HU()
College of Mechatronics and Automation, National University of Defense Technology, Changsha 410073, China
 Download: PDF(330 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Several meta-analyses were recently conducted in attempts to identify the core brain regions exhibiting pathological changes in schizophrenia, which could potentially act as disease markers. Based on the findings of these meta-analyses, we developed a multivariate pattern analysis method to classify schizophrenic patients and healthy controls using structural magnetic resonance imaging (sMRI) data. Independent component analysis (ICA) was used to decompose gray matter density images into a set of spatially independent components. Spatial multiple regression of a region of interest (ROI) mask with each of the components was then performed to determine pathological patterns, in which the voxels were taken as features for classification. After dimensionality reduction using principal component analysis (PCA), a nonlinear support vector machine (SVM) classifier was trained to discriminate schizophrenic patients from healthy controls. The performance of the classifier was tested using a 10-fold cross-validation strategy. Experimental results showed that two distinct spatial patterns displayed discriminative power for schizophrenia, which mainly included the prefrontal cortex (PFC) and subcortical regions respectively. It was found that simultaneous usage of these two patterns improved the classification performance compared to using either of them alone. Moreover, the two pathological patterns constitute a prefronto-subcortical network, suggesting that schizophrenia involves abnormalities in networks of brain regions.

Keywords schizophrenia      discriminative analysis      gray matter network      independent component analysis (ICA)      support vector machine (SVM)     
Corresponding Author(s): HU Dewen,Email:dwhu@nudt.edu.cn   
Issue Date: 05 June 2011
 Cite this article:   
Lubin WANG,Hui SHEN,Baojuan LI, et al. Classification of schizophrenic patients and healthy controls using multiple spatially independent components of structural MRI data[J]. Front Elect Electr Eng Chin, 2011, 6(2): 353-362.
 URL:  
https://academic.hep.com.cn/fee/EN/10.1007/s11460-011-0142-2
https://academic.hep.com.cn/fee/EN/Y2011/V6/I2/353
1 Andreasen N C, Nopoulos P, O’Leary D S, Miller D D, Wassink T, Flaum M. Defining the phenotype of schizophrenia: cognitive dysmetria and its neural mechanisms. Biological Psychiatry , 1999, 46(7): 908-920
doi: 10.1016/S0006-3223(99)00152-3
2 Shenton M E, Dickey C C, Frumin M, McCarley R W. A review of MRI findings in schizophrenia. Schizophrenia Research , 2001, 49(1-2): 1-52
doi: 10.1016/S0920-9964(01)00163-3
3 Honea R, Crow T J, Passingham D, Mackay C E. Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. American Journal of Psychiatry , 2005, 162(12): 2233-2245
doi: 10.1176/appi.ajp.162.12.2233
4 Ellison-Wright I, Glahn D C, Laird A R, Thelen S M, Bullmore E. The anatomy of first-episode and chronic schizophrenia: an anatomical likelihood estimation metaanalysis. American Journal of Psychiatry , 2008, 165(8): 1015-1023
doi: 10.1176/appi.ajp.2008.07101562
5 Glahn D C, Laird A R, Ellison-Wright I, Thelen S M, Robinson J L, Lancaster J L, Bullmore E, Fox P T. Metaanalysis of gray matter anomalies in schizophrenia: application of anatomic likelihood estimation and network analysis. Biological Psychiatry , 2008, 64(9): 774-781
doi: 10.1016/j.biopsych.2008.03.031
6 Giuliani N R, Calhoun V D, Pearlson G D, Francis A, Buchanan R W. Voxel-based morphometry versus region of interest: a comparison of two methods for analyzing gray matter differences in schizophrenia. Schizophrenia Research , 2005, 74(2-3): 135-147
doi: 10.1016/j.schres.2004.08.019
7 Fan Y, Shen D G, Gur R C, Gur R E, Davatzikos C. COMPARE: classification of morphological patterns using adaptive regional elements. IEEE Transactions on Medical Imaging , 2007, 26(1): 93-105
doi: 10.1109/TMI.2006.886812
8 Pereira F, Mitchell T, Botvinick M. Machine learning classifiers and fMRI: a tutorial overview. NeuroImage , 2009, 45(1): S199-S209
doi: 10.1016/j.neuroimage.2008.11.007
9 McKeown M J, Jung T P, Makeig S, Brown G, Kindermann S S, Lee T W, Sejnowski T J. Spatially independent activity patterns in functional MRI data during the Stroop colornaming task. Proceedings of the National Academy of Sciences of the United States of America , 1998, 95(3): 803-810
doi: 10.1073/pnas.95.3.803
10 Calhoun V D, Adali T, Pearlson G D, Pekar J J. Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms. Human Brain Mapping , 2001, 13(1): 43-53
doi: 10.1002/hbm.1024
11 Hu D W, Yan L, Liu Y, Zhou Z, Friston K J, Tan C, Wu D. Unified SPM-ICA for fMRI analysis. NeuroImage , 2005, 25(3): 746-755
doi: 10.1016/j.neuroimage.2004.12.031
12 Xu L, Groth K M, Pearlson G, Schretlen D J, Calhoun V D. Source-based morphometry: the use of independent component analysis to identify gray matter differences with application to schizophrenia. Human Brain Mapping , 2009, 30(3): 711-724
doi: 10.1002/hbm.20540
13 Calhoun V D, Maciejewski P K, Pearlson G D, Kiehl K A. Temporal lobe and “default” hemodynamic brain modes discriminate between schizophrenia and bipolar disorder. Human Brain Mapping , 2008, 29(11): 1265-1275
doi: 10.1002/hbm.20463
14 Ashburner J, Friston K J. Voxel-based morphometry — the methods. NeuroImage , 2000, 11(6): 805-821
doi: 10.1006/nimg.2000.0582
15 Stoica P, Selen Y. Model-order selection: a review of information criterion rules. IEEE Signal Processing Magazine , 2004, 21(4): 36-47
doi: 10.1109/MSP.2004.1311138
16 Bell A J, Sejnowski T J. An information-maximization approach to blind separation and blind deconvolution. Neural Computation , 1995, 7(6): 1129-1159
doi: 10.1162/neco.1995.7.6.1129
17 Rüsch N, Spoletini I, Wilke M, Bria P, Di Paola M, Di Iulio F, Martinotti G, Caltagirone C, Spalletta G. Prefrontalthalamic-cerebellar gray matter networks and executive functioning in schizophrenia. Schizophrenia Research , 2007, 93(1-3): 79-89
doi: 10.1016/j.schres.2007.01.029
18 Nenadic I, Sauer H, Gaser C. Distinct pattern of brain structural deficits in subsyndromes of schizophrenia delineated by psychopathology. NeuroImage , 2010, 49(2): 1153-1160
doi: 10.1016/j.neuroimage.2009.10.014
19 Shen H, Wang L B, Liu Y D, Hu D W. Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI. NeuroImage , 2010, 49(4): 3110-3121
doi: 10.1016/j.neuroimage.2009.11.011
20 Fan Y, Resnick S M, Wu X Y, Davatzikos C. Structural and functional biomarkers of prodromal Alzheimer’s disease: a high-dimensional pattern classification study. NeuroImage , 2008, 41(2): 277-285
doi: 10.1016/j.neuroimage.2008.02.043
21 Raz N, Lindenberger U, Rodrigue K M, Kennedy K M, Head D, Williamson A, Dahle C, Gerstorf D, Acker J D. Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cerebral Cortex , 2005, 15(11): 1676-1689
doi: 10.1093/cercor/bhi044
22 Witte A V, Savli M, Holik A, Kasper S, Lanzenberger R. Regional sex differences in grey matter volume are associated with sex hormones in the young adult human brain. NeuroImage , 2010, 49(2): 1205-1212
doi: 10.1016/j.neuroimage.2009.09.046
23 Frangou S, Chitins X, Williams S C R. Mapping IQ and gray matter density in healthy young people. NeuroImage , 2004, 23(3): 800-805
doi: 10.1016/j.neuroimage.2004.05.027
[1] Yafeng WANG, Fuchun SUN, Huaping LIU, Dongfang YANG. Maximal terminal region approach for MPC using subsets sequence[J]. Front Elect Electr Eng, 2012, 7(2): 270-278.
[2] Xiaobo CHEN, Jian YANG. Optimal locality preserving least square support vector machine[J]. Front Elect Electr Eng Chin, 2011, 6(2): 201-207.
[3] Bao-Liang LU, Xiao-Lin WANG, Yang YANG, Hai ZHAO. Learning from imbalanced data sets with a Min-Max modular support vector machine[J]. Front Elect Electr Eng Chin, 2011, 6(1): 56-71.
[4] Na SUN, Yajian ZHOU, Yixian YANG. Consistency of weighted feature set and polyspectral kernels in individual communication transmitter identification[J]. Front Elect Electr Eng Chin, 2010, 5(4): 488-492.
[5] Huanjun LIU. Empty glass bottle inspection method based on fuzzy support vector machine neural network and machine vision[J]. Front Elect Electr Eng Chin, 2010, 5(4): 430-440.
[6] Ying CAO, Xin HAO, Xiaoen ZHU, Shunren XIA, . An adaptive region growing algorithm for breast masses in mammograms[J]. Front. Electr. Electron. Eng., 2010, 5(2): 128-136.
[7] Rongyan WANG, Gang LIU, Jun GUO, Yu FANG, . Multi-class classifier of non-speech audio based on Fisher kernel[J]. Front. Electr. Electron. Eng., 2010, 5(1): 72-76.
[8] LI Hongyan, MA Jianfen, LI Deng'ao, WANG Huakui. Fixed-point blind source separation algorithm based on ICA[J]. Front. Electr. Electron. Eng., 2008, 3(3): 343-346.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed