Please wait a minute...
Frontiers of Electrical and Electronic Engineering

ISSN 2095-2732

ISSN 2095-2740(Online)

CN 10-1028/TM

Front Elect Electr Eng    2012, Vol. 7 Issue (2) : 270-278    https://doi.org/10.1007/s11460-012-0178-y
RESEARCH ARTICLE
Maximal terminal region approach for MPC using subsets sequence
Yafeng WANG1,2, Fuchun SUN1(), Huaping LIU1, Dongfang YANG1
1. Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China; 2. The Aviation General Office in Guangzhou Bureau of Naval General Armaments Department, Anshun 561018, China
 Download: PDF(327 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

For the sake of enlarging the domain of attraction of model predictive control (MPC), a novel approach of gradually approximating the maximal terminal state region is proposed in this paper. Given the terminal cost, both surrounding set sequence and subsets sequence of the maximal terminal region were constructed by employing one-step set expansion iteratively. It was theoretically proved that when the iteration time goes to infinity, both the surrounding set sequence and the subsets sequence will converge to the maximal terminal region. All surrounding and subsets sets in these sequences are extracted from the state space by exploiting support vector machine (SVM) classifier. Finally, simulations are implemented to validate the effectiveness of this approach.

Keywords model predictive control (MPC)      terminal region      domain of attraction      support vector machine (SVM)     
Corresponding Author(s): SUN Fuchun,Email:fcsun@mail.tsinghua.edu.cn   
Issue Date: 05 June 2012
 Cite this article:   
Yafeng WANG,Fuchun SUN,Huaping LIU, et al. Maximal terminal region approach for MPC using subsets sequence[J]. Front Elect Electr Eng, 2012, 7(2): 270-278.
 URL:  
https://academic.hep.com.cn/fee/EN/10.1007/s11460-012-0178-y
https://academic.hep.com.cn/fee/EN/Y2012/V7/I2/270
Fig.1  Approximating process of surrounding set sequence
Fig.2  Approximating process of subsets sequence
Fig.3  Approximation process of surrounding set sequence
Fig.4  Approximation process of subsets sequence
Fig.5  Closed-loop trajectories of states
1 Mayne D Q, Rawlings J B, Rao C V, Scokaert P O M. Constrained model predictive control: Stability and optimality. Automatica , 2000, 36(6): 789-814
doi: 10.1016/S0005-1098(99)00214-9
2 González A H, Odloak D. Enlarging the domain of attraction of stable MPC controllers, maintaining the output performance. Automatica , 2009, 45(4): 1080-1085
doi: 10.1016/j.automatica.2008.11.015
3 Magni L, De Nicolao G, Magnani L, Scattolini R. A stabilizing model based predictive control algorithm for nonlinear systems. Automatica , 2001, 37(9): 1351-1362
4 Chen H, Allgower F. A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability. Automatica , 1998, 34(10): 1205-1217
doi: 10.1016/S0005-1098(98)00073-9
5 Cannon M, Deshmukh V, Kouvaritakis B. Nonlinear model predictive control with polytopic invariant sets. Automatica , 2003, 39(8): 1487-1494
doi: 10.1016/S0005-1098(03)00128-6
6 De Doná J A, Seron M M, Mayne D Q, Goodwin G C. Enlarged terminal sets guaranteeing stability of receding horizon control. Systems & Control Letters , 2002, 47(1): 57-63
doi: 10.1016/S0167-6911(02)00175-5
7 Ong C J, Sui D, Gilbert E G. Enlarging the terminal region of nonlinear model predictive control using the support vector machine method. Automatica , 2006, 42(6): 1011-1016
doi: 10.1016/j.automatica.2006.02.023
8 Limon D, Alamo T, Salas F, Camacho E F. On the stability of constrained MPC without terminal constraint. IEEE Transactions on Automatic Control , 2006, 51(5): 832-836
doi: 10.1109/TAC.2006.875014
9 Limon D, Alamo T, Camacho E F. Enlarging the domain of attraction of MPC controllers. Automatica , 2005, 41(4): 629-635
doi: 10.1016/j.automatica.2004.10.011
10 Burges C C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery , 1998, 2(2): 121-167
doi: 10.1023/A:1009715923555
11 Vapnik V. The Nature of Statistical Learning Theory. New York: Springer, 1995
12 Wang Y F, Sun F C, Zhang Y A, Liu H P, Min H B. Getting a suitable terminal cost and maximizing the terminal region for MPC. Mathematical Problems in Engineering, 2010 , 2010: 1-16
[1] Lubin WANG, Hui SHEN, Baojuan LI, Dewen HU. Classification of schizophrenic patients and healthy controls using multiple spatially independent components of structural MRI data[J]. Front Elect Electr Eng Chin, 2011, 6(2): 353-362.
[2] Xiaobo CHEN, Jian YANG. Optimal locality preserving least square support vector machine[J]. Front Elect Electr Eng Chin, 2011, 6(2): 201-207.
[3] Bao-Liang LU, Xiao-Lin WANG, Yang YANG, Hai ZHAO. Learning from imbalanced data sets with a Min-Max modular support vector machine[J]. Front Elect Electr Eng Chin, 2011, 6(1): 56-71.
[4] Na SUN, Yajian ZHOU, Yixian YANG. Consistency of weighted feature set and polyspectral kernels in individual communication transmitter identification[J]. Front Elect Electr Eng Chin, 2010, 5(4): 488-492.
[5] Huanjun LIU. Empty glass bottle inspection method based on fuzzy support vector machine neural network and machine vision[J]. Front Elect Electr Eng Chin, 2010, 5(4): 430-440.
[6] Ying CAO, Xin HAO, Xiaoen ZHU, Shunren XIA, . An adaptive region growing algorithm for breast masses in mammograms[J]. Front. Electr. Electron. Eng., 2010, 5(2): 128-136.
[7] Rongyan WANG, Gang LIU, Jun GUO, Yu FANG, . Multi-class classifier of non-speech audio based on Fisher kernel[J]. Front. Electr. Electron. Eng., 2010, 5(1): 72-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed