Please wait a minute...
Frontiers of Electrical and Electronic Engineering

ISSN 2095-2732

ISSN 2095-2740(Online)

CN 10-1028/TM

Front Elect Electr Eng    2012, Vol. 7 Issue (3) : 312-317    https://doi.org/10.1007/s11460-012-0196-9
RESEARCH ARTICLE
Modeling and optimization of induction cooking by the use of magneto-thermal finite element analysis and genetic algorithms
Abdelkader KANSSAB1(), Abdelhalim ZAOUI2, Mouloud FELIACHI3
1. Département d’électrotechnique, University of Hassiba Benbouali, Chlef 02000, Algeria; 2. Military Polytechnic School, BP17 B.E.Bahri, Algiers, Algeria; 3. PRES-L’UNAM, IREENA, Bd de l'Université, BP 406, 44602 St-Nazaire cedex, France
 Download: PDF(152 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Induction cooking has several advantages compared to traditional heating system; however, to obtain best efficiency, it is essential to have an inductor giving homogeneous temperature on the pan bottom. For this aim, we propose a structure of inductor with four throats containing coils and optimize their distribution. In this paper, first we model magneto-thermal phenomenon of the system by a finite element method (FEM) for the mean to determine the distribution of temperature on the pan bottom by taking the nonlinearity of system. This study shows that a temperature distribution is not homogeneous. Second, with the aim to have homogeneous temperature distribution on the pan bottom, the optimal determination of throats distribution and their dimensions is obtained by genetic algorithms (GAs). The optimized structure permits to satisfy our aim.

Keywords finite element method      magneto-thermal devices      genetic algorithms     
Corresponding Author(s): KANSSAB Abdelkader,Email:kanssab@yahoo.fr   
Issue Date: 05 September 2012
 Cite this article:   
Abdelkader KANSSAB,Abdelhalim ZAOUI,Mouloud FELIACHI. Modeling and optimization of induction cooking by the use of magneto-thermal finite element analysis and genetic algorithms[J]. Front Elect Electr Eng, 2012, 7(3): 312-317.
 URL:  
https://academic.hep.com.cn/fee/EN/10.1007/s11460-012-0196-9
https://academic.hep.com.cn/fee/EN/Y2012/V7/I3/312
Fig.1  Inductor with coils winding
Fig.2  Inductor with throats
Fig.3  Curve of resistivity
Fig.4  Curve of relative permeability
Fig.5  Geometry of the model used in the program
symboldescriptionvalue
Rradius of container140 mm
eiinductor thickness3.8 mm
eggap thickness4 mm
eccontainer thickness3 mm
d1, d2, ..., didistances16.25 mm
eqthroats thickness2 mm
μfferrite relative permeability2500
ffrequency20×103 Hz
Jcurrent density1×106 A/m2
lthermal conductivity26 W/(m·K)
hconvection coefficient20 W/(m2·K)
ρmmasse density7700 kg/m3
Cpspecific heat460 J/K
Tab.1  Parameters of the simulated system
Fig.6  Flow chart of magneto-thermal program
Fig.7  Curve of current density at the bottom of the pan
Fig.8  Curve of temperature at the bottom of the pan
Fig.9  Flow chart of GA
Fig.10  Geometry of the inductor after optimization
di/mm
value16.224.019.37.77.912.121.421.4
Tab.2  New dimensions of the throats
Fig.11  Distribution of current density at the bottom of the pan
Fig.12  Distribution of temperature at the bottom of the pan
Fig.13  Temperature evolution versus time
1 Davies E J, Simpson P G. Induction Heating Handbook. London: McGraw-Hill Book Company Ltd., 1995
2 Su W C. The control design and practical measurement for high frequency induction heating. Dissertation for the Master’s Degree . Chung Li: Chung Yuan Christian University, 1998
3 Acero J, Hernandez P J, Burdio J M, Alonso R, Barragdan L A. Simple resistance calculation in litz-wire planar windings for induction cooking appliances. IEEE Transactions on Magnetics , 2005, 41(4): 1280–1288
doi: 10.1109/TMAG.2005.844844
4 Holland J H. Adaptation in Natural and Artificial Systems. Cambridge, MA: MIT Press, 1992
5 Yokose Y, Cingoski V, Yamashita H. Genetic algorithms with assistant chromosomes for inverse shape optimization of electromagnetic devices. IEEE Transactions on Magnetics , 2000, 36(4): 1052–1056
doi: 10.1109/20.877622
6 Yokose Y, Cingoski V, Kaneda K, Yamashita H. Shape optimization of magnetic devices using genetic algorithms with dynamically adjustable parameters. IEEE Transactions on Magnetics , 1999, 35(3): 1686–1689
doi: 10.1109/20.767341
7 Burais N, Pertoldi S, Gaspard J Y. Couplage de modèles pour la conception d’inducteur de cuisson par induction. In: Proceedings of NUMELEC’97 . 1997
8 Du Terrail Y, Sabonnadiere J C, Masse P, Coulomb J L. Nonlinear complex finite elements analysis of electromagnetic field in steady-state AC devices. IEEE Transactions on Magnetics , 1984, 20(4): 549–552
9 Féliachi M,Develey G. Magneto-thermal behavior finite element analysis for ferromagnetic materials in induction heating devices. IEEE Transactions on Magnetics , 1991, 27(6): 5235–5237
10 Byun J K, Choi K, Roh H S, Hahn S Y. Optimal design procedure for a practical induction heating cooker. IEEE Transactions on Magnetics , 2000, 36(4): 1390–1393
11 Moreau L. Modélisation, conception et commande de génératrices à réluctance variable basse vitesse. Thèse de Doctorat de l’Université de Nantes . Nantes: Université de Nantes, 2005
[1] Majid Ghasemi KAHRISANGI, Arash Hassanpour ISFAHANI, Sadegh VAEZ-ZADEH, Mohammad Rajabi SEBDANI. Line-start permanent magnet synchronous motors versus induction motors: A comparative study[J]. Front Elect Electr Eng, 2012, 7(4): 459-466.
[2] A. GOURBI, M. BRAHAMI, A. TILMATINE, P. PIROTTE. Numerical simulation of corona-induced vibration of high voltage conductor[J]. Front Elect Electr Eng Chin, 2009, 4(3): 335-341.
[3] Peng CHENG, Qiufeng WU, Qionghai DAI. Application layer multicast routing solution based on genetic algorithms[J]. Front Elect Electr Eng Chin, 2009, 4(1): 43-46.
[4] LIU Rui-fang, YAN Deng-jun, HU Min-qiang. Investigation in Determining the Relative Position between Stator and Rotor of a PMSM in Electromagnetic Field Calculation[J]. Front. Electr. Electron. Eng., 2006, 1(1): 67-71.
[5] HE Xiao-xiang, XU Jin-ping. IBC/FEM Analysis of Electromagnetic Scatter of Cavities Coated with Layered Medium[J]. Front. Electr. Electron. Eng., 2006, 1(1): 88-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed