Please wait a minute...
Frontiers of Electrical and Electronic Engineering

ISSN 2095-2732

ISSN 2095-2740(Online)

CN 10-1028/TM

Front Elect Electr Eng    2012, Vol. 7 Issue (4) : 386-390    https://doi.org/10.1007/s11460-012-0209-8
RESEARCH ARTICLE
Experimental investigation on frequency-dependent critical current of HTS tapes
Changhui DAI, Yinshun WANG(), Xiaojie ZHANG, Weijie ZHAO, Xiao LI
State Key Laboratory for Alternate Electrical Power System with Renewable Energy Sources, Beijing 102206, China; Key Laboratory of HV and EMC Beijing, Beijing 102206, China; North China Electric Power University, Beijing 102206, China
 Download: PDF(153 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Based on characteristics of alternating current (AC) critical current of high temperature superconducting (HTS) tapes on the frequency, this paper focuses on AC voltage-current (U-I) behaviors of two kinds of high temperature superconducting tapes, by which BSCCO and YBCO carrying different frequency AC currents are tested in liquid nitrogen temperature of 77 K. It is shown that the AC U-I characteristic curves of different tapes consist of two parts, that is, the resistive part and the hysteresis part. Additionally, the n values of the two parts and the relationship between AC critical current and frequency are obtained through experiments. The experimental results agree with calculated ones well, which is useful for the application of HTS tapes to power technology.

Keywords high temperature superconducting (HTS) tape      alternating current (AC) critical current      n value      frequency      AC voltage-current (U-I) behavior      four-probe technique     
Corresponding Author(s): WANG Yinshun,Email:yswang@ncepu.edu.cn   
Issue Date: 05 December 2012
 Cite this article:   
Weijie ZHAO,Xiao LI,Changhui DAI, et al. Experimental investigation on frequency-dependent critical current of HTS tapes[J]. Front Elect Electr Eng, 2012, 7(4): 386-390.
 URL:  
https://academic.hep.com.cn/fee/EN/10.1007/s11460-012-0209-8
https://academic.hep.com.cn/fee/EN/Y2012/V7/I4/386
Fig.1  Schematic arrangements of set-up
Fig.1  Schematic arrangements of set-up
Fig.1  Schematic arrangements of set-up
Fig.1  Schematic arrangements of set-up
Fig.1  Schematic arrangements of set-up
Fig.2  Dependence of phase difference between the input signal and the output signal of the signal amplifier on frequency
Fig.2  Dependence of phase difference between the input signal and the output signal of the signal amplifier on frequency
Fig.2  Dependence of phase difference between the input signal and the output signal of the signal amplifier on frequency
Fig.2  Dependence of phase difference between the input signal and the output signal of the signal amplifier on frequency
Fig.2  Dependence of phase difference between the input signal and the output signal of the signal amplifier on frequency
Fig.3  AC - characteristic curves at different frequencies for BSCCO tapes
Fig.3  AC - characteristic curves at different frequencies for BSCCO tapes
Fig.3  AC - characteristic curves at different frequencies for BSCCO tapes
Fig.3  AC - characteristic curves at different frequencies for BSCCO tapes
Fig.3  AC - characteristic curves at different frequencies for BSCCO tapes
Fig.4  AC - characteristic curves at different frequencies for YBCO CC
Fig.4  AC - characteristic curves at different frequencies for YBCO CC
Fig.4  AC - characteristic curves at different frequencies for YBCO CC
Fig.4  AC - characteristic curves at different frequencies for YBCO CC
Fig.4  AC - characteristic curves at different frequencies for YBCO CC
Fig.5  Frequency-dependent AC critical currents of BSCCO with DC critical current = 125 A and YBCO CC with = 90 A
Fig.5  Frequency-dependent AC critical currents of BSCCO with DC critical current = 125 A and YBCO CC with = 90 A
Fig.5  Frequency-dependent AC critical currents of BSCCO with DC critical current = 125 A and YBCO CC with = 90 A
Fig.5  Frequency-dependent AC critical currents of BSCCO with DC critical current = 125 A and YBCO CC with = 90 A
Fig.5  Frequency-dependent AC critical currents of BSCCO with DC critical current = 125 A and YBCO CC with = 90 A
1 Mukoyama S, Maruyama S, Yagi M, Yagi Y, Ishii N, Sato O, Amemiya M, Kimura H, Kimura A. Development of 500 m HTS power cable in super-ACE project. Cryogenics , 2005, 45(1): 11-15
doi: 10.1016/j.cryogenics.2004.08.003
2 Xin Y, Hou B, Bi Y F, Xi H X, Zhang Y, Ren A, Yang X C, Han Z H, Wu S T, Ding H K. Introduction of China’s first live grid installed HTS power cable system. IEEE Transactions on Applied Superconductivity , 2005, 15(2): 1814-1817
doi: 10.1109/TASC.2005.849299
3 Furuse M, Fuchino S, Higuchi N. Investigation of structure of superconducting power transmission cables with LN2 counter-flow cooling. Physica C: Superconductivity , 2003, 386: 474-479
doi: 10.1016/S0921-4534(02)02245-1
4 Schlosser R, Schmidt H, Leghissa M, Meinert M. Development of high-temperature superconducting transformers for railway applications. IEEE Transactions on Applied Superconductivity , 2003, 13(2): 2325-2330
doi: 10.1109/TASC.2003.813118
5 Hatta H, Nitta T, Oide T, Chiba M, Shirai Y, Mochida A. Experimental study on characteristics of superconducting fault current limiters connected in series. Superconductor Science and Technology , 2004, 17(5): S276-S280
doi: 10.1088/0953-2048/17/5/036
6 Luongo C A, Baldwin T, Ribeiro P, Weber C M. A 100 MJ SMES demonstration at FSU-CAPS. IEEE Transactions on Applied Superconductivity , 2003, 13(2): 1800-1805
doi: 10.1109/TASC.2003.812894
7 Wang Y S, Guan X J, Zhang H Y, Liu H W. Progress in inhomogeneity of critical current and index n value measurements on HTS tapes using contact-free method. Science China Technological Sciences , 2010, 53(8): 2239-2246
doi: 10.1007/s11431-010-4033-1
8 Thakur K P, Raj A, Brandt E H, Kvitkovic J, Pamidi S V. Frequency-dependent critical current and transport ac loss of superconductor strip and Roebel cable. Superconductor Science and Technology , 2011, 24(6): 065024
doi: 10.1088/0953-2048/24/6/065024
9 Tao B W, Xiong J, Liu X Z, Li Y R. Progress in research of coated conductors. Materials China , 2009, 28(4): 16-22 (in Chinese)
10 Cheng S J, Tang Y J. High temperature SMES for improving power system stabilities. Science in China Series E: Technological Sciences , 2007, 50(4): 402-412
doi: 10.1007/s11431-007-0054-9
11 Wang Y S. Superconducting Power Technology. Beijing: Science Press, 2011 (in Chinese)
12 Lin L Z, Zhang J L, Li C Y, Xia P C, Yang Q S. Superconductivity Application . Beijing: Beijing University of Technology Press, 1998 (in Chinese)
13 Wang H L, Wang J R. Application of low temperature superconducting technology. Beijing: National Defense Industry Press, 2008 (in Chinese)
14 Kudymow A, Schacherer C, Noe M, Goldacker W. Experimental investigation of parallel connected YBCO coated conductors for resistive fault current limiters. IEEE Transactions on Applied Superconductivity , 2009, 19(3): 1806-1809
doi: 10.1109/TASC.2009.2019042
15 Saleh A M, Abu-Samreh M, Al-Awaysa G M, Kitaneh R M-L. Extraction of critical current density and flux creep exponent in the magnetic superconductor Ru-1212 using the ac magnetic susceptibility measurements. Journal of Superconductivity and Novel Magnetism , 2008, 21(4): 229-235
doi: 10.1007/s10948-008-0322-3
16 Qu T M, Luo X M, Chen D XHan Z.Frequency dependence of ac susceptibility of monofilament Bi-2223/Ag superconducting tapes. Physica C: Superconductivity , 2004, 412-414(2): 1154-1157
17 Stavrev S, Dutoit B, Nibbio N, Le Lay L. Eddy current self-field loss in Bi-2223 tapes with a.c. transport current. Physica C: Superconductivity , 1998, 307(1-2): 105-116
[1] J. LAKSHMI NARAYANA, K. SRI RAMA KRISHNA, L. PRATAP REDDY, G. V. SBRAHMANYAM. Modeling of double ridge waveguide using ANN[J]. Front Elect Electr Eng, 2012, 7(3): 299-307.
[2] Tao YU. Airborne direction finding method based on Doppler-phase measurement[J]. Front Elect Electr Eng Chin, 2010, 5(4): 493-495.
[3] Siyang SUN, Yinghua LU, Jinling ZHANG, Fangming RUAN, . Genetic algorithm optimization of broadband microstrip antenna[J]. Front. Electr. Electron. Eng., 2010, 5(2): 185-187.
[4] F. HEYDARI, A. SHEIKHOLESLAMI, K. G. FIROUZJAH, S. LESAN, . Predictive field-oriented control of PMSM with space vector modulation technique[J]. Front. Electr. Electron. Eng., 2010, 5(1): 91-99.
[5] Wei DONG, Jiandong LI, Zhuo LU, Linjing ZHAO. Parameter estimation for MIMO system based on MUSIC and ML methods[J]. Front Elect Electr Eng Chin, 2009, 4(2): 161-165.
[6] Yi LIANG, Mengdao XING, Zheng BAO, Long ZHANG. High-speed ground moving target detection research using triangular modulation FMCW[J]. Front Elect Electr Eng Chin, 2009, 4(2): 127-133.
[7] Zhiwei LI, Chunyan FENG, Tiankui ZHANG, Jieying ZHENG. Power allocation scheme for multicell interference coordination in OFDMA systems[J]. Front Elect Electr Eng Chin, 2009, 4(1): 31-34.
[8] MA Qinghua, YANG Luxi, HE Zhenya. Diversity analysis of space-time-frequency coded broadband MIMO-OFDM system with correlation across space time and frequency[J]. Front. Electr. Electron. Eng., 2008, 3(3): 295-300.
[9] HE Yan, HU Jianyun, MIN Hao. An ultra low-voltage, low-power baseband-processor for UHF RFID tag[J]. Front. Electr. Electron. Eng., 2008, 3(1): 99-104.
[10] LI Junyuan, CHEN Hongjun, ZHANG Xiaohua, LI Shengfeng. Localization technique research of a pipeline robot based on the magnetic-dipole model[J]. Front. Electr. Electron. Eng., 2008, 3(1): 55-60.
[11] GAO Qiang, YAN Dunbao, FU Yunqi, YUAN Naichang. Loaded-frequency selective surface[J]. Front. Electr. Electron. Eng., 2008, 3(1): 96-98.
[12] YAN Songhua, WU Shicai, WEN Biyang. Low velocity target detection based on time-frequency image for high frequency ground wave radar[J]. Front. Electr. Electron. Eng., 2007, 2(4): 404-409.
[13] HE Feng, WU Lenan. Positioning models and systems based on digital television broadcasting signals[J]. Front. Electr. Electron. Eng., 2007, 2(4): 410-414.
[14] FANG Liang, ZHAO Zhengyu, WANG Feng, SU Fanfan. Preprocessing of ionospheric echo Doppler spectra[J]. Front. Electr. Electron. Eng., 2007, 2(4): 415-419.
[15] ZHANG Hanlei, ZHOU Jiemin, LI Gang. Improved wavelet analysis for induction motors mixed-fault diagnosis[J]. Front. Electr. Electron. Eng., 2007, 2(3): 355-360.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed