Please wait a minute...
Frontiers of Engineering Management

ISSN 2095-7513

ISSN 2096-0255(Online)

CN 10-1205/N

Postal Subscription Code 80-905

Front. Eng    2017, Vol. 4 Issue (1) : 76-83    https://doi.org/10.15302/J-FEM-2017012
RESEARCH ARTICLE
Web-based construction equipment fleet management system: cost-effective global and local allocation
Hakob AVETISYAN1(), Miroslaw SKIBNIEWSKI2
1. Department of Civil and Environmental Engineering, California State University, Fullerton, CA 92834, USA
2. Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742, USA
 Download: PDF(245 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Over the last two decades, construction contractors have been gradually making more investments in construction equipment to meet their needs associated with increasing volumes of construction projects. At present, from an operational perspective, almost all contractors pay more attention to maintaining their equipment fleets in well-sustained workable conditions and having a high accessibility of the necessary equipment pieces. However, such an approach alone is not enough to maintain an efficient and sustainable business. In particular, for large-scale construction companies that operate in multiple sites in the U.S. or overseas, the problem extends to an optimal allocation of available equipment. Given the current state of the construction industry in the U.S., this problem can be solved by geographically locating equipment pieces and then wisely re-allocating them among projects. Identifying equipment pieces geographically is a relatively easy task. The difficulty arises when informed decision-making is required for equipment allocation among job sites. The actual allocation of equipment should be both economically feasible and technologically preferable. To help in informed decision-making, an optimization model is developed as a mixed integer program. This model is formed based on a previously successfully developed decision-support model for construction equipment selection. The proposed model incorporates logical strategies of supply chain management to optimally select construction equipment for any construction site while taking into account the costs, availability, and transportation-related issues as constraints. The model benefits those responsible for informed decision-making for construction equipment selection and allocation. It also benefits the owners of construction companies, owing to its cost-minimization objective.

Keywords Construction equipment      Equipment assignment optimization      Web-based asset management     
Corresponding Author(s): Hakob AVETISYAN   
Online First Date: 07 April 2017    Issue Date: 19 April 2017
 Cite this article:   
Hakob AVETISYAN,Miroslaw SKIBNIEWSKI. Web-based construction equipment fleet management system: cost-effective global and local allocation[J]. Front. Eng, 2017, 4(1): 76-83.
 URL:  
https://academic.hep.com.cn/fem/EN/10.15302/J-FEM-2017012
https://academic.hep.com.cn/fem/EN/Y2017/V4/I1/76
Fig.1  Schematic representation of web-based construction equipment management system
EPA TierEquipment limitations by percentage on site
Tier 0Must not exceed 10%
Tier 1Must not exceed 70% (combined with Tier 0)
Tier 2Must not exceed 90% (combined with Tiers 0 and 1)
Tier 3Must be no less than 10%
Tab.1  Maryland’s tier system guidelines for construction equipment on project sites
J=set of origin sites where the contractor operates
K=set of destination sites where the contractor operates
X={0,1,2,3}, set of construction equipment tier levels
Y=set of construction equipment types (e.g. trucks, excavators, cranes, loaders, etc.)
cxyjk=cost of operating or renting, leasing or owning each type of equipment yY in tier xX, at site jk, jJ, kK
cmxyjk=cost of moving or renting, leasing or owning each type of equipment yY in tier xX, from site j site k, jJ, kK
gxyjk=GHG emissions rate for equipment type yY, in tier xX, at site jk, jJ, kK, expressed in CO2e
wjkt=number of working days at site jk, jJ, kK, in period t∈S
bjkt=discounting factor for inflation at site jk, jJ, kK, by period t∈S
Tab.2  
αxyjkt=number of construction equipment of type y, yY, in tier x, xX, at site jk, jJ, kK, to be utilized during period t∈S
Tab.3  
1 Amano K, Ebihara M (2005). Eco-intensity analysis as sustainability indicators related to energy and material flow. Management Environmental Quality, 16(2): 160–166
https://doi.org/10.1108/14777830510583173
2 Asset Works (2009). FleetFocus. AssetWorks, Wayne, Pennsylvania 19087.
3 Association of Equipment Manufacturers (AEM) (2004). 2004–2005 outlook for construction equipment business. Milwaukee, WI,  USA
4 Avetisyan H, Miller-Hooks E, Melanta S (2012). Decision models to support greenhouse gas emissions reduction from transportation construction projects. Journal of Construction Engineering and Management, 138(5): 631–641
https://doi.org/10.1061/(ASCE)CO.1943-7862.0000477
5 Crum J (2013). 2013 construction industry forecast. Wells Fargo Equipment Finance, Inc. Construction Division.
6 Energy Information Administration (EIA) (2009). “Carbon dioxide emissions”. Emissions of Greenhouse Gases Report.
7 Environmental Protection Agency (EPA) (2009). “Greenhouse gas emissions”. Climate Change. 
8 Fan H, Kim H, AbouRizk S, Han S H (2008). Decision support in construction equipment management using a nonparametric outlier mining algorithm. Expert Systems with Applications, (34): 1974–1982
9 Heavy-Duty Engine Emissions in the Northeast (1997). Report MS-12. Northeast States for Coordinated Air Use, Boston, Massachusetts
14 Hill S L (2009). Construction Equipment Ownership and operating Expense Schedule. UASCE Report No: EP 1110-1-8. U. S. Army Corps of Engineers, Washington, DC
10 Hon K B (2014). After a year of moving sideways, nonresidential building activity poised to resume recovery in 2014.
11 Stewart L (2000). Giants replace machines to control costs. Construction Equipment, 102(3): 62
12 Telogis (2009). OnTrack- GPS fleet management. Telogis, Aliso Viejo, CA 92656 U.S.A.
13 Truitt P (2009). Potential for reducing greenhouse gas emissions in construction sector. 
15 World Bank (2010). World Development Reprot: Development and Climate Change. World Bank. Washington, DC
[1] Hakob AVETISYAN, Miroslaw SKIBNIEWSKI, Mohammad MOZAFFARPOUR. Analyzing sustainability of construction equipment in the state of California[J]. Front. Eng, 2017, 4(2): 138-145.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed