Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front Earth Sci    2011, Vol. 5 Issue (1) : 1-13    https://doi.org/10.1007/s11707-011-0160-7
FEATURE ARTICLE
How severe is the modern biotic crisis? ---- A comparison of global change and biotic crisis between Permian-Triassic transition and modern times
Hongfu YIN(), Weihong HE, Shucheng XIE
Key Laboratory of Biogeology and Environmental Geology of Ministry of Education, China University of Geosciences, Wuhan 430073, China
 Download: PDF(235 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A comparison of the modern condition with the Permian-Triassic Boundary (PTB) times was made to estimate how severe the modern biotic crisis is. About the global changes, the two periods are correlative in carbon dioxide concentration and carbon isotope negative excursion, UV strengthening, temperature increase, ocean acidification, and weathering enhancement. The following tendencies of biotic crises are also correlative: acceleration of extinction rates accompanied by parabolic curve of extinction with a turning interval representing the critical crisis; decline of the three main ecosystems: reefs, tropical rain forests and marine phytoplankton. It is also interesting to note that certain leading organism in both periods undergo accelerated evolution during the crisis. The comparison shows that the modern crisis is about at the turning point from decline to decimation. The extinction curve is now parabolic, and the extinction rate has been accelerated, but the decimation is not yet in real. This is also justified by the modern situation of the three main ecosystems. Modern biotic decline may worsen into decimation and mass extinction but may also get better and recover to ordinary evolution. Since human activities are the main cause of the deterioration of environments and organisms, mankind should be responsible and able to strive for the recovery of the crisis. For the future of mankind, Homo sapiens may become extinct, i.e., disappear without leaving descendants, or evolve into a new and more advanced species, i.e., disappear but leave descendants. For a better future, mankind should be conscious of the facing danger and act as a whole to save biodiversity and harmonize with the environments.

Keywords comparison      global change      biotic crisis      Permian-Triassic Boundary (PTB)      modern times     
Corresponding Author(s): YIN Hongfu,Email:hfyin@cug.edu.cn   
Issue Date: 05 March 2011
 Cite this article:   
Hongfu YIN,Weihong HE,Shucheng XIE. How severe is the modern biotic crisis? ---- A comparison of global change and biotic crisis between Permian-Triassic transition and modern times[J]. Front Earth Sci, 2011, 5(1): 1-13.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-011-0160-7
https://academic.hep.com.cn/fesci/EN/Y2011/V5/I1/1
TaxaEarly PermianLate PermianEarly Triassic
AAKRRCWCIOA
Fusulinids604575158000
Non-fusulinid foraminifers3442443744132239
Corals948397199000
Brachiopods497882/6182/298312341
Ammonoids372843247751
Tab.1  Diversities of Permian-Triassic marine invertebrate genera in South China (modified from )
Fig.1  Broken-line graph of animal extinction. Solid broken lines (1600–1990) are from Groombridge (); dotted line is based on indication from Butchart et al. ()
Geological age/MaExtinct speciesExtinction rate/(species·Ma-1)Extinct generaExtinction rate(genera/Ma)
253.4–253.0338313166
253.0–252.37310413166
252.3–52.0124013166
252.0– 251.4437213166
251.4–251.29849093465
251.2–251.011553863
251.0–250.627683863
250.6–250.45253863
Tab.2  Number of extinct species and genera and their extinction rates of PTB time in South China (modified after )
Fig.2  Comparison of extinction curves between the PTB extinction (A, invertebrates) and modern extinction (B, solid line-animals, dotted-all organisms) (modified after )
AreaForest area/km2Forest cleared area/km2
19801990Pre-16501650–17491750–18491850–1978
Asia310800027480008071966011220
Africa650400060010001615213469
Latin America9229000839900015100170637
Tab.3  Preliminary estimation of forest area and forest cleared situation in Asia, Africa, and Latin America ()
AreaErosional speciesErosional rate(species/s)
ΔS (pre-1650)ΔS (1650 – 1750)ΔS (1650 – 1850)ΔS (1650 – 1980)ΔS (1650 – 1990)pre-16501650 – 17501750 – 18501850 – 19801980 – 1990
Asia0.005 S030.01 S030.04 S030.12 S030.14 S03<4 × 10-6S031 × 10-4S033 × 10-4S036 × 10-4S032 × 10-3S03
Africa0.008 S020.002 S020.003 S020.02 S020.04 S02<5 × 10-6S022 × 10-5S021 × 10-5S021 × 10-4S022 × 10-3S02
Latin America0.001 S010.003 S010.01 S010.023 S010.05 S01<1 × 10-6S013 × 10-5S017 × 10-5S011 × 10-4S012.7 × 10-3S01
Tab.4  Numbers of erosional species and their erosional rate in forest areas of Asia, Africa, and Latin America
Fig.3  Rate of erosional species in Asian forests (based on ). Based on data from Table 4, transverse bars: annual rate of erosional species in each time interval; dotted line: general tendency of erosional rate
1 Alpen E L (1998). Radiation Biophysics. New York: Academic, 2nd ed, 484
2 Behrenfeld M J, O’Malley R T, Siegel D A, McClain C R, Sarmiento J L, Feldman G C, Milligan A J, Falkowski P G, Letelier R M, Boss E S (2006). Climate-driven trends in contemporary ocean productivity. Nature , 444(7120): 752–755
doi: 10.1038/nature05317 pmid:17151666
3 Bowring S A, Erwin D H, Jin Y G, Martin M W, Davidek K, Wang W (1998). U/Pb zircon geochronology and tempo of the end-permian mass extinction. Science , 280(5366): 1039–1045
doi: 10.1126/science.280.5366.1039 pmid:9582110
4 Boyce D G, Lewis M R, Worm B (2010). Global phytoplankton decline over the past century. Nature , 466: 591–596
5 Butchart S H M, Walpole M, Collen B, van Strien A, Scharlemann J P W, Almond R E A, Baillie J E M, Bomhard B, Brown C, Bruno J, Carpenter K E, Carr G M, Chanson J, Chenery A M, Csirke J, Davidson N C, Dentener F, Foster M, Galli A, Galloway J N, Genovesi P, Gregory R D, Hockings M, Kapos V, Lamarque J F, Leverington F, Loh J, McGeoch M A, McRae L, Minasyan A, Morcillo M H, Oldfield T E E, Pauly D, Quader S, Revenga C, Sauer J R, Skolnik B, Spear D, Stanwell-Smith D, Stuart S N, Symes A, Tierney M, Tyrrell T D, Vie J C, Watson R (2010). Global biodiversity: indicators of recent declines. Science , 328(5982): 1164–1168
doi: 10.1126/science.1187512 pmid:20430971
6 Chai C F, Zhou Y Q, Mao X Y, Ma S L, Kong P, He J W (1992). Geochemical constraints on the Permo-Triassic boundary event in South China. In: Sweet W C, Yang Z Y, Dickins J M, Yin H F, eds. Permo-Triassic Events in the Eastern Tethys. Cambridge: Cambridge University Press, 158–168
7 Dobson A P (1996). Conservation and Biodiversity. New York: Scientific American Library, Freeman & Co
8 Eldredge N (1998). Life in the Balance: Humanity and the Biodiversity Crisis. Princeton: Princeton University Press, 240
9 Erwin D H (1993). The Great Paleozoic Crisis: Life and Death in the Permian. New York: Columbia University Press, 327
10 Food and Agriculture Organization of the United Nations (FAO) (2001). State of the World’s Forests. Rome: FAO
11 Food and Agriculture Organization of the United Nations (FAO) (2005). “Pan-tropical Survey of Forest Cover Changes 1980–2000”. In: Forest Resources Assessment . Rome: FAO
12 Gradstein F, Ogg J, Smith A (2004). A Geologic Time Scale. London: Cambridge University Press, 589
13 Grice K, Cao C Q, Love G D, B?ttcher M E, Twitchett R J, Grosjean E, Summons R E, Turgeon S C, Dunning W, Jin Y (2005). Photic zone euxinia during the Permian-triassic superanoxic event. Science , 307(5710): 706–709
doi: 10.1126/science.1104323 pmid:15661975
14 Groombridge B (1992). Global biodiversity-status of the Earth’s living resources. A Report Compiled by the World Conservation Monitoring Center . London: Chapman & Hall, 192–265
15 Hall-Spencer J M, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner S M, Rowley S J, Tedesco D, Buia M C (2008). Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature , 454(7200): 96–99
doi: 10.1038/nature07051 pmid:18536730
16 Hawks J, Wang E T, Cochran G M, Harpending H C, Moyzis R K (2007). Recent acceleration of human adaptive evolution. Proc Natl Acad Sci USA , 104(52): 20753–20758
doi: 10.1073/pnas.0707650104 pmid:18087044
17 He W H, Yin H F, Sheng G L, Zhou X G (2004). Comparison of Paleozoic-Mesozoic mass extinction with big erosion of current biodiversity. Earth Science—Journal of China Universlty of Geosciences , 29(3): 263–269
18 Heywood V H (1995). Global Biodiversity Assessment. Cambridge: Cambridge University Press, 258
19 Horita J, Zimmermann H, Holland H D (2002). Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporates. Geochim Cosmochim Acta , 66(21): 3733–3756
doi: 10.1016/S0016-7037(01)00884-5
20 Hotinski R M, Bice K L, Kump L R, Najjar R G, Arthur M A (2001). Ocean stagnation and end-Permian anoxia. Geology , 29(1): 7–10
doi: 10.1130/0091-7613(2001)029<0007:OSAEPA>2.0.CO;2
21 Huang X Y, Jiao D, Lu L Q, Xie S C, Huang J H, Wang Y B, Yin H F, Wang H M, Zhang K X, Lai X L (2007). The fluctuating environment associated with the episodic biotic crisis during the Permo-Triassic transition: Evidence from microbial biomarkers in Changxing, Zhejiang Province. Science in China (Series D) , 50(7): 1052–1059
doi: 10.1007/s11430-007-0024-x
22 Intergovernmental Panel on Climate Change (IPCC) (2007). Climate change 2007: The physical science basis: Contribution of Working Group 1 to the Fourth Assessment Report of IPCC. Cambridge: Cambridge University Press
23 Jiang H S, Lai X L, Luo G M, Aldridge R, Zhang K, Wignall P (2007). Restudy of conodont zonation and evolution across the P/T Boundary at Meishan Section, Changxing, Zhejiang, China. Global Planet Change , 55(1–3): 39–55
doi: 10.1016/j.gloplacha.2006.06.007
24 Jin Y G, Wang Y, Wang W, Shang Q H, Cao C Q, Erwin D H (2000). Pattern of marine mass extinction near the Permian-Triassic boundary in South China. Science , 289(5478): 432–436
doi: 10.1126/science.289.5478.432 pmid:10903200
25 Key R M, Kozyr A, Sabine C L, Lee K, Wanninkhof R, Bullister J L, Freely R A, Millero F J, Mordy C, Peng T H (2004). A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP). Global Biogeochem Cycles, GB4031, 23
doi: 10.1029/2004GB002247
26 Knoll A H, Bambach R K, Payne J L, Pruss S, Fischer W (2007). Paleophysiology and end-Permian mass extinction. Earth Planet Sci Lett , 256(3–4): 295–313
doi: 10.1016/j.epsl.2007.02.018
27 Korte C, Kozur H W, Mohtat-Aghai P (2004). Dzhulfian to lowermost Triassic δ13C record at the Permian/Triassic boundary section at Shahreza, Central Iran. Hallesches Jahrbuch der Geowissenschaften . B18: 73–78
28 Kozur H W (2007). Biostratigraphy and event stratigraphy in Iran around the Permian-Triassic Boundary (PTB): Implications for the causes of the PTB biotic crisis. Global Planet Change , 55(1–3): 155–176
doi: 10.1016/j.gloplacha.2006.06.011
29 Li R C, Gu Y S, Xie S C (2005). The impact on the ecology of lacustrine swamp from the isolated lake and river in the Middle part of Yangtse River. Journal of Central China Normal University(Natural Sciences) , 12: 76–79
30 Liang H D (2002). End Permian catastrophic event of marine acidification by hydrated sulfuric acid: Mineralogical evidence from Meishan Section of South China. Science Bulletin , 47: 784–788 (in Chinese)
31 Luo G M, Huang J H, Xie S C, Wignall P B, Tang X Y, Huang X Y, Yin H F (2010). Relationships between carbon isotope evolution and variation of microbes during the Permian-Triassic transition at Meishan Section, South China. International Journal of Earth Science , 99: 775–784
32 Melchin M J, Mitchell C E (1991). Late Ordovician extinction of the Graptoloidea. In: Barnes C R, Williams S H, eds. Advances in Ordovician geology. Geological Survey of Canada Paper 90–9 : 143–156
33 Nielsen R (2006). The Little Green Handbook: Seven Trends Shaping the Future of Our Planet. New York: Picador, 354 ISBN 0-312-42581-3
34 Orr J C, Fabry V J, Aumont O, Bopp L, Doney S C, Feely R A, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key R M, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar R G, Plattner G K, Rodgers K B, Sabine C L, Sarmiento J L, Schlitzer R, Slater R D, Totterdell I J, Weirig M F, Yamanaka Y, Yool A (2005). Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature , 437(7059): 681–686
doi: 10.1038/nature04095 pmid:16193043
35 Parry M L, Canziani O F, Palutikof J P, van der Linden P J, Hanson C E (2007). Climate change 2007: Impacts, adaptation and vulnerability: contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge: Cambridge University Press, 7–22
36 Payne J L, Lehrmann D J, Wei J Y, Orchard M J, Schrag D P, Knoll A H (2004). Large perturbations of the carbon cycle during recovery from the end-permian extinction. Science , 305(5683): 506–509
doi: 10.1126/science.1097023 pmid:15273391
37 Payne J L, Turchyn A V, Paytan A, Depaolo D J, Lehrmann D J, Yu M, Wei J (2010). Calcium isotope constraints on the end-Permian mass extinction. Proc Natl Acad Sci USA , 107(19): 8543–8548
doi: 10.1073/pnas.0914065107 pmid:20421502
38 Racki G (2003). End-Permian mass extinction: Oceanographic consequences of double catastrophic volcanism. Lethaia , 36(3): 171–173
doi: 10.1080/00241160310003199
39 Rampino M R, Prokoph A, Adler A (2000). Tempo of the end-Permian event: high-resolution cyclostratigraphy at the Permian–Triassic boundary. Geology , 28(7): 643–646
doi: 10.1130/0091-7613(2000)28<643:TOTEEH>2.0.CO;2
40 Retallack G J (2001). A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles. Nature , 411(6835): 287–290
doi: 10.1038/35077041 pmid:11357126
41 Retallack G J (2002). Carbon dioxide and climate over the past 300Myr. Philosophical Transactoins, Royal Society of London, A , 360: 659–673
42 Sandberg P A (1983). An oscillating trend in Phanerozoic nonskeletal carbonate mineralogy. Nature , 305: 19–22
43 Sepkoski J J (1992). A compendium of fossil marine animal families, 2n ed. Milwaukee Public Museum Contributions in Biology and Geology , 83: 1–156
44 Sheldon N D (2006). Abrupt chemical weathering increase across the Permian-Triassic boundary. Palaeogeogr Palaeoclimatol Palaeoecol , 231(3–4): 315–321
doi: 10.1016/j.palaeo.2005.09.001
45 Smith F D M, May R M, Pellew R, Johnson T H, Walter K R (1993). How much do we know about the current extinction rate? Trends Ecol Evol , 8(10): 375–378
doi: 10.1016/0169-5347(93)90223-C
46 Sonnerup R E, McNochol A P, Quay P D, Gammon R H, Bullister J L, Sabine C L, Slater R D (2007). Anthropogenic δ13C changes in the North Pacific Ocean reconstructed using a multiparameter mixing approach (MIX). Tellus B Chem Phys Meterol , 59(2): 303–317
doi: 10.1111/j.1600-0889.2007.00250.x
47 Stanley G D (2001). The History and Sedimentology of Ancient Reef Systems. New York: Academic/Plenum Publishers
48 Steffen W, Sanderson A, Tyson P, Jager J, Matson P A, Moore III B, Oldfield F, Richardson K, Schellnhuber H J, Turner II B L, Wasson R J (2004). Global change and the Earth system: A planet under pressure: Executive summary of IGBP. Berlin: Springer-Verlag, 40
49 Tong J N, Zhang S X, Zuo J X, Xiong X Q (2007). Events during the Early Triassic recovery from the end-Permian extinction. Global Planet Change , 55(1): 66–80
doi: 10.1016/j.gloplacha.2006.06.015
50 Veizer J, Godderis Y, Fran?ois L M (2000). Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon. Nature , 408(6813): 698–701
doi: 10.1038/35047044 pmid:11130067
51 Visscher H, Brinkhuis H, Dilcher D L, Elsik W C, Eshet Y, Looy C V, Rampino M R, Traverse A (1996). The terminal Paleozoic fungal event: Evidence of terrestrial ecosystem destabilization and collapse. Proc Natl Acad Sci USA , 93(5): 2155–2158
doi: 10.1073/pnas.93.5.2155 pmid:11607638
52 Visscher H, Looy C V, Collinson M E, Brinkhuis H, van Konijnenburg-van Cittert J H, Kürschner W M, Sephton M A (2004). Environmental mutagenesis during the end-Permian ecological crisis. Proc Natl Acad Sci USA , 101(35): 12952–12956
doi: 10.1073/pnas.0404472101 pmid:15282373
53 Wang C J (2007). Anomalous hopane distributions at the Permian–Triassic boundary, Meishan, China: Evidence for the end-Permian marine ecosystem collapse. Org Geochem , 38(1): 52–66
doi: 10.1016/j.orggeochem.2006.08.014
54 Wang Y B, Tong J N, Wang J S, Zhou X G (2005). Calcimicrobialite after end-Permian mass extinction in South China and its palaeoenvironmental significance. Chin Sci Bull , 50(7): 665–671 (in Chinese)
doi: 10.1360/982004-323
55 Ward P D, Montgomery D R, Smith R (2000). Altered river morphology in south africa related to the permian-triassic extinction. Science , 289(5485): 1740–1743
doi: 10.1126/science.289.5485.1740 pmid:10976065
56 Wilson E O (1992). The Diversity of Life. Cambridge: Mass, Belknap Press of Harvard University Press , 468
57 Wilson E O (2002). The Future of Life. Vintage: Random House , 229
58 Wootton J T, Pfister C A, Forester J D (2008). Dynamical patterns and ecological impacts of changing ocean pH in a high-resolution multi-year dataset. Proc Natl Acad Sci USA , 105(48): 18848–18853
doi: 10.1073/pnas.0810079105 pmid:19033205
59 Xie S C, Guo J Q, Huang J H, Chen F, Wang H, Farrimond P (2004a). Restricted utility of 13C of bulk organic matter as a record of paleovegetation in some loess-paleosol sequences in the Chinese Loess Plateau. Quat Res , 62(1): 86–93
doi: 10.1016/j.yqres.2004.03.004
60 Xie S C, Nott C J, Avsejs L A, Maddy D, Chambers F, Evershed R (2004b). Molecular and isotopic stratigraphy in an ombrotrophic mire for paleoclimate reconstruction. Geochim Cosmochim Acta , 68(13): 2849–2862
doi: 10.1016/j.gca.2003.08.025
61 Xie S C, Pancost R D, Huang X Y, Jiao D, Lu L, Huang J, Yang F, Evershed R (2007). Molecular and isotopic evidence for episodic environmental change across the Permo/Triassic boundary at Meishan in South China. Global Planet Change , 55(1–3): 56–65
doi: 10.1016/j.gloplacha.2006.06.016
62 Xie S C, Pancost R D, Yin H F, Wang H, Evershed R P (2005). Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature , 434(7032): 494–497
doi: 10.1038/nature03396 pmid:15791253
63 Yan J X, Wu M (2006). Synchronized osciliations in Phanerozoic chemical composition of seawater, carbonate sedimentation and biotic evolution: progresses and prospects. Geological Science and Technology Information , 25(3): 1–7 (in Chinese with English abstract)
64 Yang Z Y, Wu S B, Yin H F, Xu G R, Zhang K X, Bi X M (1993). Permo-Triassic Events of South China. Beijing: Geological Publishing House, 153
65 Yin H F, Feng Q L, Lai X L, Baud A, Tong J N (2007). The protracted Permo-Triassic crisis and the multi-episode extinction around the Permian-Triassic boundary. Global Planet Change , 55(1–3): 1–20
doi: 10.1016/j.gloplacha.2006.06.005
66 Yin H F, Huang S J, Zhang K X, Hansen H J, Yang F Q, Ding M H, Bi X M (1992). The effects of volcanism on the Permo-Triassic mass extinction in South China. In: Sweet W C, Yang Z Y, Dickins J M, Yin H F, eds. Permo-Triassic Events in the Eastern Tethys . Cambridge: Cambridge University Press, 169–174
67 Yu J X, Peng Y Q, Zhang S X, Yang F Q, Zhao Q M, Huang Q S (2007). Terrestrial events across the Permian-Triassic boundary along the Yunnan-Guizhou border, SW China. Global Planet Change , 55(1–3): 193–208
doi: 10.1016/j.gloplacha.2006.06.013
[1] Tong LI, Huadong GUO, Li ZHANG, Chenwei NIE, Jingjuan LIAO, Guang LIU. Simulation of Moon-based Earth observation optical image processing methods for global change study[J]. Front. Earth Sci., 2020, 14(1): 236-250.
[2] Brooke B. OSBORNE,Jill S. BARON,Matthew D. WALLENSTEIN. Moisture and temperature controls on nitrification differ among ammonia oxidizer communities from three alpine soil habitats[J]. Front. Earth Sci., 2016, 10(1): 1-12.
[3] Elena LIOUBIMTSEVA, Geoffrey M. HENEBRY. Grain production trends in Russia, Ukraine and Kazakhstan: New opportunities in an increasingly unstable world?[J]. Front Earth Sci, 2012, 6(2): 157-166.
[4] Jinsong WANG, Hongfen ZHANG, Bin HUANG, . Comparison of temperature change between the westerly and monsoon influencing region in China from 1961 to 2006[J]. Front. Earth Sci., 2010, 4(3): 289-295.
[5] Xiaoxiong (Jack) XIONG, Changyong CAO, Gyanesh CHANDER, . An overview of sensor calibration inter-comparison and applications[J]. Front. Earth Sci., 2010, 4(2): 237-252.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed