Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2016, Vol. 10 Issue (1) : 1-12    https://doi.org/10.1007/s11707-015-0556-x
RESEARCH ARTICLE
Moisture and temperature controls on nitrification differ among ammonia oxidizer communities from three alpine soil habitats
Brooke B. OSBORNE1,2,*(),Jill S. BARON1,3,Matthew D. WALLENSTEIN1,4
1. Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO 80523, USA
2. Present address: Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
3. U.S. Geological Survey Fort Collins Science Center, Fort Collins, CO 80526, USA
4. Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO 80523, USA
 Download: PDF(1001 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Climate change is altering the timing and magnitude of biogeochemical fluxes in many high-elevation ecosystems. The consequent changes in alpine nitrification rates have the potential to influence ecosystem scale responses. In order to better understand how changing temperature and moisture conditions may influence ammonia oxidizers and nitrification activity, we conducted laboratory incubations on soils collected in a Colorado watershed from three alpine habitats (glacial outwash, talus, and meadow). We found that bacteria, not archaea, dominated all ammonia oxidizer communities. Nitrification increased with moisture in all soils and under all temperature treatments. However, temperature was not correlated with nitrification rates in all soils. Site-specific temperature trends suggest the development of generalist ammonia oxidzer communities in soils with greater in situ temperature fluctuations and specialists in soils with more steady temperature regimes. Rapidly increasing temperatures and changing soil moisture conditions could explain recent observations of increased nitrate production in some alpine soils.

Keywords ammonia-oxidizing archaea (AOA)      ammonia-oxidizing bacteria (AOB)      global change      Loch Vale watershed      nitrification      thermal adaptation     
Corresponding Author(s): Brooke B. OSBORNE   
Just Accepted Date: 22 October 2015   Online First Date: 16 November 2015    Issue Date: 25 December 2015
 Cite this article:   
Brooke B. OSBORNE,Jill S. BARON,Matthew D. WALLENSTEIN. Moisture and temperature controls on nitrification differ among ammonia oxidizer communities from three alpine soil habitats[J]. Front. Earth Sci., 2016, 10(1): 1-12.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-015-0556-x
https://academic.hep.com.cn/fesci/EN/Y2016/V10/I1/1
Fig.1  Annotated map of the Loch Vale watershed, Rocky Mountain National Park, CO, USA. Soil sampling sites are indicated with red circles.
Fig.2  Soil temperature data for talus (brown lines) and meadow (green lines). Temperatures were recorded at 30-minute intervals by two iButton temperature sensors buried at 5 cm. Temperatures were not collected in outwash soils, which were frozen at the time of sensor installation.
Fig.3  Concentrations of ammonia-oxidizing bacteria (AOB) as well as rates of net nitrification, gross nitrification, and gross NO 3 consumption measured during laboratory incubations. Outwash data are represented in blue, talus in brown, and meadow in green. Darker bars indicate higher moisture treatments. Asterisks indicate significant differences within soils at P<0.05.
Outwash Talus Meadow
%Clay 12 20 25
pH 5.8 5 5.2
%C aBDL 3.4(0.02) 14(0.04)
%N 3.4(0.00) 0.39(0.00) 1.07(0.01)
C:N BDL 8.6(0.01) 13(0.05)
DOC/(mg·kg−1) 0.36(0.08) 1.3(0.28) 17(2.6)
DON/(mg·kg−1) 0.26(0.07) 0.35(0.07) 3.2(0.59)
MBC/(mg·kg−1) 0.05(0.00) 0.42(0.09) 8.7(2.1)
MBN/(mg·kg−1) BDL 0.07(0.00) 0.56(0.18)
NO 3 -N/(mg·kg−1) 0.87(0.17) 2.0(0.15) 1.7(0.61)
NH 4 + -N/(mg·kg−1) 17(0.90) 14(0.57) 22(0.67)
Tab.1  Physical and chemical parameters of Loch Vale soils
% WHC Temp. Outwash Talus Meadow
50% 100% 25% 50% 25% 75%
MBC/(μg·kg−1·d−1) 4°C 3.6(0.7) 2.4(0.26) −3.9(0.68) 0.4(0.77) −42(4.4) 140(44)
12°C 3.0(0.15) 2.4(0.54) −3.0(0.25) 1.8(1.5) −69(8.6) −19(15)
25°C 2.5(0.4) 3.0(1.1) −3.7(1.8) 3.5(0.91) −74(3.7) −7.9(0.62)
aResp/MBC/(mg·kg−1·d−1) 4°C 3.2(2) 23(1.7) 0.12(0.02) 2.2(0.14) 0.03(0.01) 0.45(0.02)
12°C 25(3.1) 78(3.3) 0.27(0.02) 5.8(0.3) 0.19(0.06) 2(0.04)
25°C 58(1.7) 120(4.4) 1.2(0.4) 15(0.6) 1.1(0.25) 3.4(0.06)
Net N mineralization/(mg·kg−1·d−1) 4°C −0.06(0.01) −0.09(0.02) −0.08(0.00) −0.14(0.01) 0.00(0.00) 0.14(0.08)
12°C −0.14(0.02) −0.02(0.01) −0.12(0.01) −0.22(0.00) 0.14(0.06) 0.25(0.06)
25°C −0.15(0.01) −0.11(0.07) −0.08(0.00) −0.22(0.01) 0.25(0.06) 0.00(0.07)
Tab.2  Average rates of change in microbial biomass carbon, microbial biomass carbon-specific respiration, and net N mineralization in Loch Vale soils at different temperature and percent water holding capacity treatments
Net nitrification/(mg·kg−1·d−1) AOB abundance/(# copies·kg−1·d−1)
Outwash Talus Meadow Outwash Talus Meadow
Temperature aT[25°C]:−0.66 T[25°C]: 0.30 T[25°C]:−0.83* T[25°C]:−0.68* T[25°C]:−0.88*
Moisture bM[dry]:−0.77* M[dry]:−0.90* M[dry]:0.50
Model R2 0.73 0.47 0.91 0.63 0.66 0.59
Tab.3  Standardized regression coefficients of multiple regression analyses for net nitrification rates and changes in the abundance of ammonia-oxidizing bacteria
System Location Month, year NO3-N /(mg·kg−1) NH 4 + -N /(mg·kg−1) DIN/(mg·kg−1) MBC/(mg·kg−1) MBN/(mg·kg−1) References
Outwash Alpine, primary succession Colorado (40°17′N, 105°39′W) July, 2010 0.54–1.5 14–19 15–20 0.05–0.05 BDL Present study
Alpine, primary succession Switzerland (46°28′N, 8°28′E) July, 2008 0.13–0.23 0.03–0.18 0.16–0.41 58–120 6–19 Brankatschk et al., 2011
Alpine, high-elevation Chile (24°43′S, 68°32′W) Feb., 2009 a 31–58 1.2–2.2 Lynch et al., 2012
Antarctic Dry Valley Antarctica (77°37′S, 163°15′'E) Jan., 2002 4.9 0.09 26 4.4 Ball et al., 2009
Talus Alpine, talus Colorado (40°17′N, 105°39′W) July, 2010 1.8–2.3 12–15 14–17 0.34–0.51 0.07–0.07 Present study
Alpine, talus Colorado (40°03′N, 105°35′W) July, 1997–1998 0.028–39 Ley et al., 2001
Alpine, talus Colorado (40°03′N, 105°35′W) July, 1995 1–1.7 1.5–5.9 2.5 – 6.9 3.1 – 12 Williams et al., 1997
Alpine, talus Colorado (40°03′N, 105°35′W) July, 1996 0.42–0.63 1.5–5.9 2–6.6 Bieber et al., 1998
Alpine, dry meadow Colorado (40°03′N, 105°35′W) June−Oct., 1992 ~ 8–15 ~ 100–127 Fisk & Schmidt, 1996
Alpine, dry meadow California (multiple sites) Oct., 2003 ~ 0.4–0.83 ~ 0.56–6.8 ~ 942–1500 ~ 43–65 Miller et al., 2007
Alpine, lichen heath Russia (43°27′N, 41°41′E) Aug., 1999–2001 0.6–1.6 7–19 8.6–20 ~ 50–70 Makarov et al., 2003
Meadow Alpine, wet meadow Colorado (40°17′N, 105°39′W) July, 2010 0.7–3.2 20–23 20–25 6.6–11 0.38–0.74 Present study
Alpine, developed soils Switzerland (46°28′N, 8°28′E) July, 2008 0.81–1.3 6.7–13 7.5–14 240–900 29–120 Brankatschk et al., 2011
Low arctic Tundra Canada (64°52′N, 111°35′W) June, 2007 BDL–1.2 0.15–13 0.15–14 7,400–12,000 770–960 Chu & Grogan, 2009
High arctic Canada (multiple sites) July, 2006 0.89–4.5 0.74–5.3 1.6–9.8 Banerjee et al., 2011
Tab.4  Comparison of soil and microbial parameters in Loch Vale soils and other alpine and arctic study sites
System Location Month, Year Net nitrification /(mg·kg−1·d−1) Net N mineralization /(mg·kg−1·d−1) References
Outwash alpine, primary succession Colorado (40°17′N, 105°39′W) July, 2010 0.00−0.25 −0.15− −0.02 Present study
Talus alpine, talus Colorado (40°17′N, 105°39′W) July, 2010 −0.01−0.18 −0.22− −0.08 Present study
alpine, talus Colorado(40°03′N, 105°35′W) July, 1996 0.22−1 0.39−2.5 Bieber et al., 1998
alpine, dry meadow Colorado (40°03′N, 105°35′W) June−Oct.,1992 ~ 0−0.19 ~ −0.02−0.23 Fisk & Schmidt, 1996
alpine, lichen heath Russia (43°27′N, 41°41′E) Aug.,1999−2001 0.01−0.02 0.1−0.14 Makarov et al., 2003
alpine, dry meadow California (multiple sites) Oct., 2003 aBDL ~ 0−0.1 Miller et al., 2007
Meadow alpine, wet meadow Colorado (40°17′N, 105°39′W) July, 2010 0.04−3.38 0.00−0.25 Present study
alpine, dry meadow California (multiple sites) Oct., 2003 −0.13−0.18 −0.12−0.18 Miller et al., 2007
alpine, humus Australia (37°S, 146°E) Dec.−Mar., 2003 ~ 0.28−0.62 ~ 0.9−1.7 Huber et al., 2011
alpine, grazed rangeland China (32°53′N, 103°40′E) Aug., 2006 0.13−0.23 0.22−0.34 Sun et al., 2009
Tab.5  Comparison of net nitrification and nitrogen mineralization rates in Loch Vale soils and other alpine and arctic study sites
1 Alves  R J E, Wanek  W, Zappe  A, Richter  A, Svenning  M M, Schleper  C, Urich  T (2013). Nitrification rates in Arctic soils are associated with functionally distinct populations of ammonia-oxidizing archaea. ISME J, 7(8): 1620–1631
https://doi.org/10.1038/ismej.2013.35
2 Baron  J S (1992). Biogeochemistry of a Subalpine Ecosystem: Loch Vale Watershed. New York: Springer-Verlag
3 Baron  J S, Driscoll  C T, Stoddard  J L, Richer  E E (2011). Empirical critical loads of atmospheric nitrogen deposition for nutrient enrichment and acidification of sensitive US lakes. BioScience, 61(8): 602–613
https://doi.org/10.1525/bio.2011.61.8.6
4 Baron  J S, Rueth  H M, Wolfe  A M, Nydick  K R, Allstott  E J, Minear  J T, Moraska  B (2000). Ecosystem responses to nitrogen deposition in the Colorado Front Range. Ecosystems, 3(4): 352–368
https://doi.org/10.1007/s100210000032
5 Baron  J S, Schmidt  T M, Hartman  M D (2009). Climate-induced changes in high elevation stream nitrate dynamics. Glob Change Biol, 15(7): 1777–1789
https://doi.org/10.1111/j.1365-2486.2009.01847.x
6 Bieber  A J, Williams  M W, Johnsson  M J, Davinroy  T C (1998). Nitrogen transformations in alpine talus fields, Green Lakes Valley, Front Range, Colorado, USA. Arctic and alpine research, 30(3): 266–271
https://doi.org/10.2307/1551974
7 Boyd  E S, Lange  R K, Mitchell  A C, Havig  J R, Hamilton  T L, Lafrenière  M J, Shock  E L, Peters  J W, Skidmore  M (2011). Diversity, abundance, and potential activity of nitrifying and nitrate-reducing microbial assemblages in a subglacial ecosystem. Appl Environ Microbiol, 77(14): 4778–4787
https://doi.org/10.1128/AEM.00376-11
8 Brankatschk  R, Töwe  S, Kleineidam  K, Schloter  M, Zeyer  J (2011). Abundances and potential activities of nitrogen cycling microbial communities along a chronosequence of a glacier forefield. ISME J, 5(6): 1025–1037
https://doi.org/10.1038/ismej.2010.184
9 Campbell  D H, Kendall  C, Chang  C C Y, Silva  S R, Tonnessen  K A (2002). Pathways for nitrate release from an alpine watershed: determination using δ15N and δ18O. Water Resour Res, 38(5): 10-1–10-9
https://doi.org/10.1029/2001WR000294
10 Cannone  N, Diolaiuti  G, Guglielmin  M, Smiraglia  C (2008). Accelerating climate change impacts on alpine glacier forefield ecosystems in the European Alps. Ecol Appl, 18(3): 637–648
https://doi.org/10.1890/07-1188.1
11 Chu  H, Grogan  P (2010). Soil microbial biomass, nutrient availability and nitrogen mineralization potential among vegetation-types in a low arctic tundra landscape. Plant and Soil, 329(1–2): 411–420
https://doi.org/10.1007/s11104-009-0167-y
12 Clow  D W (2010). Changes in the timing of snowmelt and streamflow in Colorado:  a  response  to  recent  warming.  J  Clim,  23(9):  2293–2306
https://doi.org/10.1175/2009JCLI2951.1
13 Delgado-Baquerizo  M, Gallardo  A, Wallenstein  M D, Maestre  F T (2013). Vascular plants mediate the effects of aridity and soil properties on ammonia-oxidizing bacteria and archaea. FEMS Microbiol Ecol, 85(2): 273–282
https://doi.org/10.1111/1574-6941.12119
14 Di  H J, Cameron  K C, Shen  J P, Winefield  C S, O’Callaghan  M, Bowatte  S, He  J Z (2010). Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS Microbiol Ecol, 72(3): 386–394
https://doi.org/10.1111/j.1574-6941.2010.00861.x
15 Elser  J J, Andersen  T, Baron  J S, Bergström  A K, Jansson  M, Kyle  M, Nydick  K R, Steger  L, Hessen  D O (2009). Shifts in lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science, 326(5954): 835–837
https://doi.org/10.1126/science.1176199
16 Erguder  T H, Boon  N, Wittebolle  L, Marzorati  M, Verstraete  W (2009). Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS Microbiol Rev, 33(5): 855–869
https://doi.org/10.1111/j.1574-6976.2009.00179.x
17 Fierer  N, Schimel  J P, Holden  P A (2003). Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem, 35(1): 167–176
https://doi.org/10.1016/S0038-0717(02)00251-1
18 Firestone  M K, Davidson  E A (1989). Microbiological basis of NO and N2O production and consumption in soil. In: Andreae M O, Schimel D S, eds. Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere. New York: John Wiley and Sons Ltd, 7–21
19 Fisk  M C, Schmidt  S K (1996). Microbial responses to nitrogen additions in alpine tundra soil. Soil Biol Biochem, 28(6): 751–755
https://doi.org/10.1016/0038-0717(96)00007-7
20 Fountain  A G, Campbell  J L, Schuur  E A G, Stammerjohn  S E, Williams  M W, Ducklow  H W (2012). The disappearing cryosphere: impacts and ecosystem responses to rapid cryosphere loss. BioScience, 62(4): 405–415
https://doi.org/10.1525/bio.2012.62.4.11
21 Francis  C A, Roberts  K J, Beman  J M, Santoro  A E, Oakley  B B (2005). Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA, 102(41): 14683–14688
https://doi.org/10.1073/pnas.0506625102
22 Gee  G W, Bauder  J W (1986). Particle-size analysis. In: Klute A, ed. Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. Madison: ASA and SSSA Publ, 383–411
23 Gubry-Rangin  C, Hai  B, Quince  C, Engel  M, Thomson  B C, James  P, Schloter  M, Griffiths  R I, Prosser  J I, Nicol  G W (2011). Niche specialization of terrestrial archaeal ammonia oxidizers. Proc Natl Acad Sci USA, 108(52): 21206–21211
https://doi.org/10.1073/pnas.1109000108
24 Hannah  D M, Brown  L E, Milner  A M, Gurnell  A M, McGregor  G R, Petts  G E, Smith  B P G, Snook  D L (2007). Integrating climate-hydrology-ecology for alpine river systems. Aquatic Conservation: Marine and Freshwater Ecosystems, 17(6): 636–656
https://doi.org/10.1002/aqc.800
25 Hatzenpichler  R (2012). Diversity, physiology, and niche differentiation of ammonia-oxidizing archaea. Appl Environ Microbiol, 78(21): 7501–7510
https://doi.org/10.1128/AEM.01960-12
26 Huber  E, Bell  T L, Simpson  R R, Adams  M A (2011). Relationships among micoclimate, edaphic conditions, vegetarian distribution and soil nitrogen dynamics on the Bogong High Plains, Australia. Austral Ecology, 36(2): 142–152
https://doi.org/10.1111/j.1442-9993.2010.02128.x
27 IPCC (2014). Climate Change, Adaptation, and Vulnerability
28 Kattelmann  R, Elder  K (1991). Hydrologic characteristics and water balance of an alpine basin in the Sierra Nevada. Water Resour Res, 27(7): 1553–1562
https://doi.org/10.1029/90WR02771
29 Kirkham  D, Bartholomew  W V (1954). Equations for following nutrient transformations in soil, utilizing tracer data. Soil Sci Soc Am J, 18(1): 33–34
https://doi.org/10.2136/sssaj1954.03615995001800010009x
30 Leininger  S, Urich  T, Schloter  M, Schwark  L, Qi  J, Nicol  G W, Prosser  J I, Schuster  S C, Schleper  C (2006). Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature, 442(7104): 806–809
https://doi.org/10.1038/nature04983
31 Linn  D M, Doran  J W (1984). Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci Soc Am J, 48(6): 1267–1272
https://doi.org/10.2136/sssaj1984.03615995004800060013x
32 Lipson  D A, Monson  R K, Schmidt  S K, Weintraub  M N (2009). The trade-off between growth rate and yield in microbial communities and the consequences for under-snow soil respiration in a high elevation coniferous forest. Biogeochemistry, 95(1): 23–25
https://doi.org/10.1007/s10533-008-9252-1
33 Makarov  M I, Glaser  B, Zech  W, Malysheva  T I, Bulatnikova  I V, Volkov  A V (2003). Nitrogen dynamics in alpine ecosystems of the northern Caucasus. Plant and Soil, 256(2): 389–402
https://doi.org/10.1023/A:1026134327904
34 Martens-Habbena  W, Berube  P M, Urakawa  H, de la Torre  J R, Stahl  D A (2009). Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature, 461(7266): 976–979
https://doi.org/10.1038/nature08465
35 Miller  A E, Schimel  J P, Sickman  J O, Meixner  T, Doyle  A P, Melack  J M (2007). Mineralization responses at near-zero temperatures in three alpine soils. Biogeochemistry, 84(3): 233–245
https://doi.org/10.1007/s10533-007-9112-4
36 Morris  K H, Mast  M A, Clow  D W, Wetherbee  G A, Baron  J S, Taipale  C, Gay  D, Richer  E (2012). 2010 monitoring and tracking wet nitrogen deposition in Rocky Mountain National Park. National Park Service Natural Resource Report, 34
37 Ohtonen  R, Fritze  H, Pennanen  T, Jumpponen  A, Trappe  J (1999). Ecosystem properties and microbial community changes in primary succession on a glacier forefront. Oecologia, 119(2): 239–246
https://doi.org/10.1007/s004420050782
38 Parton  W J, Mosier  A R, Ojima  D S, Valentine  D W, Schimel  D S, Weier  K, Kulmala  A E (1996). Generalized model for N2 and N2O production from nitrification and denitrification. Global Biogeochem Cycles, 10(3): 401–412
https://doi.org/10.1029/96GB01455
39 Prosser  J I, Nicol  G W (2008). Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ Microbiol, 10(11): 2931–2941
https://doi.org/10.1111/j.1462-2920.2008.01775.x
40 Rango  A, van Katwijk  V F (1990). Climate change effects on the snowmelt hydrology of western North American mountain basins. Geoscience and Remote Sensing. IEEE Transactions, 28(5): 970–974
41 Rotthauwe  J H, Witzel  K P, Liesack  W (1997). The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol, 63(12): 4704–4712
42 Seastedt  T R, Bowman  W D, Caine  T N, McKnight  D, Townsend  A, Williams  M W (2004). The landscape continuum: a model for high-elevation ecosystems. BioScience, 54(2): 111–121
https://doi.org/10.1641/0006-3568(2004)054[0111:TLCAMF]2.0.CO;2
43 Sickman  J O, Leydecker  A L, Chang  C C Y, Kendall  C, Melack  J M, Lucero  D M, Schimel  J (2003). Mechanisms underlying export of N from high-elevation catchments during seasonal transitions. Biogeochemistry, 64(1): 1–24
https://doi.org/10.1023/A:1024928317057
44 Stark  J M, Hart  S C (1996). Diffusion technique for preparing salt solutions, Kjeldahl digests, and persulfate digests for nitrogen-15 analysis. Soil Sci Soc Am J, 60(6): 1846–1855
https://doi.org/10.2136/sssaj1996.03615995006000060033x
45 Sun  G, Luo  P, Wu  N, Qiu  P F, Gao  Y H, Chen  H, Shi  F S (2009). Stellera chamaejasme L. increases soil N availability, turnover rates and microbial biomass in an alpine meadow ecosystem on the eastern Tibetan Plateau of China. Soil Biology & Biochemistry, 41(1): 86–91
https://doi.org/10.1016/j.soilbio.2008.09.022
46 Tai  X S, Mao  W L, Liu  G X, Chen  T, Zhang  W, Wu  X K, Long  H Z, Zhang  B G, Gao  T P (2014). Distribution of ammonia oxidizers in relation to vegetation characteristics in the Qilian Mountains, northwestern China. Biogeosciences Discuss, 11(4): 5123–5146
https://doi.org/10.5194/bgd-11-5123-2014
47 Valentine  D L (2007). Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nat Rev Microbiol, 5(4): 316–323
https://doi.org/10.1038/nrmicro1619
48 Waldrop  M P, Firestone  M K (2006). Seasonal dynamics of microbial community composition and function in oak canopy and open grassland soils. Microb Ecol, 52(3): 470–479
https://doi.org/10.1007/s00248-006-9100-6
49 Wallenstein  M D, Hall  E K (2012). A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning. Biogeochemistry, 109(1–3): 35–47
https://doi.org/10.1007/s10533-011-9641-8
50 Yao  H, Gao  Y, Nicol  G W, Campbell  C D, Prosser  J I, Zhang  L, Han  W, Singh  B K (2011). Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils. Appl Environ Microbiol, 77(13): 4618–4625
https://doi.org/10.1128/AEM.00136-11
[1] Tong LI, Huadong GUO, Li ZHANG, Chenwei NIE, Jingjuan LIAO, Guang LIU. Simulation of Moon-based Earth observation optical image processing methods for global change study[J]. Front. Earth Sci., 2020, 14(1): 236-250.
[2] Elena LIOUBIMTSEVA, Geoffrey M. HENEBRY. Grain production trends in Russia, Ukraine and Kazakhstan: New opportunities in an increasingly unstable world?[J]. Front Earth Sci, 2012, 6(2): 157-166.
[3] Hongfu YIN, Weihong HE, Shucheng XIE. How severe is the modern biotic crisis? ---- A comparison of global change and biotic crisis between Permian-Triassic transition and modern times[J]. Front Earth Sci, 2011, 5(1): 1-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed