Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front Earth Sci    2013, Vol. 7 Issue (3) : 271-281    https://doi.org/10.1007/s11707-013-0377-8
RESEARCH ARTICLE
Skill-assessments of statistical and Ensemble Kalman Filter data assimilative analyses using surface and deep observations in the Gulf of Mexico
Zhibin SUN1(), Lie-Yauw OEY2, Yi-Hui ZHOU3
1. Universities Space Research Association, Columbia, MD 21044, USA; 2. Princeton University, AOS, Sayre Hall, Forrestal Campus, Princeton, NJ 08544, USA; 3. Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
 Download: PDF(627 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A new data assimilation algorithm (Quasi-EnKF) in ocean modeling, based on the Ensemble Kalman Filter scheme, is proposed in this paper. This algorithm assimilates not only surface measurements (sea surface height), but also deep (~2000 m) temperature observations from the Gulf of Mexico into regional ocean models. With the use of the Princeton Ocean Model (POM), integrated for approximately two years by assimilating both surface and deep observations, this new algorithm was compared to an existing assimilation algorithm (Mellor-Ezer Scheme) at different resolutions. The results show that, by comparing the observations, the new algorithm out-performs the existing one.

Keywords data assimilation      deep observation      Gulf of Mexico     
Corresponding Author(s): SUN Zhibin,Email:sunzhib1@gmail.com   
Issue Date: 05 September 2013
 Cite this article:   
Zhibin SUN,Lie-Yauw OEY,Yi-Hui ZHOU. Skill-assessments of statistical and Ensemble Kalman Filter data assimilative analyses using surface and deep observations in the Gulf of Mexico[J]. Front Earth Sci, 2013, 7(3): 271-281.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-013-0377-8
https://academic.hep.com.cn/fesci/EN/Y2013/V7/I3/271
Fig.1  (a) Model region with isobaths (m) and transports (Sv) specified at the eastern open boundary. This model region has a horizontal resolution of 5-20 km, and 25 sigma-levels. The high-resolution nested region is approximately west of 78°W (west of the blue dashed line), with a 2-5 km horizontal resolution and 25 and 41 sigma-levels. The red-dashed rectangle indicates the northeast central Gulf of Mexico where the MMS’ 2003-2004 observations were taken. (b) The mooring locations and names (see text) superimposed on a color map of modeled SSH (m) averaged between 2003 and 2004. The Ls indicate full-depth moorings consisting of C/T/D, ADCPs, and current-meters. Other higher-alphabetized stations are deep current measurements only: 500 m and 100 m above the bottom. Not shown are 25 PIES stations evenly spaced and covering the main portion (88°-92°W, 25.5°-28°N) of the observational region.
Fig.2  Averaged time-dependent correlation coefficient between and (average region is (-88oW, -86oW) × (24oN, 26oN)).
Fig.3  Grid points in QEnKF scheme. Plus-sign points are observational grids. Solid-grid points are model grids. (a) 2-D grid points in QEnKF SSHA scheme: On a horizontal (,) plane, for each observational grid within a given small region (dashed circle), find four model grids that construct the smallest quadrilateral enclosing the observational grid. (b) 3-D grid points in QEnKF mooring scheme: for each observational grid within a given small 3-D region (ball around the mid-panel), find four model grids that construct the smallest quadrilateral enclosing the observational grid on the same horizontal plane, four model grids with the same (,)’s coordinates at the lower horizontal plane, and another four at the upper horizontal plane. Thus, there are twelve model grids enclosing one observational grid.
Case #Description
AMellor-Ezer scheme, double resolution in vertical direction
BQEnKF SSHA, double resolution in vertical direction
CQEnKF SSHA+ QEnKF mooring
DQEnKF SSHA
EMellor-Ezer scheme
FMellor-Ezer scheme, half resolution in horizontal direction
GNo assimilation
Tab.1  Seven experiments using different schemes
Case #Z=-96 mZ=-750 mZ=-1000 mZ=-1400 m
|CC|θ/(°)Real|CC|θ/(°)Real|CC|θ/(°)Real|CC|θ/(°)Real
A0.6716.10.640.318.20.310.1929.10.170.26104.7-0.07
B0.6714.40.650.278.70.270.2010.40.200.2783.40.03
C0.7813.20.760.28-3.10.280.1522.70.140.25-35.20.20
D0.7320.50.680.3619.00.340.259.40.250.1948.00.13
E0.7014.20.680.297.80.290.1722.30.160.25123.6-0.14
F0.6515.10.630.1518.30.140.1044.10.070.2087.40.01
G0.1830.60.150.09107.7-0.030.09101.0-0.020.22148.6-0.19
Tab.2  Complex correlation coefficient comparisons (,) of the model and observations at L1 mooring location
Case #Z=-96 mZ=-750 mZ=-1000 mZ=-1650 m
|CC|θ/(°)Real|CC|θ/(°)Real|CC|θ/(°)Real|CC|θ/(°)Real
A0.51-1.30.510.0223.10.020.1282.00.020.35127.3-0.21
B0.497.50.490.1568.60.050.29111.5-0.110.36133.7-0.25
C0.57-1.60.570.1692.3-0.010.14139.0-0.110.08-106.8-0.02
D0.566.30.560.1641.70.120.13159.1-0.120.12133.7-0.08
E0.57-9.80.560.1632.50.130.09151.3-0.080.34125.2-0.20
F0.577.70.560.15106.9-0.040.06127.6-0.040.39116.5-0.17
G0.18-83.60.020.16-6.00.160.1824.30.160.06-133.5-0.04
Tab.3  Complex correlation coefficient comparisons (,) of the model and observations at L2 mooring location
Case#Z=-96 mZ=-750 mZ=-1000 mZ=-2900 m
|CC|θ/(°)Real|CC|θ/(°)Real|CC|θ/(°)Real|CC|θ/(°)Real
A0.684.30.680.2711.20.260.0962.30.040.09-18.60.09
B0.655.90.650.2711.60.260.1274.70.030.09-30.90.08
C0.63-3.70.630.3617.50.340.0553.10.030.11-52.10.07
D0.662.70.660.3212.90.310.0460.00.020.11-55.00.06
E0.683.10.680.432.50.430.057.20.050.11-2.90.11
F0.684.30.680.359.40.350.0179.20.000.12-30.80.10
G0.2771.90.080.4239.90.320.13-23.30.120.16-49.40.10
Tab.4  Complex correlation coefficient comparisons (,) of the model and observations at L3 mooring location
Case#Z=-96 mZ=-750 mZ=-1000 mZ=-3250 m
|CC|θ/(°)Real|CC|θ/(°)Real|CC|θ/(°)Real|CC|θ/(°)Real
A0.66-19.90.620.1937.20.150.2355.30.130.3834.40.31
B0.60-20.40.560.2239.50.170.2247.50.150.3738.30.29
C0.67-1.80.670.16162.9-0.150.1592.4-0.010.187.90.18
D0.57-9.80.560.1761.20.080.2555.00.140.3342.50.24
E0.58-21.90.540.16-0.90.160.1928.30.170.4226.90.37
F0.62-19.10.590.1015.50.100.1736.60.140.3035.50.24
G0.25-107.4-0.070.1176.90.020.1372.50.040.3636.90.29
Tab.5  Complex correlation coefficient comparisons (,) of the model and observations at L4 mooring locations
Case #Mean
A0.85195
B0.83937
C0.83591
D0.84038
E0.85924
F0.87145
G0.26476
Tab.6  Mean spatial correlation within the region north of 23°N, west of 84°W, and in water with depths>500 m.
Case#L1L2L3L4
Mean(abs)Std.(ori)Mean(abs)Std.(ori)Mean(abs)Std.(ori)Mean(abs)Std.(ori)
A0.891.290.580.900.931.440.720.76
B0.841.230.540.870.991.610.700.77
C0.761.020.520.710.841.310.570.84
D0.961.250.861.090.881.440.630.76
E0.891.290.680.950.961.440.790.79
F0.861.220.510.770.961.440.750.79
G1.161.740.951.171.772.561.031.50
Tab.7  Statistics of comparison of temperature time series between model and mooring observations.
MooringZ/mABDEFG
L1 750.810.870.860.810.830.830.35
1500.770.800.890.760.770.780.43
3000.760.750.920.800.740.790.42
4000.770.770.910.840.760.820.47
5000.780.770.910.840.780.830.55
7500.780.750.850.800.780.750.50
10000.620.610.700.630.600.650.40
14000.240.240.080.290.26-0.100.14
L2 750.440.450.600.650.520.590.48
1500.340.380.630.480.400.560.16
3000.420.500.550.530.460.640.11
5000.540.580.460.450.400.540.14
7500.570.590.350.610.380.660.47
10000.490.440.470.460.440.410.30
1400-0.050.030.090.040.06-0.020.18
16500.110.23-0.030.110.18-0.050.15
L3 750.460.410.590.480.470.47-0.26
3000.650.530.720.610.630.64-0.24
5000.680.550.790.630.670.67-0.22
7500.520.410.690.480.500.51-0.33
10000.370.240.460.330.280.28-0.41
1500-0.02-0.080.010.060.260.22-0.20
20000.220.310.100.160.090.140.01
29000.080.330.150.140.110.10-0.26
L4 750.900.860.920.860.860.860.65
3000.850.840.920.820.840.840.37
5000.810.800.850.820.820.820.34
7500.730.600.650.660.710.700.31
10000.570.400.270.440.580.540.41
20000.090.20-0.360.210.060.14-0.12
25000.000.10--0.240.16-0.090.07-0.03
32500.10-0.08-0.21-0.080.100.13-0.01
Tab.8  Temperature temporal correlation coefficient at different depths for each mooring between model and observations.
Fig.4  SSHA temporal correlation coefficient for case D within the region where water depth is greater than 500 m; -axis is longitude, -axis is latitude.
Fig.5  Temperature comparisons at different depths of the L4-mooring location between model (solid curve) and mooring observations (dashed curve) for case C; -axis is date, -axis is temperature, CC is the correlation coefficient.
1 Berntsen J, Oey L Y (2010). Estimation of the internal pressure gradient in σ-coordinate ocean models: Comparison of second-, fourth-, and sixth-order schemes. Ocean Dyn , 60(2): 317-330
doi: 10.1007/s10236-009-0245-y
2 Chassignet E P, Hurlburt H E, Smedstad O M, Barron C N, Ko D S, Rhodes R C, Shriver J F., Wallcraft A J, Arnone R A (2005). Assessment of data assimilative ocean models in the Gulf of Mexico using ocean color. Geophysical Monograph-American Geophysical Union , 161: 87
3 Cooper M, Haines K (1996). Altimetric assimilation with water property conservation. J Geophys Res , 101(C1): 1059-1077
doi: 10.1029/95JC02902
4 Craig P D, Banner M L (1994). Modeling wave-enhanced turbulence in the ocean surface layer. J Phys Oceanogr , 24(12): 2546-2559
doi: 10.1175/1520-0485(1994)024<2546:MWETIT>2.0.CO;2
5 Donohue K, Hamilton P, Leaman K, Leben R, Prater M, Watts D R, Waddell E (2006). Exploratory Study of Deepwater Currents in the Gulf of Mexico, Vol. I and II. US Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS , 2006-073
6 Evensen G (2003). The Ensemble Kalman Filter: theoretical formulation and practical implementation. Ocean Dyn , 53(4): 343-367
doi: 10.1007/s10236-003-0036-9
7 Ezer T, Arango H, Hermann A (2003). Terrain-Following Ocean Models Users Workshop, Seattle, WA, Aug. 4-6, AOS Program , Princeton University, 19
8 Ezer T, Mellor G L (1994). Continuous assimilation of Geosat altimeter data into a three-dimensional primitive equation Gulf Stream model. J Phys Oceanogr , 24(4): 832-847
doi: 10.1175/1520-0485(1994)024<0832:CAOGAD>2.0.CO;2
9 Gaspari G, Cohn S E (1999). Construction of correlation function in two and three dimensions. Q J R Meteorol Soc , 125(554): 723-757
doi: 10.1002/qj.49712555417
10 Kalnay E (2003). Atmospheric Modeling, Data Assimilation and Predictability. New York: Cambridge University Press, 341
11 Kantha L, Choi J K, Schaudt K J, Cooper C K (2005). A Regional Data-Assimilative Model for Operational Use in the Gulf of Mexico. Geophysical Monograph-American Geophysical Union , 161, 165
12 Lin X H, Oey L Y, Wang D P (2007). Altimetry and drifter data assimilations of Loop Current and eddies. J Geophys Res , 112(C5): C05046
doi: 10.1029/2006JC003779
13 MacKinnon J A, Gregg M C (2003). Shear and baroclinic energy flux on the summer New England Shelf. J Phys Oceanogr , 33(7): 1462-1475
14 Mellor G L (2001). One-dimensional ocean surface layer modeling, a problem and a solution. J Phys Oceanogr , 31(3): 790-809
doi: 10.1175/1520-0485(2001)031<0790:ODOSLM>2.0.CO;2
15 Mellor G L (2004). User’s Guide for a Three-dimensional, Primitive Equation, Numerical Ocean Model. Program in Atmospheric and Oceanic Sciences, Princeton University , 42
16 Mellor G L, Ezer T (1991). A Gulf Stream model and an altimetry assimilation scheme. J Geophys Res , 96(C5): 8779-8795
doi: 10.1029/91JC00383
17 Mellor G L, Yamada T (1982). Development of a turbulence closure model for geophysical fluid problems. Rev Geophys , 20(4): 851-875
doi: 10.1029/RG020i004p00851
18 Oey L Y (1995). Eddy- and wind-forced shelf circulation. J Geophys Res , 100(C5): 8621-8637
doi: 10.1029/95JC00785
19 Oey L Y (1996 a). Flow around a coastal bend: a model of the Santa Barbara Channel eddy. J Geophys Res , 101(C7): 16,667-16,682
doi: 10.1029/96JC01232
20 Oey L Y (1996 b). Simulation of mesoscale variability in the Gulf of Mexico: sensitivity studies, comparison with observations, and trapped wave propagation. J Phys Oceanogr , 26(2): 145-175
doi: 10.1175/1520-0485(1996)026<0145:SOMVIT>2.0.CO;2
21 Oey L Y, Chen P (1992a). A model simulation of circulation in the Northeast Atlantic shelves and seas. J Geophys Res , 97(C12): 20,087-20,115
doi: 10.1029/92JC01990
22 Oey L Y, Chen P (1992b). A nested-grid ocean model: with application to the simulation of meanders and eddies in the Norwegian Coastal Current. J Geophys Res , 97(C12): 20,063-20,086
doi: 10.1029/92JC01991
23 Oey L Y, Lee H C, Schmitz W J (2003). Effects of winds and Caribbean eddies on the frequency of Loop Current eddy shedding: a numerical model study. Journal of Geophysical Research: Oceans (1978-2012) , 108(C10)
24 Oey L, Ezer T, Lee H (2005). Loop Current, rings and related circulation in the Gulf of Mexico: a review of numerical models and future challenges. Geophysical Monograph-American Geophysical Union , 161, 31
25 Sturges W, Lugo-Fernandez A (2005). Circulation in the Gulf of Mexico: Observations and Models, Geophys. Monogr. Ser. , Vol. 161. Washington, D C: AGU, 347
26 Wang D P, Oey L Y, Ezer T, Hamilton P (2003). Near-surface currents in DeSoto Canyon (1997-99): comparison of current meters, satellite observation and model simulation. J Phys Oceanogr , 33(1): 313-326
doi: 10.1175/1520-0485(2003)033<0313:NSCIDC>2.0.CO;2
27 Yin X Q, Oey L Y (2007). Bred-ensemble ocean forecast of Loop Current and rings. Ocean Model , 17(4): 300-326
doi: 10.1016/j.ocemod.2007.02.005
[1] Hong LI, Jingyao LUO, Mengting XU. Ensemble data assimilation and prediction of typhoon and associated hazards using TEDAPS: evaluation for 2015–2018 seasons[J]. Front. Earth Sci., 2019, 13(4): 733-743.
[2] Lu REN. A case study of GOES-15 imager bias characterization with a numerical weather prediction model[J]. Front. Earth Sci., 2016, 10(3): 409-418.
[3] D. Lindo-Atichati,P. Sangrà. Observational evidence for atmospheric modulation of the Loop Current migrations[J]. Front. Earth Sci., 2015, 9(4): 683-690.
[4] Edward D. ZARON,Patrick J. FITZPATRICK,Scott L. CROSS,John M. HARDING,Frank L. BUB,Jerry D. WIGGERT,Dong S. KO,Yee LAU,Katharine WOODARD,Christopher N. K. MOOERS. Initial evaluations of a Gulf of Mexico/Caribbean ocean forecast system in the context of the Deepwater Horizon disaster[J]. Front. Earth Sci., 2015, 9(4): 605-636.
[5] Yi YU,Weimin ZHANG,Zhongyuan WU,Xiaofeng YANG,Xiaoqun CAO,Mengbin ZHU. Assimilation of HY-2A scatterometer sea surface wind data in a 3DVAR data assimilation system–A case study of Typhoon Bolaven[J]. Front. Earth Sci., 2015, 9(2): 192-201.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed