Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2015, Vol. 9 Issue (4) : 605-636    https://doi.org/10.1007/s11707-014-0508-x
RESEARCH ARTICLE
Initial evaluations of a Gulf of Mexico/Caribbean ocean forecast system in the context of the Deepwater Horizon disaster
Edward D. ZARON1,*(),Patrick J. FITZPATRICK2,Scott L. CROSS3,John M. HARDING4,Frank L. BUB5,Jerry D. WIGGERT6,Dong S. KO7,Yee LAU2,Katharine WOODARD2,6,Christopher N. K. MOOERS1
1. Department of Civil and Environmental Engineering, Portland State University, Portland OR 97207, USA
2. Geosystems Research Institute, Mississippi State University, MSU Science & Technology Center, Stennis Space Center, MS 39529, USA
3. NOAA National Coastal Data Development Center, Stennis Space Center, MS 29412, USA
4. Northern Gulf Institute, Mississippi State University, MSU Science & Technology Center, Stennis Space Center, MS 39529, USA
5. unaffiliated, retired from the Naval Oceanographic Office, Stennis Space Center, MS 39522, USA
6. Department of Marine Science, University of Southern Mississippi, Stennis Space Center, MS 39529, USA
7. Oceanography Division, Naval Research Laboratory, Stennis Space Center, MS 39529, USA
 Download: PDF(8282 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In response to the Deepwater Horizon (DwH) oil spill event in 2010, the Naval Oceanographic Office deployed a nowcast-forecast system covering the Gulf of Mexico and adjacent Caribbean Sea that was designated Americas Seas, or AMSEAS, which is documented in this manuscript. The DwH disaster provided a challenge to the application of available ocean-forecast capabilities, and also generated a historically large observational dataset. AMSEAS was evaluated by four complementary efforts, each with somewhat different aims and approaches: a university research consortium within an Integrated Ocean Observing System (IOOS) testbed; a petroleum industry consortium, the Gulf of Mexico 3-D Operational Ocean Forecast System Pilot Prediction Project (GOMEX-PPP); a British Petroleum (BP) funded project at the Northern Gulf Institute in response to the oil spill; and the Navy itself. Validation metrics are presented in these different projects for water temperature and salinity profiles, sea surface wind, sea surface temperature, sea surface height, and volume transport, for different forecast time scales. The validation found certain geographic and time biases/errors, and small but systematic improvements relative to earlier regional and global modeling efforts. On the basis of these positive AMSEAS validation studies, an oil spill transport simulation was conducted using archived AMSEAS nowcasts to examine transport into the estuaries east of the Mississippi River. This effort captured the influences of Hurricane Alex and a non-tropical cyclone off the Louisiana coast, both of which pushed oil into the western Mississippi Sound, illustrating the importance of the atmospheric influence on oil spills such as DwH.

Keywords Gulf of Mexico      Deepwater Horizon      ocean forecasting      skill assessment     
Corresponding Author(s): Edward D. ZARON   
Just Accepted Date: 27 November 2014   Online First Date: 02 February 2015    Issue Date: 30 October 2015
 Cite this article:   
Edward D. ZARON,Patrick J. FITZPATRICK,Scott L. CROSS, et al. Initial evaluations of a Gulf of Mexico/Caribbean ocean forecast system in the context of the Deepwater Horizon disaster[J]. Front. Earth Sci., 2015, 9(4): 605-636.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-014-0508-x
https://academic.hep.com.cn/fesci/EN/Y2015/V9/I4/605
Fig.1  AMSEAS domain with the insert outlining the Gulf of Mexico evaluation area. Depth scale in km.
Ocean Model Domain Nominal Resolution Atmospheric Forcing Data Assimilation Status
GNCOM1) Global 15 km NOGAPS(50 km) NCODA(MVOI) OPS
IASNFS2) Gulf of Mexico& Caribbean 5 km NOGAPS(50 km) MODAS R&D
AMSEAS3) Gulf of Mexico& Caribbean 3 km COAMPS(15 km) NCODA(MVOI) OPS
Tab.1  Summary of general forecast model attributes for the operational GNCOM, and two regional models nested within GNCOM covering the Gulf of Mexico and Caribbean regions. One model is a research and development NCOM-based regional-scale prediction system called IASNFS with atmospheric forcing by NOGAPS. The second was operationally implemented as a response to the 2010 DwH oil spill event, designated as AMSEAS with atmospheric forcing by COAMPS. See text and references for details on these models and their data assimilation schemes.
Effort Model Location Time period Field variables Time scale Purpose
NAVOCEANO AMSEAS Gulf of Mexico Jun 2010–Mar 2011 Temperature and Salinity (Multiple Depths) 00–72 h fcst Navy operational evaluation
COMTMeteorology AMSEAS Forcing(COAMPS) Northern Gulfof Mexico Jun/Jul 2010and Dec/Jan 2011 Surface WindSpeed and Direction 00–24 h fcst SURAevaluation
COMTOceanography AMSEAS Gulf of Mexico Jun 2010–Oct 2011 Surface Temperatureand Currents 00–96 h fcst SURAevaluation
GOMEX-PPP IASNFS& AMSEAS Loop Current& Florida Straits May 2010–Dec 2010 Sea Surface Height& Volume Transport Daily averagednowcast Modelintercomparison
BP AMSEAS& COAMPS Northern Gulf of Mexico 20 Jun–10 Jul 2010 Lagrangian particle tracking n/a Oil spill simulations
Tab.2  Summary of each evaluation effort including the models evaluated; general locations of the evaluation; time period of each particular evaluation; variables that were compared; time and space scales of interest; and the specific purpose of each study. NAVOCEANO evaluation was part of the Navys formal operational testing. The second was part of IOOS Coastal Ocean Modeling Testbed (COMT). A third effort was associated with the Gulf of Mexico 3-D Operational Ocean Forecast System Pilot Prediction Project (GOMEX-PPP). Both the Navy and COMT efforts focused on Navy needs in the realm of nowcasts and few-day forecasts of temperature and salinity structure at representative depth levels over the shelves and deeper waters of the Gulf; an additional component of the COMT evaluated the synoptic-scale surface wind products used to force the Navy forecasts. The GOMEX-PPP work considered the seasonal-time-scale needs and mesoscale structures that are especially applicable to the offshore energy industry, concentrating on the location and energetic currents of the Loop Current and its Loop Current eddies. The fourth evaluation, funded by BP, examines the efficacy of using hindcast AMSEAS for oil spill modeling using a Lagrangian particle tracker.
Fig.2  Comparison of sea-surface height anomaly (SSHA) in AVISO hindcast ((a), (d), (g) – derived from satellite altimetry), IASNFS nowcast ((b), (e), (h)), and AMSEAS nowcast ((c), (f), (i)), for three dates in 2010. The solid contour represents the 500-m isobath.
Fig.3  Comparison of sea-surface temperature (SST) in NAVO GHRSST analysis ((a), (d), (g) – derived from multiple satellite measurements), IASNFS nowcast ((b), (e), (h)), and AMSEAS nowcast ((c), (f), (i)), for three dates in 2010. The solid contour represents the 500-m isobath.
Fig.4  Sea Surface Height (SSH) on June 10 2010. Three estimates of SSH (anomaly with respect to average sea level west of 90°W) are shown together with along-track data from the JASON-1 and 2 satellite altimeters. The AVISO hindcast (a) is produced in delayed mode from multiple satellite altimeters using objective analysis. The IASNFS (b) and AMSEAS (c) fields are nowcasts valid at 12 UTC on the given date. Observed minus model residuals along the ascending (gray) and descending (black) ground tracks during the 10-day window from 5 June to 15 June 2010 are projected perpendicular to, and northward of, the corresponding ground tracks.
Statistical parameters Analysis 12-h Forecast 24-h Forecast
Winter Summer Winter Summer Winter Summer
All buoys (n= 23)
Speed bias/(m·s−1) −0.7 −0.1 −0.4 −0.7 −0.8 −0.2
Speed absolute error/(m·s−1) 1.8 1.4 1.7 1.6 1.8 1.4
Direction bias/(°) −2.6 2.4 2.6 −3.6 −1.8 4.4
Direction absolute error/ (°) 26 31.6 21.8 37.4 26.2 33.1
Vector correlation squared/(%) 75.8 49.4 80 51.7 75.3 49
Scaling factor 1 0.82 0.96 0.89 1.01 0.83
Rotation angle/(°) −0.7 −12.1 6.7 −4.2 0.5 −5.0
Moored buoys (n= 8)
Speed bias/(m·s−1) −1.4 −0.5 −1.2 −1.6 −1.3 −0.7
Speed absolute error/(m·s−1) 2.1 1.4 2 2.1 2 1.6
Direction bias/(°) 1.2 2.8 1.4 −8.6 1.5 6.7
Direction absolute error/(°) 21.9 29.9 19.5 28.1 22.8 32.2
Vector correlation squared/(%) 78.4 47.1 85.4 65.1 80.2 48.2
Scaling factor 1.08 0.83 1.09 1.2 1.08 0.88
Rotation angle/(°) 0.3 −12.6 3.9 −3.8 2.1 −1.1
C-MAN stations (n= 15)
Speed bias/(m·s−1) −0.3 0.2 0 −0.1 −0.5 0
Speed absolute error/(m·s−1) 1.7 1.4 1.6 1.4 1.7 1.4
Direction bias/(°) −4.6 2.2 3.2 −0.9 −3.6 3.1
Direction absolute error/(°) 28.2 32.5 23 42.4 28 33.5
Vector correlation squared/(%) 74.5 50.6 77 44.4 72.6 49.4
Scaling factor 0.96 0.81 0.9 0.72 0.98 0.8
Rotation angle/(°) −1.1 −11.8 8.2 −4.4 −0.4 −7.2
Tab.3  Validation (with observation numbers) of COAMPS winds versus all buoys, moored buoys, and C-MAN stations for COAMPS winds analyses, 12-h forecast fields, and 24-h forecasts fields in the northern Gulf of Mexico during a summer and winter period. The summer dataset is in the period 0000 UTC 20 June 2010 to 0000 UTC 10 July 2010. The winter dataset is in the period 0000 01 December 2010 to 0000 15 January 2011. Bias is computed as COAMPS minus buoy observations.
Fig.5  Example of vector correlation squared, scaling factor (a) and rotation angle (c) based on methodology of Hanson et al. (1992) for COAMPS wind initialization and forecast interpolated to buoy 42003 during the period 0000 UTC 20 June 2010 to 0000 UTC 10 July 2010. The dashed line corresponds to the maximum possible squared correlation of 1. Time series of absolute errors for wind speed (b) and direction (d) for COAMPS at buoy 42003.
Fig.6  Example of scatterplots for COAMPS wind initialization as well as 12- and 24-h forecasts for speed (upper) and direction (lower) interpolated to buoy 42003 during the same period as Fig. 5. Wind speed plots also include ovals representing one standard deviation of each dataset; circular plots indicate both the model and buoys have the same data ranges and elliptic plots indicate one dataset has less range than the other.
Fig.7  Example of a plot for daily analyses for COAMPS initialization for 0000 UTC 22 June 2010. Observed buoy vectors, color shaded by wind speed (a). COAMPS wind vectors color shaded by wind speed (b). Color coded wind direction differences at the buoy locations (c). As on lower left but with buoy station direction difference within a 40° wind direction tolerance level shaded grey (d).
Fig.8  Example of a plot for daily analyses for COAMPS initialization for 0000 UTC 22 June 2010. Observed buoy wind speeds, shaded by wind speed (a). Contours of COAMPS wind speed (b). Wind speed difference (c). Same as lower left with stations within the 2 m·s−1 tolerance level shaded grey (d).
Fig.9  Location of mooring sites from which time series data were acquired from the NDBC website. Parameter(s) obtained from a given location are indicated in Table 4. All parameters are not available from all locations. Bottom topography obtained from the NOAA’s National Geophysical Data Center. Black dots represent station and buoy sites used in COAMPS evaluations. Black station numbers represent buoy overlap between COAMPS and oceanographic evaluations.
ID Measurement Caretaker Water Depth/m Longitude Latitude
41009 T NDBC 44 −80.17 28.52
41010 T NDBC 873 −78.47 28.91
41012 T NDBC 37 −80.53 30.04
42001 T NDBC 3365 −89.66 25.89
42003 T NDBC 3283 −85.61 26.04
42021 T COMPS −83.31 28.31
42035 T NDBC 14 −94.41 29.23
42036 T NDBC 307 −86.01 28.79
42039 T NDBC 307 −86.01 28.79
42040 T NDBC 165 −88.21 29.21
42044 T (2 m) TABS (Station J) 21 −97.05 26.19
42045 U, V (2 m) TABS (Station K) 62 −96.50 26.22
42049 U, V TABS (Station W) 22 −96.01 28.35
42050 T, U, V (2 m) TABS (Station F) 24 −94.24 28.84
42055 T NDBC 3566 −94.00 22.20
42056 T NDBC 4684 −84.86 19.80
42099 T Scripps 94 −84.25 27.34
Tab.4  Moored sites accessed for assessment of AMSEAS model surface temperature and velocity. For each mooring, its NDBC ID and location are provided. The type of data obtained is indicated in the measurement column (T= Temperature, U, V= zonal, meridional velocity). Unless otherwise noted, the instrument depth is 1 m. The station caretaker and the sites water depth are provided.
Fig.10  Time series for the full AMSEAS-NDBC comparison period (June 2010 – October 2011) from two sites. The data shown are 1-m temperature at NDBC buoy site 42039 (a) and 1-m current speed at TABS site 42045 (b) for forecast day-1.
Fig.11  Scatter plots of model vs. data (AMSEAS vs. Mooring) for the March 2011 portion of the data shown in Fig. 10 at NDBC buoy 42039 for 1-m temperature (a) and at NDBC buoy 42045 for surface current speed (b). The one-one lines reveal the degree to which the modeled environment captures the natural system. The red ellipse on each plot represents the mean+/− one standard deviation around the mean value (center point of the ellipse) of the model (y-axis) and observations (x-axis). The tolerance limits, shown by the green lines, and used to determine the percentage of values above/below an acceptable linear error, are 0.5°C and 0.20 m·s−1 for temperature and current speed, respectively. For these examples the mean and standard deviation of the model – data differences are (−0.32±0.53)°C for temperature and (0.039±0.13) m·s−1 for current speed. The correlation coefficient, coefficient of determination and RMSD are 0.73, 0.54, 0.62 for temperature and 0.16, 0.026, 0.13 for current speed. These latter statistics are typically printed on the plots but omitted here for clarity.
Fig.12  Bar plot time series of 1-m temperature at NDBC buoy site 42039 showing the percentage of AMSEAS forecasts that are in the above/good/below tolerance bins for each month of all four forecast days over the full AMSEAS-NDBC buoy comparison period (June 2010 – October 2011). For forecast day-4, there is no June or July 2010 result since 4-day AMSEAS forecasts were not implemented until mid-July 2010. Green bars are within tolerance. Red bars are too high (model too warm); blue bars are too low (model too cold).
Fig.13  Time series showing the percentage of AMSEAS 1-m forecasts that are in the above, good, below tolerance bins for each month of forecast day-1 over the full AMSEAS-NDBC buoy comparison period (June 2010 – October 2011). Results are shown for all buoy sites listed in Table 4. Temperature tolerance limits set at ±0.5°C.
Fig.14  Time series showing the percentage of AMSEAS 1-m temperature forecasts that are in the above/good/below tolerance bins for each month of forecast day-4 over the full AMSEAS/buoy comparison period (August 2010 – October 2011). No comparisons are possible in June and July 2010 since the AMSEAS forecasts were not extended to 4 days until mid-July 2010. Results are shown for all buoy sites listed in Table 4. Temperature tolerance limits set at ±0.5°C.
Fig.15  Time series showing the percentage of AMSEAS 1-m temperature forecasts that are in the above/good/below tolerance bins for each month of forecast day-4 over the full AMSEAS/buoy comparison period (August 2010 – October 2011). No comparisons are possible in June and July 2010 since the AMSEAS forecasts were not extended to 4 days until mid-July 2010. Results are shown for all buoy sites listed in Table 4. Temperature tolerance limits set at ±0.5°C.
Fig.16  2010 Florida Current Transport: Observed (cable) and nowcast FC transport for IASNFS (left) and AMSEAS (right) indicates that the model transports are low by 4 to 5 Sv on average, but significantly larger error occurs during the June−September 2010 period. IASNFS and AMSEAS transports differ due to differences in atmospheric forcing, data assimilation, and other factors; although, the average transport and variability is similar in both models.
Fig.17  Shoreline Cleanup and Assessment Technique (SCAT) data as tallied from 15 May to 20 September 2010. Shoreline oil pollution categories include designations for light, moderate, and heavy oiling; light, moderate, and heavy tarballs; and negligible tarballs. Plots are shown for Eastern Biloxi Marsh (region 1), Lake Borgne/Rigolets (region 2), North End of Barataria Bay (region 3), and the beach locations of Grand Isle/Fourchon (region 4).
Fig.18  Snapshot images of the DwH oil spill simulation from 0000 UTC 20 June 2010 to 0000 UTC 10 July 2010 in five-day increments. Note the inshore incursion into the Mississippi Sound and Lake Borgne regions starting in late June. Concentrations are computed as the ratio of parcels near a grid point divided by the number of parcels originally released at each point. In this simulation, each point has 25 releases at initialization, and then each trajectory is modified by a random number to mimic dispersion. Hence, concentrations in these runs are a fraction of 25. Concentration fields are shown from 0–100%, scaled from 0 to 1.
Fig.19  Hydrometeorological Prediction Center (HPC) North American surface analysis for 0000 UTC 25 June 2010, 1200 UTC 30 June 2010, 1200 UTC 2 July 2010, and 0000 UTC 5 July 2010 (available at http://www.hpc.ncep.noaa.gov/html/sfc_archive.shtml). HPC is part of the NOAA/National Weather Service National Centers for Environmental Prediction.
Fig.20  Observed water level (blue) and predicted water AMSEAS water level (red) for Shell Beach CMAN station in Lake Borgne, LA, during 0000 UTC 15 June to 0000 UTC 15 July 2010 relative to NAVD88. Above average water elevation associated with Hurricane Alex and the non- tropical low pressure system are apparent on 29 June−1 July and 3–7 July, respectively.
Fig.21  Monthly count of observed temperature data at 0-, 10-, 100-, and 500-m depths. Note vertical scale is logarithmic. The 10-month means plotted at the right are reflected in Column 2 of Table 5.
Depth/m # of Points OBS MEAN OBS STD MODEL MEAN MODEL STD MODEL-OBS BIAS BIAS STD CORR COEF RMSD % IN TOL.
T0 17,051 23.99 2.19 24.23 2.11 +0.25 0.51 0.86 0.56 67.0%
10 6,241 24.33 1.30 24.34 1.26 +0.02 0.29 0.87 0.29 88.1%
100 564 20.08 1.89 19.90 1.96 −0.18 0.71 0.86 0.73 57.5%
500 358 8.63 1.12 8.47 1.12 −0.16 0.37 0.85 0.40 78.0%
S0 17,051 34.93 1.44 34.93 1.54 −0.01 0.76 0.78 0.74 41.9%
10 6,241 35.91 0.34 35.85 0.34 −0.06 0.18 0.51 0.17 78.4%
100 564 36.45 0.07 36.41 0.08 −0.04 0.08 0.38 0.09 96.5%
500 358 35.04 0.13 35.02 0.13 −0.02 0.05 0.83 0.05 100.0%
Tab.5  Means of 10-month evaluation statistics for the Gulf of Mexico area of the AMSEAS NCOM for forecast day-1, for water temperature (°C) and salinity (psu).
Fig.22  Month-by-month mean model minus observed bias for temperature (a) and salinity (b) at the surface, 10-, 100-, and 500-m depths, for 24-h forecasts. Dashed lines represent tolerance goals of ±0.5°C for temperature and ±0.20 psu for salinity. The 10-month (June 2010 – March 2011) means at the right are reflected in Column 7 of Table 5.
Fig.23  Month-by-month mean temperature (a) and salinity (b) root mean square differences (RMSD) at the surface, 10-, 100-, and 500-m depths. Dashed lines represent tolerance goals of ±0.5°C for temperature and ±0.20 psu for salinity. The 10-month (June 2010 – March 2011) means at the right are reflected in Column 10 of Table 5.
Fig.24  Month-by-month mean percent within tolerance for temperature (a) and salinity (b) at the surface, 10-, 100-, and 500-m depths. The 10-month (June 2010 – March 2011) means at the right are reflected in Column 11 of Table 5. Tolerance goals are ±0.5°C for temperature and ±0.20 psu for salinity.
Depth/m TOL./% RMSD
day 1 day 2 day 3 day 1 day 2 day 3
T 0 67.0 64.1 61.5 0.54 0.57 0.61
10 88.1 83.8 81.7 0.29 0.34 0.39
100 57.5 54.0 52.0 0.74 0.81 0.82
500 78.0 76.4 73.8 0.43 0.40 0.42
S 0 41.9 37.6 36.4 0.75 0.76 0.78
10 78.4 69.5 63.8 0.20 0.24 0.28
100 96.5 95.7 95.8 0.09 0.10 0.10
500 100.0 100.0 100.0 0.06 0.05 0.05
Tab.6  Mean 1-, 2-, and 3-day model skills based on comparative tolerance and root-mean-squared differences averaged over 10 months for temperature (°C) and salinity (psu).
Fig.25  Monthly means of percent within tolerance limits for 100-m temperature (a) and 100-m salinity (b) and RMSD for 100-m temperature (c) and 100-m salinity (d) for forecast days one (red), two (green) and three (blue). Tolerance limits are ±0.5°C for temperature and ±0.20 psu for salinity. The 10-month (June 2010 – March 2011) means are plotted at right on each plot.
1 Arnone  R A, Casey  B, Ko  D S, Flynn  P, Carrolo  L, Landner  S (2007). Forecasting coastal optical properties using ocean color and coastal circulation models. Proceedings of SPIE- The International Society for Optical Engineering, 6680 
2 Arnone  R A, Casey  B, Ladner  S, Ko  D S, Gould  R W (2010). Forecasting the coastal optical properties using satellite ocean color. In Barale  V, Gower  J F, Alberotanza  L, eds. Oceanography from Space, 335–348
3 Badejo  O, Nwilo  P (2011). Oil spill model for oil pollution control. In Proceedings, International Federation of Surveyors Working Week 2011 and 6th National Congress of the Ordre National des Ingenieurs Geometres Topographes, 29. Avalable at http://www.fig.net/pub/fig2011/techprog.htm
4 Barron  C N, Birol Kara  A, Rhodes  R C, Rowley  C, Smedstad  L F (2007). Validation test report of the 1/8° Global Navy Coastal Ocean Model nowcast/forecast system. Tech. Rep. NRL/MR/7320–07-9019, Naval Research Laboratory, Stennis Space Center, MS, 144 
5 Breaker  L C, Gemmill  W H, Crosby  D S (1994). The application of a technique for vector correlation to problems in meteorology and oceanography. J Appl Meteorol, 33(11): 1354–1365
https://doi.org/10.1175/1520-0450(1994)033<1354:TAOATF>2.0.CO;2
6 Brunner  C A, Beall  J M, Bentley  S J, Furukawa  Y (2006). Hypoxia hotspots in the Mississippi Bight. J Foraminiferal Res, 36(2): 95–107
https://doi.org/10.2113/36.2.95
7 Chang  Y L, Oey  L Y (2011). Loop Current cycle: coupled response of the Loop Current with deep flows. J Phys Oceanogr, 41(3): 458–471
https://doi.org/10.1175/2010JPO4479.1
8 Chang  Y L, Oey  L Y (2013). Coupled response of the trade wind, SST gradient, and SST in the Caribbean Sea, and the potential impact on Loop Current’s interannual variability. J Phys Oceanogr, 43(7): 1325–1344
https://doi.org/10.1175/JPO-D-12-0183.1
9 Chao  X, Shankar  N J, Cheong  H F (2001). Two- and three-dimensional oil spill model for coastal waters. Ocean Eng, 28(12): 1557–1573
https://doi.org/10.1016/S0029-8018(01)00027-0
10 Charnock  H (1955). Wind stress over a water surface. Q J R Meteorol Soc, 81(350): 639–640
https://doi.org/10.1002/qj.49708135027
11 Chassignet  E P, Hurlburt  H E, Metzger  E J, Smedstad  O M, Cummings  J, Halliwell  G R, Bleck  R, Baraille  R, Wallcraft  A J, Lozano  C, Tolman  H L, Srinivasan  A, Hankin  S, Cornillon  P, Weisberg  A, Barth  R, He  R, Werner  F, Wilkin  J (2009). U.S. GODAE: Global ocean prediction with the HYbrid Coordinate Ocean Model (HYCOM). Oceanography (Wash DC), 22(2): 64–75
https://doi.org/10.5670/oceanog.2009.39
12 Chassignet  E P, Hurlburt  H E, Smedstad  O M, Barron  C N, Ko  D S, Rhodes  R C, Shriver  J F, Wallcraft  J, Arnone  R A (2005). Assessment of data assimilative ocean models in the Gulf of Mexico using ocean color. In Sturges  W, Lugo-Fernandez  A, eds. Circulation in the Gulf of Mexico: Observations and Models. Geophysical Monograph Series, 161: 87–100
13 Cummings  J (2005). Operational multivariate ocean data assimilation. Q J R Meteorol Soc, 131(613): 3583–3604
https://doi.org/10.1256/qj.05.105
14 D’Sa  E J, Ko  D S (2008). Short-term influences on suspended particulate matter distribution in the northern Gulf of Mexico: satellite and model observations. Sensors (Basel Switzerland), 8(7): 4249–4264
https://doi.org/10.3390/s8074249
15 D’Sa  E J, Korobkin  M, Ko  D S (2011). Effects of Hurricane Ike on the Louisiana-Texas coast from satellite and model data. Remote Sensing Letters, 2(1): 11–19
https://doi.org/10.1080/01431161.2010.489057
16 Dietrich  J C, Trahan  C J, Howard  M T, Fleming  J G, Weaver  R J, Tanaka  S, Yu  L, Luettich  R A Jr, Dawson  C N, Westerink  J J, Wells  G, Lu  A, Vega  K, Kubach  A, Dresback  K M, Kolar  R L, Kaiser  C, Twilley  R R (2012). Surface trajectories of oil transport along the northern coastline of the Gulf of Mexico. Cont Shelf Res, 41: 17–47
https://doi.org/10.1016/j.csr.2012.03.015
17 Dimou  N K, Adams  E E (1993). A random-walk, particle tracking model for well-mixed estuaries and coastal waters. Estuar Coast Shelf Sci, 37(1): 99–110
https://doi.org/10.1006/ecss.1993.1044
18 Dykes  J D (2011). Implementation of the automated numerical model performance metrics system. Tech. Rep. NRL/MR/7320-11-9353, Naval Research Laboratory, Stennis Space Center, MS, 31 pp
19 Galt  J A (1994). Trajectory analysis for oil spills. Journal of Advanced Marine Technology Conference, 11: 91–126
20 Green  R E, Gould  R W Jr, Ko  D S (2008). Statistical models for sediment/detritus and dissolved absorption coefficients in coastal waters of the northern Gulf of Mexico. Cont Shelf Res, 28(10–11): 1273–1285
https://doi.org/10.1016/j.csr.2008.02.019
21 Gundlach  E R, Finkelstein  K J, Sadd  J L (1981). Impact and persistence of Ixtoc I oil on the South Texas Coast. In Proceedings: 1981 Oil Spill Conference (Prevention, Behavior, Control, Cleanup), Atlanta, GA, 477–485
22 Haltrin  V I, Arnone  R A, Flynn  P, Casey  B, Weidemann  A D, Ko  D S (2007). Restoring number of suspended particles in ocean using satellite optical images and forecasting particle fields. Proceedings of SPIE-The International Society for Optical Engineering, pp 6615
23 Hanson  B, Klink  K, Matsuura  K, Robeson  S M, Willmott  C J (1992). Vector correlation: review, exposition, and geographic application. Ann Assoc Am Geogr, 82(1): 103–116
https://doi.org/10.1111/j.1467-8306.1992.tb01900.x
24 Harding  J, Cross  S, Bub  F M J, Carleton  C, Tolman  H, Parsons  A R (2013). OceanNOMADS- an update: real-time and retrospective access to operational U.S. ocean prediction products. 11th Symposium on the Coastal Environment at the 93rd Annual Meeting of the American Meteorology Society, Austin, TX
25 Hernandez  F, Bertino  L, Brassington  G, Chassignet  E, Cummings  J, Davidson  F, Dre’villon  M, Garric  G, Kamachi  M, Lellouche  J M, Mahdon  R, Martin  M J, Ratsimandresy  A, Regnier  C (2009). Validation and intercomparison studies within GODAE. Oceanogr Mag, 22(3): 128–143
https://doi.org/10.5670/oceanog.2009.71
26 Hodur  R M (1997). The Naval Research Laboratorys Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon Weather Rev, 125(7): 1414–1430
https://doi.org/10.1175/1520-0493(1997)125<1414:TNRLSC>2.0.CO;2
27 Hodur  R M, Hong  X, Doyle  J D, Pullen  J, Cummings  J, Martin  P, Rennick  M A (2002). The Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Oceanography (Wash DC), 15(1): 88–98
https://doi.org/10.5670/oceanog.2002.39
28 Hunter  J R, Craig  P D, Phillips  H E (1993). On the use of random walk models with spatially variable diffusivity. J Comput Phys, 106(2): 366–376
https://doi.org/10.1016/S0021-9991(83)71114-9
29 Jacobs  G A, Barron  C N, Fox  D N, Whitmer  K R, Klingenberger  S, May  D, Blaha  J P (2002). Operational altimeter sea level products. Oceanography (Wash DC), 15(1): 13–21
https://doi.org/10.5670/oceanog.2002.32
30 Ko  D S, Martin  P J, Rowley  C D, Preller  R H (2008). A real-time coastal ocean prediction experiment for MREA04. J Mar Syst, 69(1–2): 17–28
https://doi.org/10.1016/j.jmarsys.2007.02.022
31 Ko  D S, Preller  R H, Martin  P J (2003). An experimental real-time Intra Americas Sea ocean nowcast/forecast system for coastal prediction. In Proceedings, AMS 5th Conference on Coastal Atmospheric and Oceanic Prediction and Processes, Seatlle, WA, p. 5.2
32 Ko  D S, Wang  D P (2014). Intra-Americas Sea Nowcast/Forecast System Ocean Reanalysis to Support Improvement of Oil-Spill Risk Analysis in the Gulf of Mexico by Multi-Model Approach. Tech. Rep. Prepared under BOEM contract M12PG00030, Naval Research Laboratory. Available at: ftp://ftp7320.nrlssc.navy.mil/pub/ko/IASNFS-Report.pdf
33 Kundu  P K (1976). Ekman veering observed near the ocean bottom. Journal of Physical Oceanography, 6, 238–242
34 Larsen  J C, Sanford  T B (1985). Florida Current volume transports from voltage measurements. Science, 227: 302–304
35 Le Hénaff  M, Kourafalou  V H, Paris  C B, Helgers  J, Aman  Z M, Hogan  P J, Srinivasan  A (2012). Surface evolution of the Deepwater Horizon oil spill patch: combined effects of circulation and wind-induced drift. Environ Sci Technol, 46(13): 7267–7273
https://doi.org/10.1021/es301570w
36 Liu  Y, MacFadyen  A, Ji  Z, Weisberg  R (2011). Introduction to monitoring and modeling the Deepwater Horizon oil spill. In: Liu  Y, MacFadyen  A, Ji  Z, Weisberg  R, eds. Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise. Geophysical Monograph Series, 195: 1–7
37 Lubchenco  J, McNutt  M K, Dreyfus  G, Murawski  S A, Kennedy  D M, Anastas  P T, Chu  S, Hunter  T (2012). Science in support of the Deepwater Horizon response. Proc Natl Acad Sci USA, 109(50): 20212–20221
https://doi.org/10.1073/pnas.1204729109
38 Luettich  R, Wright  D L, Signell  R, Friedrichs  C, Friedrichs  M, Harding  J, Fennel  K, Howlett  E, Graves  S, Smith  E, Crane  G, Baltes  R (2013). Introduction to special issue on The U.S. IOOS Coastal and Ocean Modeling Testbed: overview of its motivation, goals, implementation and scope. J Geophys Res, 118: 6319–6328
https://doi.org/10.1002/2013JC008939
39 Lugo-Fernández  A, Leben  R R (2010). On the linear relationship between Loop Current retreat latitude and eddy separation period. J Phys Oceanogr, 40(12): 2778–2784
https://doi.org/10.1175/2010JPO4354.1
40 MacFadyen  A, Watabayashi  G, Barker  C, Beegle-Krause  C J (2011). Tactical modeling of surface oil transport during the Deepwater Horizon spill response. In: Liu  Y, MacFadyen  A, Ji  Z, Weisberg  R, eds. Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise. Geophysical Monograph Series, 195: 167–178
41 Martin  P J (2000). Description of the Navy Coastal Ocean Model Version 1.0. Tech. Rep. NRL/FR/7322–00-9962, Naval Research Laboratory, Stennis Space Center, MS, 42 
42 Mendoza  W G, Zika  R G, Corredor  J E, Ko  D S, Mooers  C N (2009). Developmental strategy for effective sampling to detect possible nutrient fluxes in oligotrophic coastal reef waters in the Caribbean. Journal of Operational Oceanography, 2: 35–47
43 Mooers  C N, Meinen  C S, Baringer  M O, Bang  I, Rhodes  R, Barron  C N, Bub  F (2005). Cross validating ocean prediction and monitoring systems. Eos Trans AGU, 86(29): 269–273
https://doi.org/10.1029/2005EO290002
44 Morey  S L, Martin  P J, O’Brien  J J, Wallcraft  A A, Zavala-Hidalgo  J (2003). Export pathways for river discharged fresh water in the northern Gulf of Mexico. J Geophys Res, 108(C10): 3303
https://doi.org/10.1029/2002JC001674
45 Naeije  M, Doornbos  E, Mathers  L, Scharroo  R, Schrama  E, Visser  P (2002). Radar Altimeter Database System: exploitation and extension (RADSxx). Tech. Rep. NUSP-2 report 02-06, NUSP-2 project 6.3/IS-66, Delft Institute for Earth-Oriented Space Research (DEOS), Delft, Netherlands. ISBN 90-5623-077-8
46 Peggion  G, Barron  C, Rowley  C (2007). A rapidly relocatable ocean prediction system. Tech. Rep. NRL/PP/7320-06-6212, Naval Research Laboratory, Stennis Space Center, MS, 5 
47 Pichevin  T, Nof  D (1997). The momentum imbalance paradox. Tellus, 49: 298–319
48 Powell  B S, Leben  R R (2004). An optimal filter for geostrophic mesoscale currents from along-track satellite altimetry. J Atmos Ocean Technol, 21(10): 1633–1642
https://doi.org/10.1175/1520-0426(2004)021<1633:AOFFGM>2.0.CO;2
49 Powell  M D, Houston  S H, Reinhold  T A (1996). Hurricane Andrews landfall in South Florida. Part I: standardizing measurements for documentation of surface wind fields. Weather Forecast, 11(3): 304–328
https://doi.org/10.1175/1520-0434(1996)011<0304:HALISF>2.0.CO;2
50 Price  J M, Johnson  W R, Marshall  C F, Ji  Z G, Rainey  G B (2003). Overview of the Oil Spill Risk Analysis (OSRA) model for environmental impact assessment. Spill Sci Technol Bull, 8(5–6): 529–533
https://doi.org/10.1016/S1353-2561(03)00003-3
51 Rabalais  N N, Turner  R E, Wiseman  W J Jr (2001). Hypoxia in the Gulf of Mexico. J Environ Qual, 30(2): 320–329
https://doi.org/10.2134/jeq2001.302320x
52 Rhodes  R C, Hurlburt  H E, Wallcraft  A J, Barron  C N, Martin  P J, Smedstad  O M, Cross  S, Metzger  E J, Shriver  J, Kara  A, Ko  D S (2002). Navy real-time global modeling system. Oceanography, 15: 29–43
53 Rosmond  T E, Teixeira  J, Peng  M, Hogan  T F, Pauley  R (2002). Navy Operational Global Atmospheric Prediction System (NOGAPS):forcing for ocean models. Oceanography, 15(1): 99–108
https://doi.org/10.5670/oceanog.2002.40
54 Schmitz  W J Jr, Biggs  D C, Lugo-Fernandez  A, Oey  L Y, Sturges  W (2005). A synopsis of the circulation in the Gulf of Mexico and on its continental margins. In: Sturges  W, Lugo-Fernandez  A, eds. Circulation in the Gulf of Mexico: Observations and Models. Geophysical Monograph Series, 161: 11–30
55 Shay  L K, Jaimes  B, Brewster  J K, Meyers  P, McCaskill  E C, Uhlhorn  E, Marks  F, Halliwell  G R Jr, Smedstad  O M, Hogan  P (2011). Airborne ocean surveys of the Loop Current complex from NOAA WP-3D in support of the Deepwater Horizon oil spill. In: Liu  Y, MacFadyen  A, Ji  Z, Weisberg  R, eds. Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise. Geophysical Monograph Series, 195: 131–151
56 Shoosmith  D R, Baringer  M O, Johns  W E (2005). A continuous record of Florida Current temperature transport at 27°N. Geophys Res Lett, 32(23): L23603
https://doi.org/10.1029/2005GL024075
57 Sturges  W, Hoffmann  N, Leben  R (2010). A trigger mechanism for loop current ring separations. J Phys Oceanogr, 40(5): 900–913
https://doi.org/10.1175/2009JPO4245.1
58 van Leeuwen  P J, de Ruijter  W P (2009). On the steadiness of separating meandering currents. J Phys Oceanogr, 39(2): 437–448
https://doi.org/10.1175/2008JPO3869.1
59 Vukovich  F M (2005). Climatology of ocean features in the gulf of mexico: final report. Tech. Rep. OCS Study MMS 2005-031, New Orleans, LA
60 Wilson  W D, Johns  W E (1997). Velocity structure and transport in the Windward Islands Passages. Deep-Sea Res, 44(3): 487–520
https://doi.org/10.1016/S0967-0637(96)00113-6
61 Wu  J (1983). Sea-surface drift currents induced by wind and waves. J Phys Oceanogr, 13(8): 1441–1451
https://doi.org/10.1175/1520-0485(1983)013<1441:SSDCIB>2.0.CO;2
62 Xu  F H, Chang  Y L, Oey  L Y, Hamilton  P (2013). Loop Current growth and eddy shedding using models and observations: analyses of the July 2011 eddy-shedding event. Journal of Physical Oceanography, 43, 1015–1027
63 Zavala-Hidalgo  J, Morey  S L, OBrien  J J (2003). Seasonal circulation on the western shelf of the Gulf of Mexico using a high-resolution numerical model. J Geophys Res, 108(C12): 3389
64 Zhang  A, Hess  K W, Wei  E, Myers  E (2006). Implementation of model skill assessment software for water level and current in tidal regions. Tech. Rep. NOS CS 24, NOAA, 61 pp
65 Zhang  A, Hess  K W, Aikman  F (2010). User-based skill assessment techniques for operational hydrodynamicforecast systems. Journal of Operational Oceanography, 3, 11–24
[1] D. Lindo-Atichati,P. Sangrà. Observational evidence for atmospheric modulation of the Loop Current migrations[J]. Front. Earth Sci., 2015, 9(4): 683-690.
[2] Zhibin SUN, Lie-Yauw OEY, Yi-Hui ZHOU. Skill-assessments of statistical and Ensemble Kalman Filter data assimilative analyses using surface and deep observations in the Gulf of Mexico[J]. Front Earth Sci, 2013, 7(3): 271-281.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed