Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2014, Vol. 8 Issue (1) : 123-130    https://doi.org/10.1007/s11707-013-0384-9
RESEARCH ARTICLE
Evaluation of the environmental impact of the urban energy lifecycle based on lifecycle assessment
Chen CHEN, Meirong SU(), Zhifeng YANG, Gengyuan LIU
State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
 Download: PDF(315 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Energy resources have environmental impact through their entire lifecycle. The evaluation of the environmental impacts of the energy lifecycle can contribute to decision making regarding energy management. In this paper, the lifecycle assessment (LCA) method is introduced to calculate the environmental impact loads of different types of energy resources (including coal, oil, natural gas, and electricity) used in urban regions. The scope of LCA includes the production, transportation, and consumption processes. The pollutant emission inventory is listed, and the environmental impact loads are acquired through the calculation of environmental impact potentials, normalization, and weighted assessment. The evaluation method is applied to Beijing, China, revealing that photochemical oxidant formation and acidification are the primary impact factors in the lifecycle of all energy resources and that the total environmental impact load increased steadily from 132.69 million person equivalents (PE) in 1996 to 208.97 million PE in 2010. Among the energy types, coal contributes most to the environmental impact, while the impacts caused by oil, natural gas, and electricity have been growing. The evaluation of the environmental impact of the urban energy lifecycle is useful for regulating energy structures and reducing pollution, which could help achieve sustainable energetic and environmental development.

Keywords environmental impact      urban energy lifecycle      lifecycle assessment (LCA)      Beijing     
Corresponding Author(s): Meirong SU   
Issue Date: 05 March 2014
 Cite this article:   
Chen CHEN,Meirong SU,Zhifeng YANG, et al. Evaluation of the environmental impact of the urban energy lifecycle based on lifecycle assessment[J]. Front. Earth Sci., 2014, 8(1): 123-130.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-013-0384-9
https://academic.hep.com.cn/fesci/EN/Y2014/V8/I1/123
energy resource pollutant type production transportation consumption total
coal CO2 8.47E+01 3.09E+03 2.74E+04 3.06E+04
CO 7.07E-02 9.44E-01 1.86E+01 1.96E+01
SO2 1.02E-01 2.39E+00 2.80E+02 2.82E+02
NO x 5.87E-01 7.29E-01 1.24E+02 1.26E+02
CnHm 1.28E+02 8.96E-02 6.16E+00 1.34E+02
smoke 1.24E+01 3.00E+02 1.31E+02 4.44E+02
solid waste 6.73E+02 1.32E+03 1.99E+03
oil CO2 5.46E+02 4.73E+02 2.14E+04 2.24E+04
CO 5.28E-02 4.98E+00 1.62E+00 6.65E+00
SO2 1.40E+00 3.61E-01 5.83E+01 6.01E+01
NO x 1.36E+00 1.52E+00 1.17E+02 1.20E+02
CnHm 5.34E-02 6.80E-01 1.62E+00 2.35E+00
smoke 6.70E-01 1.05E+01 1.12E+01
solid waste 4.19E+01 4.19E+01
natural gas CO2 5.62E+02 2.92E-01 1.63E+04 1.68E+04
CO 5.44E-02 2.05E+00 2.10E+00
SO2 1.44E+00 4.21E-04 7.22E-02 6.17E+00
NOx 1.41E+00 1.72E-02 1.39E+01 1.53E+01
CnHm 5.50E-02 1.35E-01 3.61E-01 5.51E-01
smoke 6.90E-01 2.10E+00 2.79E+00
solid waste 4.33E+01 4.33E+01
electricity CO2 3.65E+04 3.65E+04
CO 3.57E+00 3.57E+00
SO2 2.72E+02 2.72E+02
NO x 2.47E+02 2.47E+02
CnHm 1.43E+02 1.43E+02
smoke 1.25E+02 1.25E+02
solid waste 7.47E+02 7.47E+02
Tab.1  Pollutants produced per unit of energy (t/104 tce)
impact category pollutant parameter characterization factor a impact potential unit normalization factor a
(impact potential unit·person−1·year−1)
weight
global warming CO2 1 tCO2eq./t 8.70E+00 8.30E-01
CO 2
NO x 320
CnHm 3
acidification NO x 0.7 tSO2eq./t 3.50E-02 7.30E-01
SO2 1
eutrophication NO x 1.35 tNO3 -eq./t 5.90E-02 7.30E-01
photochemical oxidant formation CO 0.03 tC2H2eq./t 7.60E-04 5.30E-01
NO x 0.03
SO2 0.05
CH4 0.01
human toxicity potential CO 0.01 t body mass/t 1.09E-01 2.98E-01
NO x 0.78
SO2 1.2
smoke and dust smoke 1 t PM10eq./t 1.80E-02 6.10E-01
solid waste solid waste 1 t waste 2.51E-01 6.20E-01
Tab.2  Environmental impact potential of the studied energy resources
impact category environmental impact load (PE)
coal oil natural gas electricity
global warming 6.79E+03 5.80E+03 2.07E+03 1.11E+04
acidification 7.72E+03 3.01E+03 2.55E+02 9.28E+03
eutrophication 2.10E+03 2.01E+03 2.55E+02 4.12E+03
photochemical oxidant formation 1.34E+04 4.74E+03 4.14E+02 1.53E+04
human toxicity potential 1.19E+03 4.53E+02 3.76E+01 1.42E+03
smoke and dust 1.50E+04 3.79E+02 9.46E+01 4.25E+03
solid waste 4.92E+03 1.03E+02 1.07E+02 1.85E+03
total 5.12E+04 1.65E+04 3.24E+03 4.73E+04
Tab.3  Environmental impact load of the studied energy resources
Fig.1  Consumption of four energy resources in Beijing during 1996−2010.
Fig.2  Relative proportions of the environmental impacts of the four studied energy resources.
Fig.3  Environmental impact loads of energy resources in Beijing.
Fig.4  Environmental impact loads of the seven impact types in Beijing.
1 Beijing Municipal Bureau of Statistics (2011). Beijing Statistical Yearbook. Beijing, China.
2 F Consoli (1993). Guidelines for Life Cycle Assessment: A Code of Practice. Brussels: Society of Environmental Toxicology and Chemistry
3 C Dong, G H Huang, Y P Cai, Y Liu (2012). An inexact optimization modeling approach for supporting energy systems planning and air pollution mitigation in Beijing city. Energy, 37(1): 673–688
https://doi.org/10.1016/j.energy.2011.10.030
4 C M Gasol, X Gabarrell, M Rigola, S Gonzalez-Garcia, J Rieradevall (2011). Environmental assessment: (LCA) and spatial modelling (GIS) of energy crop implementation on local scale. Biomass Bioenergy, 35(7): 2975–2985
https://doi.org/10.1016/j.biombioe.2011.03.041
5 J B Guinée, M Gorrée, R Heijungs, G Huppes, R Kleijn, A de Koning, L van Oers, A W Sleeswijk, S Suh, H A U de Haes, H de Bruijn, R van Duin, M A J Huijbregts (2001). Life cycle assessment: an operational guide to the ISO Standards. Leiden, Netherlands Parts: Institute of Environmental Sciences, Leiden University.
6 S Guo, L Shao, H Chen, Z Li, J B Liu, F X Xu, J S Li, M Y Han, J Meng, Z M Chen, S C Li (2012). Inventory and input–output analysis of CO2 emissions by fossil fuel consumption in Beijing 2007. Ecol Inform, 12: 93–100
https://doi.org/10.1016/j.ecoinf.2012.05.005
7 X Ji (2011). Ecological accounting and evaluation of urban economy: taking Beijing city as the case. Commun Nonlinear Sci Numer Simul, 16(3): 1650–1669
https://doi.org/10.1016/j.cnsns.2010.05.034
8 X Ji, G Q Chen (2010). Unified account of gas pollutants and greenhouse gas emissions: Chinese transportation 1978–2004. Commun Nonlinear Sci Numer Simul, 15(9): 2710–2722
https://doi.org/10.1016/j.cnsns.2009.10.013
9 N Jungbluth, C Bauer, R Dones, R Frischknecht (2005). Life cycle assessment for emerging technologies: case study for photovoltaic and wind power. International Journal of Life Cycle Assessment, 10(1): 24–34
https://doi.org/10.1065/lca2004.11.181.3
10 R Kannan, K C Leong, R Osman, H K Ho (2007). Life cycle energy, emissions and cost inventory of power generation technologies in Singapore. Renew Sustain Energy Rev, 11(4): 702–715
https://doi.org/10.1016/j.rser.2005.05.004
11 F Manzini, M Martínez (1999). Choosing an energy future: the environmental impact of end-use technologies. Energy Policy, 27(7): 401–414
https://doi.org/10.1016/S0301-4215(99)00027-0
12 N A Odeh, T T Cockerill (2008). Life cycle analysis of UK coal fired power plants. Energy Convers Manage, 49(2): 212–220
https://doi.org/10.1016/j.enconman.2007.06.014
13 A Riva, S D’Angelosante, C Trebeschi (2006). Natural gas and the environmental results of life cycle assessment. Energy, 31(1): 138–148
https://doi.org/10.1016/j.energy.2004.04.057
14 F Sebastián, J Royo, M Gómez (2011). Cofiring versus biomass-fired power plants: GHG (Greenhouse Gases) emissions savings comparison by means of LCA (Life Cycle Assessment) methodology. Energy, 36(4): 2029–2037
https://doi.org/10.1016/j.energy.2010.06.003
15 S M Shafie, T M I Mahlia, H H Masjuki, B Rismanchi (2012). Life cycle assessment (LCA) of electricity generation from rice husk in Malaysia. Energy Procedia, 14: 499–504
https://doi.org/10.1016/j.egypro.2011.12.965
16 M R Su, Z F Yang, B Chen (2010). Relative urban ecosystem health assessment: a method integrating comprehensive evaluation and detailed analysis. EcoHealth, 7(4): 459–472
https://doi.org/10.1007/s10393-011-0674-1 pmid: 21258840
17 M Wackernagel, J D Yount (1998). The ecological footprint: an indicator of progress toward regional sustainability. Environ Monit Assess, 51(1/2): 511–529
https://doi.org/10.1023/A:1006094904277
18 Z H Wang, F C Yin, Y X Zhang, X Zhang (2012). An empirical research on the influencing factors of regional CO2 emissions: evidence from Beijing city, China. Appl Energy, 100: 277–284
https://doi.org/10.1016/j.apenergy.2012.05.038
19 L Wu, Q Jiang, X M Yang (2012). Carbon footprint incorporation into least-cost planning of eco-city schemes: practices in coastal China. Procedia Environmental Sciences, 13: 582–589
https://doi.org/10.1016/j.proenv.2012.01.049
20 G Yan, L Li, B Chen (2009). Stress of urban energy consumption on air environment. Front Earth Sci China, 3(3): 337–348
https://doi.org/10.1007/s11707-009-0045-1
21 J X Yang, C Xu, R S Wang (2002). The Product Life Cycle Assessment Methods and Application. Beijing: China Meteorological Press (In Chinese)
22 B R Yuan, Z R Nie, X H Di, T Y Zuo (2006). Life cycle inventories of fossil fuels in China (II): final life cycle inventories. Modern Chemical Industry, 26(4): 59–61 (in Chinese)
[1] Ziqiang DU, Rong RONG, Zhitao WU, Hong ZHANG. Examining the efficacy of revegetation practices in ecosystem restoration programs: insights from a hotspot of sandstorm in northern China[J]. Front. Earth Sci., 2021, 15(4): 922-935.
[2] Liangxia ZHANG, Wei CAO, Jiangwen FAN. Soil organic carbon dynamics in Xilingol grassland of northern China induced by the Beijing-Tianjin Sand Source Control Program[J]. Front. Earth Sci., 2017, 11(2): 407-415.
[3] Mengyao HAN,Shan GUO,Hui CHEN,Xi JI,Jiashuo LI. Local-scale systems input-output analysis of embodied water for the Beijing economy in 2007[J]. Front. Earth Sci., 2014, 8(3): 414-426.
[4] Yan ZHANG,Hong LIU,Bin CHEN,Hongmei ZHENG,Yating LI. Analysis of urban metabolic processes based on input–output method: model development and a case study for Beijing[J]. Front. Earth Sci., 2014, 8(2): 190-201.
[5] Jiao WANG, Meirong SU, Bin CHEN, Shaoqing CHEN, Chen LIANG. A comparative study of Beijing and three global cities: A perspective on urban livability[J]. Front Earth Sci, 2011, 5(3): 323-329.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed