Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2014, Vol. 8 Issue (3) : 427-438    https://doi.org/10.1007/s11707-014-0412-4
RESEARCH ARTICLE
A simplified physically-based algorithm for surface soil moisture retrieval using AMSR-E data
Jiangyuan ZENG1,2,Zhen LI1,Quan CHEN1,*(),Haiyun BI1,2
1. Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(1613 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A simplified physically-based algorithm for surface soil moisture inversion from satellite microwave radiometer data is presented. The algorithm is based on a radiative transfer model, and the assumption that the optical depth of the vegetation is polarization independent. The algorithm combines the effects of vegetation and roughness into a single parameter. Then the microwave polarization difference index (MPDI) is used to eliminate the effects of surface temperature, and to obtain soil moisture, through a nonlinear iterative procedure. To verify the present algorithm, the 6.9 GHz dual-polarized brightness temperature data from the Advanced Microwave Scanning Radiometer (AMSR-E) were used. Then the soil moisture values retrieved by the present algorithm were validated by in-situ data from 20 sites in the Tibetan Plateau, and compared with both the NASA AMSR-E soil moisture products, and Soil Moisture and Ocean Salinity (SMOS) soil moisture products. The results show that the soil moisture retrieved by the present algorithm agrees better with ground measurements than the two satellite products. The advantage of the algorithm is that it doesn’t require field observations of soil moisture, surface roughness, or canopy biophysical data as calibration parameters, and needs only single-frequency brightness temperature observations during the whole retrieval process.

Keywords passive microwave remote sensing      soil moisture      inversion      AMSR-E      SMOS     
Corresponding Author(s): Quan CHEN   
Issue Date: 04 July 2014
 Cite this article:   
Jiangyuan ZENG,Zhen LI,Quan CHEN, et al. A simplified physically-based algorithm for surface soil moisture retrieval using AMSR-E data[J]. Front. Earth Sci., 2014, 8(3): 427-438.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-014-0412-4
https://academic.hep.com.cn/fesci/EN/Y2014/V8/I3/427
Fig.1  The flow chart of the proposed algorithm for surface soil moisture retrieval.
Fig.2  Location of the 20 sites of the Maqu soil moisture monitoring network. CST and NST represent the names of these sites.
Fig.3  Temporal variations of averaged NDVI at the Maqu network region during the entire period.
Fig.4  Temporal variations of averaged soil moisture and soil temperature at 5 cm at the Maqu network region during the entire period.
Fig.5  Time series comparison of soil moisture retrieved by the present inversion algorithm and two satellite soil moisture products (NASA AMSR-E and SMOS) with in-situ average soil moisture at 5 cm. (a) 2008.7.1–2008.10.31; (b) 2009.4.1–2009.10.31; (c) 2010.4.1–2010.7.31.
Period of comparisonSTDBiasMAERMSE
In-situ_SMAlgorithm_SMNASA_SMSMOS_SMAlgorithm_SMNASA_SMSMOS_SMAlgorithm_SMNASA_SMSMOS_SMAlgorithm_SMNASA_SMSMOS_SM
2008.7.1–2008.10.310.0460.0410.009/–0.066–0.248/0.0780.248/0.0930.25/
2009.4.1–2009.10.310.0470.0390.012/–0.064–0.229/0.0740.229/0.0880.233/
2010.4.1–2010.7.310.0820.0360.0180.155–0.054–0.217–0.0390.0690.2170.1330.0860.230.14
All0.0590.040.013/–0.062–0.230/0.0740.23/0.0880.236/
Tab.1  Error statistics of Algorithm_SM, NASA_SM, and SMOS_SM, with respect to the In-situ_SM. STD (Standard deviation), Bias, MAE (Mean absolute error), RMSE (Root mean square error) are in m3·m–3
Fig.6  Histogram of the distribution of mean absolute error between in-situ soil moisture, at 5 cm, and estimated soil moisture. (a) Algorithm_SM; (b) NASA_SM; (c) SMOS_SM; (d) all of three soil moisture retrievals.
Fig.7  Scatter plots comparison of soil moisture retrieved by the present inversion algorithm and two satellite soil moisture products (NASA AMSR-E and SMOS) with in-situ average soil moisture at 5 cm during the entire period.
1 Anterrieu E, Khazaal A (2011). One year of RFI detection and quantification with L1a signals provided by SMOS reference radiometers. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2245–2248
2 Becker F, Choudhury B J (1988). Relative sensitivity of normalized difference vegetation index (NDVI) and microwave polarization difference index (MPDI) for vegetation and desertification monitoring. Remote Sens Environ, 24(2): 297–311
doi: 10.1016/0034-4257(88)90031-4
3 Berthon L, Mialon A, Cabot F, Bitar A A, Richaume P, Kerr Y, Leroux D, Bircher S, Lawrence H, Quesney A, Jacquette E (2012). CATDS level 3 data product description. CESBIO-SA Technical Report
4 Chen L, Shi J C, Wigneron J P, Chen K S (2010). A parameterized surface emission model at L-band for soil moisture retrieval. IEEE Geosci Remote Sens Lett, 7(1): 127–130
doi: 10.1109/LGRS.2009.2028443
5 Chen Y Y, Yang K, Qin J, Zhao L, Tang W J, Han M L (2013). Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan plateau. J Geophys Res, D, Atmospheres, 118, doi: 10.1002/jgrd.50301
6 De Jeu R A M, Owe M (2003). Further validation of a new methodology for surface moisture and vegetation optical depth retrieval. Int J Remote Sens, 24(22): 4559–4578
doi: 10.1080/0143116031000095934
7 Dente L, Su Z B, Wen J (2012a). Validation of SMOS soil moisture products over the Maqu and Twente regions. Sensors (Basel), 12(8): 9965–9986
doi: 10.3390/s120809965 pmid: 23112582
8 Dente L, Vekerdy Z, Wen J, Su Z B (2012b). Maqu network for validation of satellite-derived soil moisture products. Int J Appl Earth Obs Geoinf, 17: 55–65
doi: 10.1016/j.jag.2011.11.004
9 Draper C S, Walker J P, Steinle P J, De Jeu R A M, Holmes T R H (2009). An evaluation of AMSR-E derived soil moisture over Australia. Remote Sens Environ, 113(4): 703–710
doi: 10.1016/j.rse.2008.11.011
10 Du J Y (2012). A method to improve satellite soil moisture retrievals based on Fourier analysis. Geophys Res Lett, 39(15): L15404, doi: 10.1029/2012GL052435
11 Entekhabi D, Njoku E, O’Neill P E, Kellogg K H, Crow W T, Edelstein W N, Entin J K, Goodman S D, Jackson T J, Johnson J, Kimball J, Piepmeier J R, Koster R D, Martin N, McDonald K C, Moghaddam M, Moran S, Reichle R, Shi J C, Spencer M W, Thrman S W, Tsang L, van Zyl J (2010). The soil moisture active passive (SMAP) mission. Proc IEEE, 98(5): 704–716
doi: 10.1109/JPROC.2010.2043918
12 Guo P, Shi J C, Liu Q, Du J Y (2013). A new algorithm for soil moisture retrieval with L-band radiometer. IEEE J Sel Top Appl Farth Observ Remote Sens, 6(3): 1147–1155
doi: 10.1109/JSTARS.2013.2244852
13 Hallikainen M T, Ulaby F T, Dobson M C, El-Rayes M A, Wu L K (1985). Microwave dielectric behavior of wet soil-part 1: empirical models and experimental observations. IEEE Trans Geosci Rem Sens, GE-23(1): 25–34
doi: 10.1109/TGRS.1985.289497
14 Holmes T R H, De Jeu R A M, Owe M, Dolman A J (2009). Land surface temperature from Ka band (37 GHz) passive microwave observations. J Geophys Res, 114(D4): D04113
doi: 10.1029/2008JD010257
15 Hong S (2010). Global retrieval of small-scale roughness over land surfaces at microwave frequency. J Hydrol (Amst), 389(1–2): 121–126
doi: 10.1016/j.jhydrol.2010.05.036
16 Jackson T J (1993). Measuring surface soil moisture using passive microwave remote sensing. Hydrol Processes, 7(2): 139–152
doi: 10.1002/hyp.3360070205
17 Jackson T J, Cosh M H, Bindlish R, Starks P J, Bosch D D, Seyfried M, Goodrich D C, Moran M S, Du J Y (2010). Validation of Advanced Microwave Scanning Radiometer soil moisture products. IEEE Trans Geosci Rem Sens, 48(12): 4256–4272
doi: 10.1109/TGRS.2010.2051035
18 Jackson T J, Hawley M E, O’Neill P E (1987). Preplanting soil moisture using passive microwave sensors. J Am Water Resour Assoc, 23(1): 11–19
doi: 10.1111/j.1752-1688.1987.tb00779.x
19 Jackson T J, Le Vine D M, Hsu A Y, Oldak A, Starks P J, Swift C T, Isham J, Haken M (1999). Soil moisture mapping at regional scales using microwave radiometry: the southern Great Plains hydrology experiment. IEEE Trans Geosci Rem Sens, 37(5): 2136–2151
doi: 10.1109/36.789610
20 Jacquette E, Al Bita A, Mialon A, Kerr Y, Quesney A, Cabot F, Richaume P (2010). SMOS CATDS level 3 global products over land. Proc SPIE, 7824: 78240K, 78240K-6
doi: 10.1117/12.865093
21 Jin R, Li X, Che T (2009). A decision tree algorithm for surface soil freeze/thaw classification over China using SSM/I brightness temperature. Remote Sens Environ, 113(12): 2651–2660
doi: 10.1016/j.rse.2009.08.003
22 Kerr Y H, Waldteufel P, Wigneron J P, Martinuzzi J, Font J, Berger M (2001). Soil moisture retrieval from space: the soil moisture and ocean salinity (SMOS) mission. IEEE Trans Geosci Rem Sens, 39(8): 1729–1735
doi: 10.1109/36.942551
23 Koike T, Nakamura Y, Kaihotsu I, Davaa G, Matsuura N, Tamagawa K, Fujii H (2004). Development of an advanced microwave scanning radiometer (AMSR-E) algorithm of soil moisture and vegetation water content. Annu J Hydraul Eng, JSCE, 48: 217–222
doi: 10.2208/prohe.48.217
24 Lacava T, Coviello I, Faruolo M, Mazzeo G, Pergola N, Tramutoli V (2013). A multitemporal investigation of AMSR-E C-band radio-frequency interference. IEEE Trans Geosci Rem Sens, 51(4): 2007–2015
doi: 10.1109/TGRS.2012.2228487
25 Lu H, Shi J C (2012). Reconstruction and analysis of temporal and spatial variations in surface soil moisture in China using remote sensing. Chin Sci Bull, 57(22): 2824–2834
doi: 10.1007/s11434-012-5011-8
26 Mao K B, Tang H J, Zhang L X, Li M C, Guo Y, Zhao D Z (2008). A method for retrieving soil moisture in Tibet region by utilizing microwave index from TRMM/TMI data. Int J Remote Sens, 29(10): 2903–2923
doi: 10.1080/01431160701442104
27 Meesters A G, De Jeu R A M, Owe M (2005). Analytical derivation of the vegetation optical depth from the microwave polarization difference index. IEEE Geosci Remote Sens Lett, 2(2): 121–123
doi: 10.1109/LGRS.2005.843983
28 Mladenova I, Lakshmi V, Jackson T J, Walker J P, Merlin O, De Jeu R A M (2011). Validation of AMSR-E soil moisture using L-band airborne radiometer data from National Airborne Field Experiment 2006. Remote Sens Environ, 115(8): 2096–2103
doi: 10.1016/j.rse.2011.04.011
29 Mo T, Choudhury B J, Schmugge T J, Wang J R, Jackson T J (1982). A model for microwave emission from vegetation-covered fields. J Geophys Res, 87(C13): 11229–11237
doi: 10.1029/JC087iC13p11229
30 Njoku E G, Ashcroft P, Chan T K, Li L (2005). Global survey and statistics of radio-frequency interference in AMSR-E land observations. IEEE Trans Geosci Rem Sens, 43(5): 938–947
doi: 10.1109/TGRS.2004.837507
31 Njoku E G, Chan S K (2006). Vegetation and surface roughness effects on AMSR-E land observations. Remote Sens Environ, 100(2): 190–199
doi: 10.1016/j.rse.2005.10.017
32 Njoku E G, Entekhabi D (1996). Passive microwave remote sensing of soil moisture. J Hydrol (Amst), 184(1–2): 101–129
doi: 10.1016/0022-1694(95)02970-2
33 Njoku E G, Jackson T J, Lakshmi V, Chan T K, Nghiem S V (2003). Soil moisture retrieval from AMSR-E. IEEE Trans Geosci Rem Sens, 41(2): 215–229
doi: 10.1109/TGRS.2002.808243
34 Owe M, De Jeu R A M, Holmes T R H (2008). Multisensor historical climatology of satellite-derived global land surface moisture. J Geophys Res, 113(F1): F01002
doi: 10.1029/2007JF000769
35 Paloscia S, Macelloni G, Santi E (2006). Soil moisture estimates from AMSR-E brightness temperatures by using a dual-frequency algorithm. IEEE Trans Geosci Rem Sens, 44(11): 3135–3144
doi: 10.1109/TGRS.2006.881714
36 Paloscia S, Pampaloni P (1988). Microwave polarization index for monitoring vegetation growth. IEEE Trans Geosci Rem Sens, 26(5): 617–621
doi: 10.1109/36.7687
37 Reynolds C A, Jackson T J, Rawls W J (2000). Estimating soil water-holding capacities by linking the food and agriculture organization soil map of the world with global pedon databases and continuous pedotransfer functions. Water Resour Res, 36(12): 3653–3662
doi: 10.1029/2000WR900130
38 Roy A, Royer A, Wigneron J P, Langlois A, Bergeron J, Cliche P (2012). A simple parameterization for a boreal forest radiative transfer model at microwave frequencies. Remote Sens Environ, 124: 371–383
doi: 10.1016/j.rse.2012.05.020
39 Rüdiger C, Calvet J C, Gruhier C, Holmes T R H, De Jeu R A M, Wagner W (2009). An intercomparison of ERS-Scat and AMSR-E soil moisture observations with model simulations over France. J Hydrometeorol, 10(2): 431–447
doi: 10.1175/2008JHM997.1
40 Saha S K (1995). Assessment of regional soil moisture conditions by coupling satellite sensor data with a soil-plant system heat and moisture balance model. Int J Remote Sens, 16(5): 973–980
doi: 10.1080/01431169508954456
41 Saleh K, Wigneron J P, de Rosnay P, Calvet J C, Kerr Y (2006). Semi-empirical regressions at L-band applied to surface soil moisture retrievals over grass. Remote Sens Environ, 101(3): 415–426
doi: 10.1016/j.rse.2006.01.008
42 Santi E, Pettinato S, Paloscia S, Pampaloni P, Macelloni G, Brogioni M (2012). An algorithm for generating soil moisture and snow depth maps from microwave spaceborne radiometers: HydroAlgo. Hydrol Earth Syst Sci, 16(10): 3659–3676
doi: 10.5194/hess-16-3659-2012
43 Shi J C, Jackson T, Tao J, Du J, Bindlish R, Lu L, Chen K S (2008). Microwave vegetation indices for short vegetation covers from satellite passive microwave sensor AMSR-E. Remote Sens Environ, 112(12): 4285–4300
doi: 10.1016/j.rse.2008.07.015
44 Shi J C, Jiang L M, Zhang L X, Chen K S, Wigneron J P, Chanzy A, Jackson T J (2006). Physically based estimation of bare-surface soil moisture with the passive radiometers. IEEE Trans Geosci Rem Sens, 44(11): 3145–3153
doi: 10.1109/TGRS.2006.876706
45 Skou N, Misra S, Balling J E, Kristensen S S, Sobjaerg S S (2010). L-band RFI as experienced during airborne campaigns in preparation for SMOS. IEEE Trans Geosci Rem Sens, 48(3): 1398–1407
doi: 10.1109/TGRS.2009.2031637
46 Su Z, Wen J, Dente L, van der Velde R, Wang L, Ma Y, Yang K, Hu Z (2011). The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products. Hydrol Earth Syst Sci, 15(7): 2303–2316
doi: 10.5194/hess-15-2303-2011
47 Van de Griend A A, Owe M (1994). Microwave vegetation optical depth and inverse modelling of soil emissivity using Nimbus/SMMR satellite observations. Meteorol Atmos Phys, 54(1–4): 225–239
doi: 10.1007/BF01030062
48 Wagner W, Naeimi V, Scipal K, de Jeu R A M, Martínez-Fernández J (2007). Soil moisture from operational meteorological satellites. Hydrogeol J, 15(1): 121–131
doi: 10.1007/s10040-006-0104-6
49 Wang J R, Choudhury B J (1981). Remote sensing of soil moisture content over bare fields at 1.4 GHz frequency. J Geophys Res, 86(C6): 5277–5282
doi: 10.1029/JC086iC06p05277
50 Wang L L, Qu J J (2009). Satellite remote sensing applications for surface soil moisture monitoring: a review. Front Earth Sci China, 3(2): 237–247
doi: 10.1007/s11707-009-0023-7
51 Wen J, Su Z B, Ma Y M (2003). Determination of land surface temperature and soil moisture from tropical rainfall measuring mission/microwave imager remote sensing data. J Geophys Res, 108(D2): 4038
doi: 10.1029/2002JD002176
52 Wigneron J P, Calvet J C, Pellarin T, Van de Griend A A, Berger M, Ferrazzoli P (2003). Retrieving near-surface soil moisture from microwave radiometric observations: current status and future plans. Remote Sens Environ, 85(4): 489–506
doi: 10.1016/S0034-4257(03)00051-8
53 Wigneron J P, Laguerre L, Kerr Y H (2001). A simple parameterization of the L-Band microwave emission from rough agricultural soils. IEEE Trans Geosci Rem Sens, 39(8): 1697–1707
doi: 10.1109/36.942548
54 Xie H, Ye J S, Liu X M, E C Y (2010). Warming and drying trends on the Tibetan Plateau (1971–2005). Theor Appl Climatol, 101(3–4): 241–253
doi: 10.1007/s00704-009-0215-9
55 Zhang X F, Zhao J P, Sun Q, Wang X Y, Guo Y L, Li J (2011). Soil moisture retrieval from AMSR-E data in Xinjiang (China): models and validation. IEEE J Sel Top Appl Earth Observ Remote Sens, 4(1): 117–127
doi: 10.1109/JSTARS.2010.2076336
56 Zhao T J, Zhang L X, Jiang L M, Zhao S J, Chai L N, Jin R (2011a). A new soil freeze/thaw discriminant algorithm using AMSR-E passive microwave imagery. Hydrol Processes, 25(11): 1704–1716
doi: 10.1002/hyp.7930
57 Zhao T J, Zhang L X, Shi J C, Jiang L M (2011b). A physically based statistical methodology for surface soil moisture retrieval in the Tibet Plateau using microwave vegetation indices. J Geophys Res, 116(D8): D08116
doi: 10.1029/2010JD015229
[1] Zigen WEI, Risheng CHU, Meiqin SONG, Xiaolin YANG, Shanshan WU, Feng BAO. Determination of the crustal structure and seismicity of the Linfen rift with S-wave velocity mapping[J]. Front. Earth Sci., 2020, 14(3): 647-659.
[2] Jun WANG, Xiaohong MENG, Zhaoxi CHEN, Fang LI. Interpretation of gravity data for fault distribution near the Mongolia–Hinggan metallogenic belt in the eastern China-Mongolia frontier area[J]. Front. Earth Sci., 2018, 12(4): 808-817.
[3] Yanhong LI, Mingliang ZHAO, Fadong LI. Soil respiration in typical plant communities in the wetland surrounding the high-salinity Ebinur Lake[J]. Front. Earth Sci., 2018, 12(3): 611-624.
[4] Chengcheng FENG,Xiaolei ZOU,Juan ZHAO. Detection of radio-frequency interference signals from AMSR-E data over the United States with snow cover[J]. Front. Earth Sci., 2016, 10(2): 195-204.
[5] Li GUAN,Sibo ZHANG. Source analysis of spaceborne microwave radiometer interference over land[J]. Front. Earth Sci., 2016, 10(1): 135-144.
[6] Sibo ZHANG,Li GUAN. Identifying AMSR-E radio-frequency interference over winter land[J]. Front. Earth Sci., 2015, 9(3): 437-448.
[7] Ci SONG, Jiong SHU, Mandi ZHOU, Wei GAO. Sensitivity studies of high-precision methane column concentration inversion using a line-by-line radiative transfer model[J]. Front Earth Sci, 2013, 7(4): 439-446.
[8] Lingli WANG, John J. QU. Satellite remote sensing applications for surface soil moisture monitoring: A review[J]. Front Earth Sci Chin, 2009, 3(2): 237-247.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed