Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2015, Vol. 9 Issue (2) : 276-285    https://doi.org/10.1007/s11707-014-0459-2
RESEARCH ARTICLE
Understanding the effects of the impervious surfaces pattern on land surface temperature in an urban area
Qin NIE1(), Jianhua XU2
1. Department of Spatial Information Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
2. The Research Center for East-West Cooperation in China, The Key Laboratory of GIScience of the Ministry of Education of China, East China Normal University, Shanghai 200241, China
 Download: PDF(958 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

It is well known that urban impervious surface (IS) has a warming effect on urban land surface temperature (LST). However, the influence of an IS’s structure, components, and spatial distribution on LST has rarely been quantitatively studied within strictly urban areas. Using ETM+ remote sensing images from the downtown area of Shanghai, China in 2010, this study characterized and quantified the influence of the IS spatial pattern on LST by selecting the percent cover of each IS cover feature and ten configuration metrics. The IS fraction was estimated by linear spectral mixture analysis (LSMA), and LST was retrieved using a mono-window algorithm. The results indicate that high fraction IS cover features account for the majority of the study area. The high fraction IS cover features are widely distributed and concentrated in groups, which is similar with that of high temperature zones. Both the percent composition and the configuration of IS cover features greatly affect the magnitude of LST, but the percent composition is a more important factor in determining LST than the configuration of those features. The significances and effects of the given configuration variables on LST vary greatly among IS cover features.

Keywords urban impervious surfaces      land surface temperature      spatial pattern      Shanghai city     
Corresponding Author(s): Qin NIE   
Issue Date: 01 January 2023
 Cite this article:   
Qin NIE,Jianhua XU. Understanding the effects of the impervious surfaces pattern on land surface temperature in an urban area[J]. Front. Earth Sci., 2015, 9(2): 276-285.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-014-0459-2
https://academic.hep.com.cn/fesci/EN/Y2015/V9/I2/276
1 D A Artis, W H Carnahan (1982). Survey of emissivity variability in thermography of urban areas. Remote Sens Environ, 12(4): 313–329
https://doi.org/10.1016/0034-4257(82)90043-8
2 J C Ding, Z K Zhang, H Xi, H M Zhou (2002). A study of the high temperature distribution and the heat island effect in the summer of the Shanghai area. Chin J Atmos Sci, 26(3): 412–420 (in Chinese)
3 A D Gong, Z X Jiang, J Li, Y H Chen, H L Hu (2005). Urban land surface temperature retrieval based on landsat TM remote sensing images in Beijing. Remote Sensing Information, (3): 18–20
4 A Hope, R Engstrom, D Stow (2005). Relationship between AVHRR surface temperature and NDVI in Arctic tundra ecosystems. Int J Remote Sens, 26(8): 1771–1776
https://doi.org/10.1080/01431160500043780
5 D Lu, Q Weng (2006). Use of impervious surface in urban land-use classification. Remote Sens Environ, 102(1–2): 146–160
https://doi.org/10.1016/j.rse.2006.02.010
6 K McGarigal, S A Cushman, M C Neel, E Ene (2002). FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. Available at the following web site:
7 P Meiyappan, A K Jain (2012). Three distinct global estimates of historical land-cover change and land-use conversions for over 200 years. Front Earth Sci, 6(2): 122–139
https://doi.org/10.1007/s11707-012-0314-2
8 X L Meng (2010). Multi-scale Relationships Between Impervious Surface, Vegetation, Water and Urban HeatIsland. East China Normal University
9 M K Ridd (1995). Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: Comparative anatomy for cities. Int J Remote Sens, 16(12): 2165–2185
https://doi.org/10.1080/01431169508954549
10 E T Slonecker, D B Jennings, D Garofalo (2001). Remote sensing of impervious surfaces: a review. Remote Sens Rev, 20(3): 227–255
https://doi.org/10.1080/02757250109532436
11 C Small (2001). Estimation of urban vegetation abundance by spectral mixture analysis. Int J Remote Sens, 22(7): 1305–1334
https://doi.org/10.1080/01431160151144369
12 A Van De Gfiend, M Owe (1993). On the relationship between thermal emissivity and the normalized difference vegetation index for nature surfaces. In ternational Journal of Remote Sensing, 14(6): 1119–1131
https://doi.org/10.1080/01431160151144369
13 Q Weng (2012). Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sens Environ, 117: 34–49
https://doi.org/10.1016/j.rse.2011.02.030
14 Q Weng, H Liu, D Lu (2007). Assessing the effects of land use and land cover patterns on thermal conditions using land scape metrics in city of Indianapolis, United States. Urban Ecosyst, 10(2): 203–219
https://doi.org/10.1007/s11252-007-0020-0
15 Q Weng, D Lu, J Schubring (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens Environ, 89(4): 467–483
https://doi.org/10.1016/j.rse.2003.11.005
16 N H Wong, C Yu (2005). Study of green areas and urban heat island in a tropical city. Habitat Int, 29(3): 547–558
https://doi.org/10.1016/j.habitatint.2004.04.008
17 G Xian, M Crane, J Su (2007). An analysis of urban development and its environmental impact on the Tampa Bay watershed. J Environ Manage, 85(4): 965–976
https://doi.org/10.1016/j.jenvman.2006.11.012
18 R B Xiao, Z Y Ouyang, H Zheng, E F Li, E W Schienke X K Wang (2007). Spatial pattern of impervious surfaces and their impacts on land surface temperature in Beijing, China. J Environ Sci (China), 19(2): 250–256
https://doi.org/10.1016/S1001-0742(07)60041-2
19 J H Xu, N S Ai, Y Chen, A X Mei, H J Liao (2003). Quantitative analysis and fractal modeling on the mosaic structure of landscape in the central area of Shanghai metropolis. Chin Geogr Sci, 13(3): 199–206
https://doi.org/10.1007/s11769-003-0017-4
20 J H Xu, Y Lu, N S Ai, W Z Yue (2001). A study on landscape mosaic structure in urban-rural area in Northwest of China with RS and GIS. Chin Geogr Sci, 11(4): 366–376
https://doi.org/10.1007/s11769-001-0053-x
21 X Yang, Z Liu (2005). Use of satellite-derived landscape imperviousness index to characterize urban spatial growth. Computers, Environment and Urban Systems, 29(5): 524–540.
22 W Yue (2005). Study on Urban Landscape Pattern and Its Thermal Environment Eeffect Based on Remote Sensing Image. East China Normal University
23 F Yuan, M E Bauer (2005). Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sensing of Environment, 106(3): 375–386.
24 W Yue (2009). Improvement of urban impervious surface estimation in Shanghai using Landsat7 ETM+ data. Chin Geogr Sci, 19(3): 283–290
https://doi.org/10.1007/s11769-009-0283-x
25 W Yue, Y Liu, P Fan, X Ye, C Wu (2012). Assessing spatial pattern of urban thermal environment in Shanghai, China. Stochastic Environ Res Risk Assess, 26(7): 899–911
https://doi.org/10.1007/s00477-012-0638-1
26 Y Zhang, I OA Odeh, C Han (2009a). Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. International Journal of Applied Earth Observation and Geoinformation, 11(4): 256–264
27 X Zhang, T Zhong, X Feng, K Wang (2009b). Estimation of the relationship between vegetation patches and urban land surface temperature with remote sensing. Int J Remote Sens, 30(8): 2105–2118
https://doi.org/10.1080/01431160802549252
28 S Z Zhou, C Zhang (1982). On the Shanghai urban heat island effect. Acta Geographica Sinica, 37(4): 372–381 (in Chinese)
29 W Zhou, G Huang, M L Cadenasso (2011). Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landsc Urban Plan, 102(1): 54–63
https://doi.org/10.1016/j.landurbplan.2011.03.009
[1] Munkhdulam OTGONBAYAR, Clement ATZBERGER, Erdenesukh SUMIYA, Sainbayar DALANTAI, Jonathan CHAMBERS. Estimation of bioclimatic variables of Mongolia derived from remote sensing data[J]. Front. Earth Sci., 2022, 16(2): 323-339.
[2] Yuexue XU, Hongchun ZHU, Changyu HU, Haiying LIU, Yu CHENG. Deep learning of DEM image texture for landform classification in the Shandong area, China[J]. Front. Earth Sci., 2022, 16(2): 352-367.
[3] Emre ÇOLAK, Filiz SUNAR. Spatial pattern analysis of post-fire damages in the Menderes District of Turkey[J]. Front. Earth Sci., 2020, 14(2): 446-461.
[4] Shiyong YAN, Ke SHI, Yi LI, Jinglong LIU, Hongfeng ZHAO. Integration of satellite remote sensing data in underground coal fire detection: A case study of the Fukang region, Xinjiang, China[J]. Front. Earth Sci., 2020, 14(1): 1-12.
[5] Jianwen WANG, Da ZHANG, Ying NAN, Zhifeng LIU, Dekang QI. Spatial patterns of net primary productivity and its driving forces: a multi-scale analysis in the transnational area of the Tumen River[J]. Front. Earth Sci., 2020, 14(1): 124-139.
[6] Jicai NING, Zhiqiang GAO, Ran MENG, Fuxiang XU, Meng GAO. Analysis of relationships between land surface temperature and land use changes in the Yellow River Delta[J]. Front. Earth Sci., 2018, 12(2): 444-456.
[7] Kun TAN,Zhihong LIAO,Peijun DU,Lixin WU. Land surface temperature retrieval from Landsat 8 data and validation with geosensor network[J]. Front. Earth Sci., 2017, 11(1): 20-34.
[8] Weichun MA, Liguo ZHOU, Hao ZHANG, Yan ZHANG, Xiaoyan DAI. Air temperature field distribution estimations over a Chinese mega-city using MODIS land surface temperature data: the case of Shanghai[J]. Front. Earth Sci., 2016, 10(1): 38-48.
[9] Qin NIE,Jianhua XU,Wang MAN. Long-range cross-correlation between urban impervious surfaces and land surface temperatures[J]. Front. Earth Sci., 2016, 10(1): 117-125.
[10] Junyong AI, Xiang SUN, Lan FENG, Yangfan LI, Xiaodong ZHU. Analyzing the spatial patterns and drivers of ecosystem services in rapidly urbanizing Taihu Lake Basin of China[J]. Front. Earth Sci., 2015, 9(3): 531-545.
[11] Laibin HUANG, Junhong BAI, Denghua YAN, Bin CHEN, Rong XIAO, Haifeng GAO. Changes of wetland landscape patterns in Dadu River catchment from 1985 to 2000, China[J]. Front Earth Sci, 2012, 6(3): 237-249.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed