Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2015, Vol. 9 Issue (3) : 473-486    https://doi.org/10.1007/s11707-014-0486-z
RESEARCH ARTICLE
Effect of mowing on N2O and CH4 fluxes emissions from the meadow-steppe grasslands of Inner Mongolia
Zedong LU,Rui DU(),Pengrui DU,Ziming LI,Zongmin LIANG,Yaling WANG,Saisai QIN,Lei ZHONG
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(883 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To assess the impacts of mowing on N2O and CH4 fluxes emissions from the meadow-steppe grasslands of Inner Mongolia, China, two regimes were investigated: unmown since 2005 (UM), and mown once every three years since 2009 (M3). On-site measurements were conducted continuously during a year-round period (August 2011 to August 2012). During the observation period, three diurnal cycles were also measured. In addition, a targeted laboratory experiment was conducted to make up for the few measurements in winter. A large pulse of N2O emissions related to freeze-thaw cycles was observed at M3 during the spring thaw. Results showed that the meadow-steppes played a role as a sink for CH4 and a source for N2O. Significantly lower mean CH4 uptake at UM (40.3 μg C·m-2·h-1) as compared to M3 (70.5 μg C ·m-2·h-1) (p<0.01), and significantly higher mean N2O efflux at UM (6.3 μg N·m-2·h-1) as compared to M3 (4.3 μg N·m-2·h-1) (p<0.05) were found. The laboratory experiment results revealed that mowing changed the soil conditions that favor the activity of denitrifiers during thawing periods. The CH4 and N2O fluxes were significantly correlated with soil temperature (p<0.05). Mowing affected CH4 uptake and N2O emission mainly through its effect on vegetation types and some soil properties, such as soil inorganic N content, soil temperature, and soil moisture content, while soil inorganic N and moisture were not leading factors. Our results also suggested that mowing could mitigate the potential global warming in terms of CH4 uptake and N2O emissions.

Keywords mowing      meadow-steppe      methane      nitrous oxide      freeze-thaw cycles      global warming     
Corresponding Author(s): Rui DU   
Just Accepted Date: 17 December 2014   Issue Date: 20 July 2015
 Cite this article:   
Zedong LU,Rui DU,Pengrui DU, et al. Effect of mowing on N2O and CH4 fluxes emissions from the meadow-steppe grasslands of Inner Mongolia[J]. Front. Earth Sci., 2015, 9(3): 473-486.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-014-0486-z
https://academic.hep.com.cn/fesci/EN/Y2015/V9/I3/473
Fig.1  Daily mean (a) air temperature and precipitation, soil temperature at (b) 10 cm and (c) 20 cm depth, and soil moisture at (d) 10 cm and (e) 20 cm soil depth.
Soil depth M3 UM
May Jun Jul Aug Sep Mean May Jun Jul Aug Sep Mean
N H 4 + -N/(mg·kg-1) 0–5 cm 5.24 5.27 5.76 4.08 5.00 5.07 8.65 3.44 5.14 9.14 5.04 6.28
5–10 cm 5.55 4.39 4.27 3.39 4.70 4.46 6.24 4.99 5.22 8.63 4.75 5.97
10–20 cm 4.20 4.76 4.47 3.87 4.89 4.44 6.28 5.63 5.20 4.10 4.84 5.21
N O 3 - -N/(mg·kg-1) 0–5 cm 21.38 20.79 4.20 9.06 23.44 15.77 18.63 23.80 6.99 19.30 15.99 16.94
5–10 cm 7.03 10.57 4.18 5.63 18.51 9.18 7.02 19.31 4.88 15.97 8.89 11.22
10–20 cm 4.80 8.72 5.87 3.67 3.19 5.25 3.68 7.71 4.42 5.60 4.10 5.10
SOM/(g·kg-1) 0–5 cm 80.80 67.71 71.55 62.21 62.94 69.04 73.96 80.67 57.37 68.43 63.66 68.82
5–10 cm 56.16 55.59 50.41 56.35 44.47 52.60 54.03 66.66 60.96 59.33 48.51 57.90
10–20 cm 58.56 39.41 43.66 37.54 37.64 43.36 51.72 48.94 55.78 41.35 41.68 47.89
Tab.1  Main soil characteristics of the different experimental sites
Sites Period Soil temperature/°C Soil moisture/(m3·m?3)
10 cm 20 cm 10 cm 20 cm
M3 Spring 14.51 13.02 0.09** 0.07**
Summer 22.87** 21.54 0.11** 0.08**
Autumn 13.89 13.96 0.11* 0.09
Winter -4.90** -4.11** 0.05** 0.03*
Mean 3.14 3.33 0.07** 0.05**
UM Spring 14.44 13.18 0.15** 0.12**
Summer 22.02** 21.54 0.20** 0.18**
Autumn 12.72 13.00 0.14* 0.11
Winter -7.61** -6.77** 0.08** 0.04*
Mean 1.05 1.48 0.11** 0.08**
Tab.2  Seasonal means of soil temperature and soil moisture at the M3 and UM steppe sites
Fig.2  Aboveground biomass in the M3 and UM steppes.
Fig.3  Diurnal distribution of CH4 uptake fluxes from the M3 and UM steppes in different growth stages: (a) fruiting stage (7–8 August 2011); (b) panicle initiation stage (18–19 June 2012); (c) fruiting stage (10–11 August 2012).
Fig.4  Diurnal distribution of N2O emission fluxes from the M3 and UM steppes in different growth stages: (a) fruiting stage (7–8 August 2011); (b) panicle initiation stage (18–19 June 2012); (c) fruiting stage (10–11 August 2012).
Sites Date CH4 average flux/(μg C·m-2·h-1) Cumulative ratio of CH4 N2O average flux/(μg N·m-2·h-1) Cumulative ratio of N2O
Diurnal Daytime Nighttime Rday./diu. Rnig./diu. Diurnal Daytime Nighttime Rday./diu. Rnig./diu.
M3 Aug. 7–8 -87.6 -94.3 -80.9 54 46 2.6 3.0 2.2 57 43
Jun. 18–19 -75.2 -77.7 -72.6 52 48 0.5 0.6 0.4 60 40
Aug. 10–11 -63.4 -59.1 -67.7 47 53 2.5 2.0 3.0 41 59
UM Aug. 7–8 -32.7 -41.9 -23.5 64 36 3.5 4.6 2.3 66 34
Jun. 18–19 -63.1 -72.1 -54.1 57 43 3.7 4.1 3.3 55 45
Aug. 10–11 -47.3 -44.7 -50.0 47 53 7.6 6.5 8.7 43 57
Tab.3  Average fluxes during the whole day, daytime, and nighttime at the two sites
Fig.5  Daily fluxes of CH4 uptake and N2O emission in the M3 and UM fields.
Fig.6  Seasonal distributions of CH4 uptake and N2O emission in the M3 and UM field.
Fig.7  N2O fluxes (μg·g-1·h-1) along the soil profile (0–15 cm) of the undisturbed soil cores from (a) UM and (b) M3 under different soil temperatures during the entire incubation period; soil layer 1, 12–15 cm; soil layer 2, 9–12 cm; soil layer 3, 6–9 cm; soil layer 4, 3–6 cm; soil layer 5, 0–3 cm.
Sites Total nitrogen/(g·kg-1) N O 3 - -N/(mg·kg-1) N H 4 + -N/(mg·kg-1) SOM/(g·kg-1)
Start End Start End Start End Start End
UM 2.71 2.69 8.32 6.90 4.45 12.12 55.13 53.40
M3 1.86 2.20 11.15 9.14 4.34 12.86 44.87 39.75
Tab.4  Main soil characteristics in the laboratory experiment.
Gases Annual Spring Summer Autumn Winter
Fluxa) Totalb) Accumulationb) Ratioc) Accumulationb) Ratio Accumulationb) Ratio Accumulationb) Ratio
N2O UM 6.3* 0.5 0.07 18 0.09 25 0.12 33 0.26 70
M3 4.3* 0.4 0.03 9 0.06 15 0.08 21 0.20 55
CH4 UM -40.3** -3.5 -0.48 8 -0.79 13 -0.32 5 -1.9 31
M3 -70.5** -6.1 -0.76 12 -1.67 27 -0.86 14 -2.80 46
CO2 UM 36.1
M3 -10.3
Tab.5  Fluxes of N2O emissions and CH4 uptake by the meadow-steppe grasslands
Fig.8  Effects of soil temperature at 10 cm and 20 cm depth on N2O emission and CH4 uptake fluxes at the mown site: (a, b) effects of soil temperature on CH4 uptake flux; (c, d) effects of soil temperature on N2O emission flux.
1 Bahn M, Knapp M, Garajova Z, Pfahringer N, Cernusca A (2006). Root respiration in temperate mountain grasslands differing in land use. Glob Change Biol, 12(6): 995–1006
https://doi.org/10.1111/j.1365-2486.2006.01144.x
2 Blagodatsky S, Smith P (2012). Soil physics meets soil biology: towards better mechanistic prediction of greenhouse gas emissions from soil. Soil Biol Biochem, 47: 78–92
https://doi.org/10.1016/j.soilbio.2011.12.015
3 Cai Z (2012). Greenhouse gas budget for terrestrial ecosystems in China. Science China Earth Science, 55(2): 173–182
https://doi.org/10.1007/s11430-011-4309-8
4 Chen W W, Wolf B, Yao Z S, Bruggemann N, Butterbach-Bahl K, Liu C Y, Han S H, Han S G, Zheng X H (2010). Annual methane uptake by typical semiarid steppe in Inner Mongolia. J Geophys Res, 115(D15): D15108
https://doi.org/10.1029/2009JD013783
5 Christensen S, Christensen B T (1991). Organic-matter available for denitrification in different soil fractions: effect of freeze/thaw cycles and straw disposal. J Soil Sci, 42(4): 637–647
https://doi.org/10.1111/j.1365-2389.1991.tb00110.x
6 Collins S L, Knapp A K, Briggs J M, Blair J M, Steinauer E M (1998). Modulation of diversity by grazing and mowing in native tallgrass prairie. Science, 280(5364): 745–747
https://doi.org/10.1126/science.280.5364.745
7 Crutzen P J (1970). The influence of nitrogen oxide on the atmospheric ozone content. Q J R Meteorol Soc, 96(408): 320–325
https://doi.org/10.1002/qj.49709640815
8 Dlugokencky E J, Houweling S, Bruhwiler L, Masarie K A, Lang P M, Miller J B, Tans P P (2003). Atmospheric methane levels off: temporary pause or a new steady-state? Geophys Res Lett, 30(19)
https://doi.org/10.1029/2003GL018126
9 Du R, Lu D R, Wang G C (2006). Diurnal, seasonal, and inter-annual variations of N2O fluxes from native semi-arid grassland soils of Inner Mongolia. Soil Biol Biochem, 38(12): 3474–3482
https://doi.org/10.1016/j.soilbio.2006.06.012
10 Foster B L, Kindscher K, Houseman G R, Murphy C A (2009). Effects of hay management and native species sowing on grassland community structure, biomass, and restoration. Ecol Appl, 19(7): 1884–1896
https://doi.org/10.1890/08-0849.1
11 Frank D A, Groffman P M, Evans R D, Tracy B F (2000). Ungulate stimulation of nitrogen cycling and retention in Yellowstone Park grasslands. Oecologia, 123(1): 116–121
https://doi.org/10.1007/s004420050996
12 Gavrichkova O, Moscatelli M C, Kuzyakov Y, Grego S, Valentini R (2010). Influence of defoliation on CO2 efflux from soil and microbial activity in a Mediterranean grassland. Agric Ecosyst Environ, 136(1–2): 87–96
https://doi.org/10.1016/j.agee.2009.11.015
13 Groffman P M, Hardy J P, Driscoll C T, Fahey T J (2006). Snow depth, soil freezing, and fluxes of carbon dioxide, nitrous oxide and methane in a northern hardwood forest. Glob Change Biol, 12(9): 1748–1760
https://doi.org/10.1111/j.1365-2486.2006.01194.x
14 Groffman P M, Tiedje J M (1989). Denitrification in north temperate forest soils: spatial and temporal patterns at the landscape and seasonal scales. Soil Biol Biochem, 21(5): 613–620
https://doi.org/10.1016/0038-0717(89)90053-9
15 Guo M Y, Wei Z J, Xu L J, Yang G X, Liu H M, Wu Y L, Xin X P (2011a). Soil respiration of different mowing types of meadows. ACTA AGRESTIA SINICA, 19(1): 51–57 (in Chinese)
16 Guo M Y, Wei Z J, Yun X J, Wu Y L, Liu H M, Li Y, Xin X P (2011b). Effect of grazing on grassland soil respiration. Pratacultural Science, 28(5): 729–736 (in Chinese)
17 Guo M Y, Xu L J, Yang G X, Liu R, Liu H M, Wu Y L, Xin X P (2010). Effect of cutting treatment on soil respiration rate of Leymus chinensis grassland. Grassland and turf, 30(6): 10–14 (in Chinese)
18 Herrmann A, Witter E (2002). Sources of C and N contributing to the flush in mineralization upon freeze-thaw cycles in soils. Soil Biol Biochem, 34(10): 1495–1505
https://doi.org/10.1016/S0038-0717(02)00121-9
19 Houghton R A, Hackler J L, Lawrence K T (1999). The U.S. carbon budget: contributions from land-use change. Science, 285(5427): 574–578
https://doi.org/10.1126/science.285.5427.574
20 Huston M (1979). A general hypothesis of species diversity. Am Nat, 113(1): 81–101
https://doi.org/10.1086/283366
21 Ilmarinen K, Mikola J (2009). Soil feedback does not explain mowing effects on vegetation structure in a semi-natural grassland. Acta Oecol, 35(6): 838–848
https://doi.org/10.1016/j.actao.2009.08.008
22 IPCC (2007). Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K B, Tignor M, Miller H, eds. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press
23 Jones S K, Rees R M, Skiba U M, Ball B C (2005). Greenhouse gas emissions from a managed grassland. Global Planet Change, 47(2–4): 201–211
https://doi.org/10.1016/j.gloplacha.2004.10.011
24 K?hk?nen M A, Wittmann C, Ilvesniemi H, Westman C J, Salkinoja-Salonen M S (2002). Mineralization of detritus and oxidation of methane in acid boreal coniferous forest soils: seasonal and vertical distribution and effects of clear-cut. Soil Biol Biochem, 34(8): 1191–1200
https://doi.org/10.1016/S0038-0717(02)00056-1
25 Li C S, Mosier A, Wassmann R, Cai Z C, Zheng X H, Huang Y, Tsuruta H, Boonjawat J, Lantin R (2004). Modeling greenhouse gas emissions from rice-based production systems: sensitivity and upscaling. Global Biogeochem Cycles, 18(1): GB1043
https://doi.org/10.1029/2003GB002045
26 Li X Z (1999). Effects of grazing on characteristics of carbon, nitrogen, phosphorus pools in soil-plant system of typical steppe. Dissertation for Ph.D degree. Beijing: Institute of Botany, Chinese Academy of Science, pp 74 (In Chinese)
27 Lipson D A, Schmidt S K (2004). Seasonal changes in an alpine bacterial community in the Colorado Rocky Mountains. Appl Environ Microbiol, 70(5): 2867–2879
https://doi.org/10.1128/AEM.70.5.2867-2879.2004
28 Liu C Y, Holst J, Bruggemann N, Butterbach-Bahl K, Yao Z S, Yue J, Han S H, Han X, Krummelbein J, Horn R, Zheng X (2007). Winter-grazing reduces methane uptake by soils of a typical semi-arid steppe in Inner Mongolia, China. Atmos Environ, 41(28): 5948–5958
https://doi.org/10.1016/j.atmosenv.2007.03.017
29 Liu X R, Dong Y S, Qi Y C, Li S G (2010). N2O fluxes from the native and grazed semi-arid steppes and their driving factors in Inner Mongolia, China. Nutr Cycl Agroecosyst, 86(2): 231–240
https://doi.org/10.1007/s10705-009-9287-2
30 Livesley S J, Kiese R, Miehle P, Weston C J, Butterbach-bahl K, Arndt S K (2009). Soil-atmosphere exchange of greenhouse gases in a Eucalyptus marginata woodland, a clover-grass pasture, and Pinus radiata and Eucalyptus globulus plantations. Glob Change Biol, 15(2): 425–440
https://doi.org/10.1111/j.1365-2486.2008.01759.x
31 Lloyd D (1995). Microbial processes and the cycling of atmospheric trace gases. Trends Ecol Evol, 10(12): 476–478
https://doi.org/10.1016/S0169-5347(00)89192-2
32 Luo Y, Sherry R, Zhou X, Wan S (2009). Terrestrial carbon-cycle feedback to climate warming: experimental evidence on plant regulation and impacts of biofuel feedstock harvest. Glob Change Biol, 1(1): 62–74
https://doi.org/10.1111/j.1757-1707.2008.01005.x
33 Maljanen M, Martikkala M, Koponen H T, Virkajarvi P, Martikainen P J (2007). Fluxes of nitrous oxide and nitric oxide from experimental excreta patches in boreal agricultural soil. Soil Biol Biochem, 39(4): 914–920
https://doi.org/10.1016/j.soilbio.2006.11.001
34 Mosier A R, Parton W J, Valentine D W, Ojima D S, Schimel D S, Delgado J A (1996). CH4 and N2O fluxes in the Colorado shortgrass steppe: 1. Impact of landscape and nitrogen addition. Global Biogeochem Cycles, 10(3): 387–399
https://doi.org/10.1029/96GB01454
35 Müller C, Martin M, Stevens R J, Laughlin R J, Kammann C, Ottow J C G, J?ger H J (2002). Processes leading to N2O emissions in grassland soil during freezing and thawing. Soil Biol Biochem, 34(9): 1325–1331
https://doi.org/10.1016/S0038-0717(02)00076-7
36 Newton P C D, Lieffering M, Parsons A J, Brock S C, Theobald P W, Hunt C L, Luo D, Hovenden M J (2014). Selective grazing modifies previously anticipated responses of plant community composition to elevated CO2 in temperate grassland. Glob Change Biol, 20(1): 158–169
https://doi.org/10.1111/gcb.12301
37 Nitschke N, Ebeling A, Rottstock T, Scherber C, Middelhoff C, Creutzburg S, Weigelt A, Tscharntke T, Fischer M, Weisser W W (2010). Time course of plant diversity effects on Centaurea jacea establishment and the role of competition and herbivory. Journal of Plant Ecology, 3(2): 109–121
https://doi.org/10.1093/jpe/rtp036
38 Ojima D S, Valentine D W, Mosier A R, Parton W J, Schimel D S (1993). Effect of land use change on methane oxidation in temperate forest and grassland soils. Chemosphere, 26(1–4): 675–685
https://doi.org/10.1016/0045-6535(93)90452-B
39 Parr T W, Way J M (1988). Management of roadside vegetation: the long-term effects of cutting. J Appl Ecol, 25(3): 1073–1087
https://doi.org/10.2307/2403767
40 Ravishankara A, Daniel J S, Portmann R W (2009). Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science, 326(5949): 123–125
https://doi.org/10.1126/science.1176985
41 Robson T, Lavorel S, Clement J, Roux X (2007). Neglect of mowing and manuring leads to slower nitrogen cycling in subalpine grasslands. Soil Biol Biochem, 39(4): 930–941
https://doi.org/10.1016/j.soilbio.2006.11.004
42 Rodhe H (1990). A comparison of the contribution of various gases to the greenhouse effect. Science, 248(4960): 1217–1219
https://doi.org/10.1126/science.248.4960.1217
43 R?ver M, Heinemeyer O, Kaiser E A (1998). Microbial induced nitrous oxide emissions from an arable soil during winter. Soil Biol Biochem, 30(14): 1859–1865
https://doi.org/10.1016/S0038-0717(98)00080-7
44 Saggar S, Bolan N S, Bhandral R, Hedley C B, Luo J (2004). A review of emissions of methane, ammonia, and nitrous oxide from animal excreta deposition and farm effluent application in grazed pastures. N Z J Agric Res, 47(4): 513–544
https://doi.org/10.1080/00288233.2004.9513618
45 Singh B K, Tate K (2007). Biochemical and molecular characterization of methanotrophs in soil from a paristine New Zealand beech forest. FEMS Microbiol Lett, 275(1): 89–97
https://doi.org/10.1111/j.1574-6968.2007.00885.x
46 Smith K A, Dobbie K E, Ball B C, Bakken L R, Sitaula B K, Hansen S, Brumme R, Borken W, Christensen S, Prieme A, Fowler D, Macdonald J A, Skiba U, Klemedtsson L, Kasimir-Klemedtsson A, Degórska A, Orlanski P (2000). Oxidation of atmospheric methane in Northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink. Glob Change Biol, 6(7): 791–803
https://doi.org/10.1046/j.1365-2486.2000.00356.x
47 Steinkamp R, Butterbach-Bahl K, Papen H (2001). Methane oxidation by soils of an N-limited and N-fertilized spruce forest in the Black Forest, Germany. Soil Biol Biochem, 33(2): 145–153
https://doi.org/10.1016/S0038-0717(00)00124-3
48 Verchot L V, Groffman P M, Frank D A (2002). Landscape versus ungulate control of gross mineralization and gross nitrification in semi-arid grasslands of Yellowstone National Park. Soil Biol Biochem, 34(11): 1691–1699
https://doi.org/10.1016/S0038-0717(02)00155-4
49 Wan S, Luo Y, Wallace L L (2002). Changes in microclimate induced by experimental warming and clipping in tallgrass prairie. Glob Change Biol, 8(8): 754–768
https://doi.org/10.1046/j.1365-2486.2002.00510.x
50 Wang R (2004). Photosynthetic pathways and life form types for native plant species from Hulunbeier Rangelands, Inner Mongolia, North China. Photosynthetica, 42(2): 219–227
https://doi.org/10.1023/B:PHOT.0000040593.18169.18
51 Wang Y S, Wang Y H (2003). Quick measurement of CH4, CO2 and N2O emission from a short-plant ecosystem. Adv Atmos Sci, 20(5): 842–844
https://doi.org/10.1007/BF02915410
52 Wang Y S, Xue M, Zheng X H, Ji B M, Du R, Wang Y F (2005). Effects of environmental factors on N2O emission from and CH4 uptake by the typical grasslands in the Inner Mongolia. Chemosphere, 58(2): 205–215
https://doi.org/10.1016/j.chemosphere.2004.04.043
53 Whiting G J, Chanton J P (1993). Primary production control of methane emission from wetlands. Nature, 364(6440): 794–795
https://doi.org/10.1038/364794a0
54 Willison T W, O’Flaherty M S, Tlustos P, Goulding K W T, Powlson D S (1997). Variations in microbial populations in soils with different methane uptake rates. Nutr Cycl Agroecosyst, 49(1–3): 85–90
https://doi.org/10.1023/A:1009756210624
55 Wolf B, Zheng X H, Brüggemann N, Chen W, Dannenmann M, Han X G, Sutton M A, Wu H H, Yao Z S, Butterbach-Bahl K (2010). Grazing-induced reduction of natural nitrous oxide release from continental steppe. Nature, 464(7290): 881–884
https://doi.org/10.1038/nature08931
56 Xu Y Q, Wan S Q, Cheng W X, Li L H (2008). Impacts of grazing intensity on denitrification and N2O production in a semiarid grassland ecosystem. Biogeochemistry, 88(2): 103–115
https://doi.org/10.1007/s10533-008-9197-4
57 Zhang B, Chen G Q, Li J S, Tao L (2014a). Methane emissions of energy activities in China 1980–2007. Renew Sustain Energy Rev, 29: 11–21
https://doi.org/10.1016/j.rser.2013.08.060
58 Zhang L H, Guo D F, Niu S L, Wang C H, Shao C L, Li L H (2012). Effects of mowing on methane uptake in a semiarid grassland in Northern China. PLoS ONE, 7(4): e35952
https://doi.org/10.1371/journal.pone.0035952
59 Zhang P D, Wang X, Chen B R, Xin X P (2014b). CO2 release charateristics from Stipa baicalensis meadow steppe in the Hulunbeir region, Inner Mogolia, China. Chinese Journal of Applied Ecology, 25(2): 387–393 (in Chinese)
60 Zhong L, Du R, Ding K, Kang X, Li F Y, Bowatte S, Hoogendoorn C J, Wang Y, Rui Y, Jiang L,Wang S (2014). Effects of grazing on N2O production potential and abundance of nitrifying and denitrifying microbial communities in meadow-steppe grassland in northern China. Soil Biol Biochem, 69: 1–10
https://doi.org/10.1016/j.soilbio.2013.10.028
61 Zhou J B, Jiang M M, Chen G Q (2007a). Estimation of methane and nitrous oxide emission from livestock and poultry in China during 1949–2003. Energy Policy, 35(7): 3759–3767
https://doi.org/10.1016/j.enpol.2007.01.013
62 Zhou X H, Wan S Q, Luo Y Q (2007b). Source components and interannual variability of soil CO2 efflux under experimental warming and clipping in a grassland ecosystem. Glob Change Biol, 13(4): 761–775
63 Zhu R B, Liu Y S, Ma E D, Sun J J, Xu H, Sun L G (2009). Greenhouse gas emissions from penguin guanos and ornithogenic soils in coastal Antarctica: effects of freezing–thawing cycles. Atmos Environ, 43(14): 2336–2347
https://doi.org/10.1016/j.atmosenv.2009.01.027
[1] Minfang YANG, Zhaobiao YANG, Bin SUN, Zhengguang ZHANG, Honglin LIU, Junlong ZHAO. A study on the flowability of gas displacing water in low-permeability coal reservoir based on NMR technology[J]. Front. Earth Sci., 2020, 14(4): 673-683.
[2] Haihai HOU, Longyi SHAO, Shuai WANG, Zhenghui XIAO, Xuetian WANG, Zhen LI, Guangyuan MU. Influence of depositional environment on coalbed methane accumulation in the Carboniferous-Permian coal of the Qinshui Basin, northern China[J]. Front. Earth Sci., 2019, 13(3): 535-550.
[3] Wei JU, Jian SHEN, Yong QIN, Shangzhi MENG, Chao LI, Guozhang LI, Guang YANG. In-situ stress distribution and coalbed methane reservoir permeability in the Linxing area, eastern Ordos Basin, China[J]. Front. Earth Sci., 2018, 12(3): 545-554.
[4] Nan WANG, Shanshan ZHAO, Jian HUI, Qiming QIN. Passive Super-Low Frequency electromagnetic prospecting technique[J]. Front. Earth Sci., 2017, 11(2): 248-267.
[5] Ci SONG, Jiong SHU, Mandi ZHOU, Wei GAO. Sensitivity studies of high-precision methane column concentration inversion using a line-by-line radiative transfer model[J]. Front Earth Sci, 2013, 7(4): 439-446.
[6] Yihui DING, Xiaolong JIA, Zunya WANG, Xianyan CHEN, Lijuan CHEN. A contrasting study of freezing disasters in January 2008 and in winter of 1954/1955 in China[J]. Front Earth Sci Chin, 2009, 3(2): 129-145.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed