Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2015, Vol. 9 Issue (4) : 700-708    https://doi.org/10.1007/s11707-015-0506-7
RESEARCH ARTICLE
Internal wave parameters retrieval from space-borne SAR image
Kaiguo FAN1,2,7,Bin FU1,*(),Yanzhen GU3,6,Xingxiu YU2,5,*(),Tingting LIU4,Aiqin SHI1,Ke XU7,Xilin GAN1
1. State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China
2. Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
3. Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Hong Kong, China
4. Chinese Antarctic Center of Surveying and Mapping, Wuhan University, Wuhan 430072, China
5. Shandong Provincial Key Laboratory of Soil Conservation and Environmental Protection, Linyi University, Linyi 276000, China
6. College of Information Science and Engineering, Ocean University of China, Qingdao 266100, China
7. 91039 Army, PLA, China
 Download: PDF(538 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Based on oceanic internal wave SAR imaging mechanism and the microwave scattering imaging model for oceanic surface features, we developed a new method to extract internal wave parameters from SAR imagery. Firstly, the initial wind fields are derived from NCEP reanalysis data, the sea water density and oceanic internal wave pycnocline depth are estimated from the Levites data, the surface currents induced by the internal wave are calculated according to the KDV equation. The NRCS profile is then simulated by solving the action balance equation and using the sea surface radar backscatter model. Both the winds and internal wave pycnocline depth are adjusted by using the dichotomy method step by step to make the simulated data approach the SAR image. Then, the wind speed, pycnocline depth, the phase speed, the group velocity and the amplitude of internal wave can be retrieved from SAR imagery when a best fit between simulated signals and the SAR image appears. The method is tested on one scene SAR image near Dongsha Island, in the South China Sea, results show that the simulated oceanic internal wave NRCS profile is in good agreement with that on the SAR image with the correlation coefficient as high as 90%, and the amplitude of oceanic internal wave retrieved from the SAR imagery is comparable with the SODA data. Besides, the phase speeds retrieved from other 16 scene SAR images in the South China Sea are in good agreement with the empirical formula which describes the relations between internal wave phase speed and water depths, both the root mean square and relative error are less than 0.11 m·s−1 and 7%, respectively, indicating that SAR images are useful for internal wave parameters retrieval and the method developed in this paper is convergent and applicable.

Keywords synthetic aperture radar      internal wave      retrieval     
Corresponding Author(s): Bin FU,Xingxiu YU   
Just Accepted Date: 10 July 2015   Online First Date: 12 August 2015    Issue Date: 30 October 2015
 Cite this article:   
Kaiguo FAN,Bin FU,Yanzhen GU, et al. Internal wave parameters retrieval from space-borne SAR image[J]. Front. Earth Sci., 2015, 9(4): 700-708.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-015-0506-7
https://academic.hep.com.cn/fesci/EN/Y2015/V9/I4/700
Fig.1  The flow chart of internal wave parameters retrieval by SAR.
Fig.2  ERS-2 SAR image with oceanic internal wave characteristics of elongated bright and dark features near Dongsha Island, imaging taken at 14:10 UTC on 23 June 1998, and the data line A→B represents the NRCS profile of the internal wave SAR images within the test site.
h1/m ρ1/(kg·m−3) ρ2/(kg·m−3) Δρ/ρ
88 1,022.98 1,026.57 0.0035
Tab.1  Water parameters estimated from the Levites data
Iterative times Wind speeds/(m·s−1) σ S M 0 /dB σ M 0 /dB Difference ε
1 2.81 −5.29 −7.46 2.17
2 2.21 −6.04 −7.46 1.42
3 1.71 −6.91 −7.46 0.55
4 1.21 −7.89 −7.46 −0.43
5 1.31 −7.61 −7.46 −0.15
6 1.41 −7.37 −7.46 0.09
Tab.2  The iterative process of the adjusted sea surface wind speeds
Iterative times h1/m Δρ/ρ η0/m SBD/dB RBD/dB Difference ε
1 88 0.0035 −18.7 2.86 3.31 0.45
2 100 0.0034 −26.0 3.50 3.31 0.19
3 94 0.0034 −22.0 3.08 3.31 0.23
4 97 0.0034 −23.9 3.26 3.31 0.05
Tab.3  The iterative process of the adjusted the pycnocline depth h1
Fig.3  The NRCS profile of the internal wave SAR image (the solid line) and the simulated signal of the internal wave (the dashed line) along the data line A→B in Fig. 2.
Fig.4  Temperature and salinity profiles from CARTON-GIESE SODA data at 116.5°E, 21.0°N at the vicinity of the internal waves observed in the SAR image.
Time Lon./(°) Lat./(°) Depth/m L/m h1/m η0/m Cp/(m·s−1) Cg/(m·s−1)
3-12-1997 116.466 20.383 732 965.91 205 52.1 2.39 2.2
11-5-1998 116.154 20.908 378 397.73 124 64.6 1.64 1.42
23-6-1998 116.641 21.035 290 246.21 85 55.5 1.43 1.15
22-4-1998 116.414 20.581 562 653.41 162 55.3 1.98 1.78
11-5-1998 116.597 21.694 167 681.82 78 11.6 0.99 0.98
23-6-1998 116.586 21.122 283 577.65 85 9.9 1.42 1.37
23-6-1998 116.585 21.122 282 587.12 85 9.56 1.42 1.37
12-4-2000 117.321 21.749 278 331.44 107 62.9 1.33 1.18
2-10-2000 116.69 21.171 322 501.89 109 27.5 1.56 1.47
29-4-2000 115.602 21.464 109 274.62 50 17.1 0.7 0.68
28-5-2001 117.289 21.719 282 274.62 97 65.7 1.34 1.13
5-5-2001 117.091 21.459 344 568.18 100 17.1 1.44 1.37
24-4-2001 117.439 21.840 270 558.71 99 16.8 1.27 1.23
24-4-2001 117.592 21.972 134 179.92 80 29.6 0.73 0.67
24-6-2002 116.719 21.198 357 473.48 95 22.2 1.57 1.45
24-6-2002 116.775 21.351 340 464.02 85 17.2 1.47 1.37
6-11-2005 113.843 19.212 691 965.91 176 34.5 2.35 2.2
29-6-2005 116.445 21.355 307 511.36 84 12.8 1.43 1.36
29-6-2005 114.248 20.718 83 170.46 30 5.04 0.6 0.58
Tab.4  The internal wave parameters retrieved from other SAR images
Fig.5  Comparison between both the phase speeds retrieved from SAR image and the results calculated from the empirical formula.
1 Alpers  W (1985). Theory of radar imaging of internal waves. Nature, 314(6008): 245–247
https://doi.org/10.1038/314245a0
2 Alpers  W, He  M X, Zeng  K, Guo  L F, Li  X M (2005). The distribution of internal waves in the East China Sea and the Yellow Sea studied by multi-sensor satellite images. IGARSS, 2005, 0-7803-9050-4/05
3 Alpers  W, Hennings  I (1984). A theory of the imaging mechanism of underwater bottom topography by real and synthetic aperture radar. Journal of Geophysical Research, 89: 10529–10546
4 Brandt  P, Romeiser  R, Rubino  A (1999). On the determination of characteristics of the interior ocean dynamics from radar signatures of internal solitary waves. Journal of Geophysical Research, 104(C12): 30039–30045.
5 Cai  S Q, Long  X M, Gan  Z J (2003). A method to estimate the forces exerted by internal solitons on cylindrical piles. Ocean Eng, 30(5): 673–689
https://doi.org/10.1016/S0029-8018(02)00038-0
6 Lai  Y L (1999). Extraction of surface currents of solitary internal waves from synthetic aperture radar data. Proceedings of the IEEE Sixth Working Conference on Current Measurement. San Diego: IEEE
7 Fan  K G, Huang  W G, Gan  X L, Fu  B (2010). Retrieving internal wave surface currents from SAR image. Journal of Remote Sensing, 14(1): 127–139 (In Chinese)
8 Fan  Z S (2002). Research Fundamentals of Ocean Interior Mixing. Beijing: China Ocean Press.
9 Gan  X L, Huang  W G, Yang  J S, Zhou  C B, Shi  A Q, Jin  W M (2007). A new method to extract internal wave parameters from sar imagery with Hilbert-Huang transform. J. Remote Sensing, 11(1): 39–47 (In Chinese)
10 Jackson  C R, Apel  J R(2004). Synthetic aperture radar marine user's manual. Silver Spring, Natl. Environ. Satell. Data, and Inf. Serv., Nalt. Oceanic and atmos. admin. pp. 245–262
11 Le Caillec  J M (2006). Study of the SAR signature of internal waves by nonlinear parametric autoregressive Models. IEEE Trans Geosci Rem Sens, 44(1): 148–158
https://doi.org/10.1109/TGRS.2005.859954
12 Lehner  S, Schulz-Stellenfleth  J, Schättler  B, Breit  H, Horstmann  J (2000). Wind and wave measurements using complex ERS-2 SAR wave mode data. IEEE Trans Geosci Rem Sens, 38(5): 2246–2257
https://doi.org/10.1109/36.868882
13 Li  X F, Clemente-Colón  P, Friedman  K S (2000). Estimating oceanic mixed layer depth from internal wave evolution observed from Radarsat-1 SAR. Johns Hopkins Apl Technical Digest, 2l(1): 130–135
14 Lin  H, Fan  K G, Shen  H, Huang  W G, He  M X (2010). Review on remote sensing of oceanic internal wave by space-borne SAR. Progress in Geophys, 25(3): 1081–1091 (In Chinese)
15 Liu  A K, Chang  Y S, Hsu  M K, Liang  N K (1998). Evolution of nonlinear internal waves in the East and South China Seas. J Geophys Res, 103(C4): 7995–8008
https://doi.org/10.1029/97JC01918
16 Lyzenga  D R (2003). Status of forward models for SAR observation of current features. The Coastal and Marine Applications of SAR Symposium, Svalbard, Norway.
17 Ostrovsky  L A, Stepanyants  Y A (1989). Do internal solitions exist in the ocean? Rev Geophys, 27(3): 293–310
https://doi.org/10.1029/RG027i003p00293
18 Portabella  M, Stoffelen  A (2002). Toward an optimal inversion method for synthetic aperture radar wind retrieval. J Geophys Res, 107(C8): 3086
https://doi.org/10.1029/2001JC000925
19 Porter  D L, Thompson  D (1999). Continental shelf parameters inferred from SAR internal wave observations. J Atmos Ocean Technol, 16(4): 475–487
https://doi.org/10.1175/1520-0426(1999)016<0475:CSPIFS>2.0.CO;2
20 Rodenas  J A, Garello  R (1998). Internal wave detection and location in SAR Images using wavelet transform. IEEE Trans Geosci Rem Sens, 36(5): 1494–1507
https://doi.org/10.1109/36.718853
21 Romeiser  R (2005). USER'S of M4S Manual. pp. 31
22 Romeiser  R, Alpers  W (1997a). An improved composite surface model for the radar backscattering cross section of the ocean surface 2. Model response to surface roughness variations and the radar imaging of underwater bottom topography. J Geophys Res, 102(C11): 25251–25267
https://doi.org/10.1029/97JC00191
23 Romeiser  R, Alpers  W (1997b). An improved composite surface model for the radar backscattering cross section of the ocean surface 1. Theory of the model and optimization/validation by scatterometer Data. J Geophys Res, 102: 25238–25250
24 Romeiser  R, Schmidt  A, Alpers  W (1994). A three-scale composite surface model for the ocean wave-radar modulation transfer function, J Geophys Res, 99(C5): 9785–9801
25 Thompson  R E, Gasparovic  R F (1986). Intensity modulation in SAR image of internal waves. Nature, 320(27): 345–348
https://doi.org/10.1038/320345a0
26 Yang  J S, Huang  W G, Zhou  C H, Zhou  C B, Hsu  M K, Xiao  Q M (2003). Nonlinear internal wave amplitude remote sensing from SAR image. Proc SPIE, 4892: 450–454
https://doi.org/10.1117/12.466772
27 Zhang  C (2010). Research on statistical characteristics of synthetic aperture radar ocean internal wave polarity conversion and parameters. Dissertation for Master degree. Hangzhou: Second Institute of Oceanography, State Oceanic Administration
28 Zhao  Z X (2004). A study of nonlinear internal wave in the north eastern South China Sea. Dissertation for PhD degree. State of Delaware United States of America, The University of Delaware.
29 Zhao  Z X, Klemas  V, Zheng  Q, Yan  X H (2004). Estimating parameters of a two-layer stratified ocean from polarity conversion of internal solitary waves observed in satellite SAR images. Remote Sens Environ, 92(2): 276–287
https://doi.org/10.1016/j.rse.2004.05.014
30 Zheng  Q A, Susanto  R D, Ho  C R, Song  Y T, Xu  Q (2007). Statistical and dynamical analysis of generation mechanisms of solitary internal wave in the northern South China Sea. J Geophys Res, 112, C03021
https://doi.org/10. 1029/2006JC003551
[1] Kaiguo FAN, Huaguo ZHANG, Jianjun LIANG, Peng CHEN, Bojian XU, Ming ZHANG. Analysis of ship wake features and extraction of ship motion parameters from SAR images in the Yellow Sea[J]. Front. Earth Sci., 2019, 13(3): 588-595.
[2] Yufei ZHANG, Bing DENG, Ming ZHANG. Analysis of the relation between ocean internal wave parameters and ocean surface fluctuation[J]. Front. Earth Sci., 2019, 13(2): 336-350.
[3] Lei ZHANG, Xiaobin YIN, Hanqing SHI, Zhenzhan WANG, Qing XU. Estimation of wind speeds inside Super Typhoon Nepartak from AMSR2 low-frequency brightness temperatures[J]. Front. Earth Sci., 2019, 13(1): 124-131.
[4] Yansong BAO, Wei GAO, Zhiqiang GAO. Estimation of winter wheat biomass based on remote sensing data at various spatial and spectral resolutions[J]. Front Earth Sci Chin, 2009, 3(1): 118-128.
[5] JIN Yaqiu. Theory and application for retrieval and fusion of spatial and temporal quantitative information from complex natural environment[J]. Front. Earth Sci., 2007, 1(3): 284-298.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed