Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2016, Vol. 10 Issue (2) : 340-351    https://doi.org/10.1007/s11707-015-0513-8
RESEARCH ARTICLE
Assessment of major ions and heavy metals in groundwater: a case study from Guangzhou and Zhuhai of the Pearl River Delta, China
Yintao LU1,*(),Changyuan TANG2,Jianyao CHEN3,Hong YAO1
1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
2. Faculty of Horticulture, Chiba University, Chiba 271-8510, Japan
3. School of Geography and planning, Sun Yat-sen University, Guangzhou 510275, China
 Download: PDF(1208 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Anthropogenic activities in the Pearl River Delta (PRD) have caused a deterioration of groundwater quality over the past twenty years as a result of rapid urbanization and industrial development. In this study, the hydrochemical characteristics, quality, and sources of heavy metals in the groundwater of the PRD were investigated. Twenty-five groundwater samples were collected and analyzed for pH, electrical conductivity (EC), total dissolved solids (TDS), δ18O, δ2H, major ions, and heavy metals. The groundwater was slightly acidic and presented TDS values that ranged from 35.5 to 8,779.3 mg·L?1. The concentrations of the major ions followed the order Cl->HCO3->Na+>SO42->NO3->NH4+>Ca2+>K+>Mg2+>Fe2+/3+>Al3+. Ca-Mg-HCO3 and Na-K-HCO3 were the predominant types of facies, and the chemical composition of the groundwater was primarily controlled by chemical weathering of the basement rocks, by mixing of freshwater and seawater and by anthropogenic activities. The heavy metal pollution index (HPI) indicated that 64% of the samples were in the low category, 16% were in the medium category and 20% were in the high category, providing further evidence that this groundwater is unsuitable for drinking. Lead, arsenic, and manganese were mainly sourced from landfill leachate; cadmium from landfill leachate and agricultural wastes; mercury from the discharge of leachate associated with mining activities and agricultural wastes; and chromium primarily from industrial wastes. According to the irrigation water quality indicators, the groundwater in the PRD can be used for irrigation in most farmland without strong negative impacts. However, approximately 9 million people in the Guangdong Province are at risk due to the consumption of untreated water. Therefore, we suggest that treating the groundwater to achieve safer levels is necessary.

Keywords Pearl River Delta      groundwater quality      hydrochemical type      sodium salts accumulation      heavy metal pollution     
Corresponding Author(s): Yintao LU   
Just Accepted Date: 22 May 2015   Online First Date: 23 June 2015    Issue Date: 05 April 2016
 Cite this article:   
Yintao LU,Changyuan TANG,Jianyao CHEN, et al. Assessment of major ions and heavy metals in groundwater: a case study from Guangzhou and Zhuhai of the Pearl River Delta, China[J]. Front. Earth Sci., 2016, 10(2): 340-351.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-015-0513-8
https://academic.hep.com.cn/fesci/EN/Y2016/V10/I2/340
Fig.1  Study area, sample sites and geological map. (a) Sample sites; (b) geological map of the study area.
Water quality index Mean Median Min. Max. WHO guideline value (1993, 2011) No. of sample above the stipulated value
pH 6.47 6.36 5.28 7.85 6.5-8.5
TDS/(mg·L?1) 651.25 359.86 35.46 8,779.31 500 4
Pb2+/ (μg·L?1) 1.41 0.10 - 14.15 10 1
Cd2+/(μg·L?1) 0.06 - - 0.55 3 0
Hg1+/2+/(μg·L?1) 1.84 - - 11.55 1 8
As+/(μg·L?1) 0.69 0.30 0.05 4.30 10 0
Mn2+/(μg·L?1) 160.00 120.00 - 740.00 100 13
Cr6+/(μg·L?1) 11.56 9.00 4.00 39.00 50 0
Fe2+/3+/(mg·L?1) 1.40 0.15 - 15.38 0.3 9
Al3+/(mg·L?1) 0.91 0.46 0.13 5.10 0.2 25
Cl-/(mg·L?1) 239.81 28.19 0.16 4,934.25 250 2
H C O - /(mg·L?1) 95.27 92.75 - 245.29 -
S O 4 2 - /(mg·L?1) 56.99 26.17 1.41 629.83 250 1
N O 3 - /(mg·L?1) 52.49 17.22 - 272.11 50 7
Na+/(mg·L?1) 98.03 22.20 5.26 1,711.84 200 1
K+/(mg·L?1) 38.04 9.51 1.60 634.86 -
Mg2+/(mg·L?1) 16.99 3.91 0.23 276.57 -
Ca2+/(mg·L?1) 45.71 40.73 1.42 124.58 -
N H 4 + /(mg·L?1) 45.67 1.95 0.19 1,006.52 1.5 15
Tab.1  Drinking water quality guidelines (WHO) and statistical analysis of chemical component for the groundwater in the PRD (n=25)
Pb Cd Hg As Mn Cr Fe Al Cl HCO3 SO4 NO3 Na K Mg Ca NH4
Pb 1.000
Cd 0.501 1.000
Hg 0.050 ?0.154 1.000
As 0.569 0.342 ?0.234 1.000
Mn ?0.050 ?0.138 ?0.248 0.193 1.000
Cr 0.606 0.371 ?0.021 0.724 ?0.076 1.000
Fe 0.407 0.391 ?0.120 0.718 0.074 0.701 1.000
Al 0.540 0.362 ?0.072 0.766 0.083 0.719 0.969 1.000
Cl ?0.099 ?0.108 ?0.058 ?0.122 0.237 ?0.058 ?0.056 ?0.041 1.000
HCO3 0.027 ?0.119 ?0.339 ?0.005 ?0.038 0.036 0.133 0.100 0.230 1.000
SO4 ?0.109 ?0.053 ?0.098 ?0.181 0.194 ?0.099 ?0.060 ?0.065 0.959 0.359 1.000
NO3 ?0.118 0.042 ?0.009 ?0.259 0.118 ?0.251 ?0.193 ?0.122 0.632 ?0.094 0.564 1.000
Na ?0.098 ?0.102 ?0.065 ?0.124 0.237 ?0.063 ?0.054 ?0.038 0.999 0.228 0.958 0.656 1.000
K ?0.105 ?0.102 ?0.078 ?0.147 0.203 ?0.071 ?0.068 ?0.060 0.994 0.285 0.967 0.625 0.994 1.000
Mg ?0.107 ?0.119 ?0.090 ?0.126 0.272 ?0.079 ?0.063 ?0.045 0.995 0.224 0.956 0.667 0.996 0.988 1.000
Ca ?0.106 ?0.169 ?0.324 ?0.195 0.217 ?0.218 ?0.041 0.011 0.501 0.530 0.562 0.609 0.515 0.501 0.559 1.000
NH4 ?0.092 ?0.097 ?0.049 ?0.117 0.228 ?0.045 ?0.046 ?0.036 0.998 0.244 0.964 0.595 0.996 0.993 0.990 0.472 1.000
Tab.2  Correlation coefficient matrix of water quality parameters (n = 25)
Parameter (n=25) PC1 PC2 PC3 PC4
Mg 0.978 0.151 0.098 ?0.048
Na 0.973 0.160 0.132 ?0.018
K 0.971 0.146 0.109 0.037
Cl 0.969 0.160 0.137 ?0.016
NH4 0.961 0.169 0.143 0.000
SO4 0.956 0.139 0.034 0.101
NO3 0.706 ?0.057 0.192 ?0.074
Ca 0.645 0.030 ?0.503 0.134
Al ?0.176 0.905 ?0.025 0.030
Fe ?0.187 0.874 ?0.078 0.020
As ?0.275 0.836 ?0.059 ?0.236
Cr ?0.232 0.827 0.155 0.102
Pb ?0.219 0.671 0.200 0.171
Cd ?0.186 0.505 0.218 ?0.151
Hg ?0.114 ?0.205 0.731 0.147
HCO3 0.299 0.177 ?0.681 0.526
Mn 0.257 0.135 ?0.283 ?0.828
Latent roots 6.983 3.910 1.569 1.141
Percentage variation 41.08 23.00 9.23 6.71
Tab.3  Factor loadings of each variance
Fig.2  (a) Plot of δ18O and δ2H values of the groundwater. The solid line is the local meteoric water line. (b) Piper diagram of groundwater in the PRD.
Fig.3  Spatial variation maps showing trace element concentration in the study area. (a) Pb/(μg·L?1); (b) As/(μg·L?1); (c) Mn/(mg·L?1); (d) Cd/(μg·L?1); (e) Hg/(μg·L?1); (f) Cr/(μg·L?1); (g) distribution of point and surface source.
Heavy metal Standard permissible value/(μg·LL?1) (Si) Highest desirable value/(μg·L?1) (Ii) Unit weight (Wi)
Pb 50 10 0.02
Cd 10 - 0.1
Hg* 10 - 0.1
As* 10 - 0.1
Mn 500 100 0.002
Cr 50 10 0.02
Tab.4  The main parameters of heavy metal pollution index (HPI)
Fig.4  HPI values for the individual groundwater samples.
Fig.5  (a) Plot of Na% versus electrical conductance (Wilcox diagram); (b) U.S. salinity classification of groundwater for irrigation in the study area.
1 Aitchison J C, Ali J R, Davis A M (2007). When and where did India and Asia collide? J Geophys Res, B, Solid Earth, 112(5): 1–2
2 Ayuba R, Omonona O V, Onwuka O S (2013). Assessment of groundwater quality of Lokoja Basement Area, North-Central Nigeria. J Geol Soc India, 82(4): 413–420
https://doi.org/10.1007/s12594-013-0168-6
28 Beal S A, Kelly M A, Stroup J S, Jackson B P, Lowell T V, Tapia P M. (2014). Natural and anthropogenic variations in atmospheric mercury deposition during the Holocene near Quelccaya Ice Cap, Peru. Global Biogeochem Cycles, 28(4): 437–450
https://doi.org/10.1002/2013GB004780
3 Bhardwaj V, Singh D S (2011). Surface and groundwater quality characterization of Deoria District, Ganga Plain, India. Environmental Earth Sciences, 63(2): 383–395
https://doi.org/10.1007/s12665-010-0709-x
4 Buss S R, Herbert A W, Morgan P, Thornton S F, Smith J W N (2004). A review of ammonium attenuation in soil and groundwater. Quarterly Journal of Engineering Geology and Hydrogeology, 37(4): 347– 359
https://doi.org/10.1144/1470-9236/04-005
5 Cai L M, Huang L C, Zhou Y Z, Ma J, Du H Y, Dou L, Zhang C B (2009). The spatial structure and distribution of Cr contents in agricultural soils in a typical area of the Pearl River Delta, China. Journal of Agro-Environment Science, 28(1): 60–65 (in Chinese)
https://doi.org/10.3321/j.issn:1672-2043.2009.01.012
6 Cheung K C, Poon B H T, Lan C Y, Wong M H (2003). Assessment of metal and nutrient concentrations in river water and sediment collected from the cities in the Pearl River Delta, South China. Chemosphere, 52(9): 1431–1440
https://doi.org/10.1016/S0045-6535(03)00479-X
7 Erturk A, Gurel M, Ekdal A, Tavsan C, Ugurluoglu A, Seker D Z, Tanik A, Ozturk I (2010). Water quality assessment and meta model development in Melen watershed–Turkey. J Environ Manage, 91(7): 1526–1545
https://doi.org/10.1016/j.jenvman.2010.02.021
8 Fan X Y, Cui B S, Zhang Z M (2012). Spatial variations of river water quality in Pearl River Delta, China. Front Earth Sci, 6(3): 291–296
https://doi.org/10.1007/s11707-012-0295-1
9 GHT (1981). Regional Hydrogeological Survey Report. Guangzhou: Guangdong Hydrogeological Team (in Chinese)
10 Haloi N, Sarma H P (2012). Heavy metal contaminations in the groundwater of Brahmaputra flood plain: an assessment of water quality in Barpeta District, Assam (India). Environ Monit Assess, 184(10): 6229–6237
https://doi.org/10.1007/s10661-011-2415-x
11 Huang G X, Sun J C, Zhang Y, Jing J H, Zhang Y X, Liu J T (2011). Distribution of arsenic in sewage irrigation area of Pearl River Delta, China. Journal of Earth Science, 22(3): 396–410
https://doi.org/10.1007/s12583-011-0192-7
12 Jiao J J, Wang Y, Cherry J A, Wang X S, Zhi B F, Du H Y, Wen D G (2010). Abnormally high ammonium of natural origin in a coastal aquifer–aquitard system in the Pearl River Delta, China. Environ Sci Technol, 44(19): 7470–7475
https://doi.org/10.1021/es1021697
13 Kelln C J, Wassenaar L I, Hendry M J (2001). Stable isotopes (δ18O, δ2H) of pore waters in clay-rich aquitards: a comparison and evaluation of measurement techniques. Ground Water Monit Remediat, 21(2): 108–116
https://doi.org/10.1111/j.1745-6592.2001.tb00306.x
14 Lan H X, Hu R L, Yue Z Q, Lee C F, Wang S J (2003). Engineering and geological characteristics of granite weathering profiles in South China. J Asian Earth Sci, 21(4): 353–364
https://doi.org/10.1016/S1367-9120(02)00020-2
15 Lan X (1991). Sedimentary characteristics and strata division of core 22 of the Zhujiang River Delta. Oceanol Limnol Sin, 22(2): 148–154
16 Li F D, Pan G Y, Tang C Y, Zhang Q Y, Yu J J (2008). Recharge source and hydrogeochemical evolution of shallow groundwater in a complex alluvial fan system, southwest of North China Plain. Environmental Geology, 55(5): 1109–1122
https://doi.org/10.1007/s00254-007-1059-1
17 Liang G L, Sun J C, Huang G X, Jing J H, Liu J T, Chen X, Zhang Y X, Du H Y (2009). Origin and distribution characteristics of manganese in groundwater of the Pearl River Delta. Geology in China, 36(4): 899–906 (in Chinese)
18 Lin J F, Lai Q H, Fang J W, Ma S M (2007). Appraise of environmental geochemistry in soil Hg polluted areas in the Pearl River Delta. Ecol Environ, 16(1): 41–46 (in Chinese)
19 Liu B L, Hu K, Jiang Z L, Yang J, Luo X M, Liu A H (2011). Distribution and enrichment of heavy metals in a sediment core from the Pearl River Estuary. Environmental Earth Sciences, 62(2): 265–275
https://doi.org/10.1007/s12665-010-0520-8
20 Lu Y T, Tang C Y, Chen J Y, Sakura Y (2008). Impact of septic tank systems on local groundwater quality and water supply in the Pearl River Delta, China: case study. Hydrol Processes, 22(3): 443–450
https://doi.org/10.1002/hyp.6617
21 Luo X L, Guo Q R, Xie Z Y, Yang J J, Chai Z W, Liu X, Wu S F (2014). Study on heavy metal pollution in typical rural soils in Pearl River Delta area. Ecology and Environmental Sciences, 23(3): 485–489 (in Chinese)
22 Mohan S V, Nithila P, Reddy S J (1996). Estimation of heavy metal in drinking water and development of heavy metal pollution index. J Environ Sci Health A, 31(2): 283–289
https://doi.org/10.1080/10934529609376357
23 Ni H G, Lu F H, Luo X L, Tian H Y, Zeng E Y (2008). Riverine inputs of total organic carbon and suspended particulate matter from the Pearl River Delta to the coastal ocean off South China. Mar Pollut Bull, 56(6): 1150–1157
https://doi.org/10.1016/j.marpolbul.2008.02.030
24 Ouyang T P, Zhu Z Y, Kuang Y Q (2006). Assessing impact of urbanization on river water quality in the Pearl River Delta Economic Zone, China. Environ Monit Assess, 120(1–3): 313–325
https://doi.org/10.1007/s10661-005-9064-x
25 Piper A M (1944). A graphic procedure in the geochemical interpretation of water analyses. Eos, Transactions American Geophysical Union, 25(6): 914–928
https://doi.org/10.1029/TR025i006p00914
26 Purushotham D, Rashid M, Lone M A, Rao A N, Ahmed S, Nagaiah E, Dar F A (2013). Environmental impact assessment of air and heavy metal concentration in groundwater of Maheshwaram Watershed, Ranga Reddy District, Andhra Pradesh. J Geol Soc India, 81(3): 385–396
https://doi.org/10.1007/s12594-013-0049-z
27 Sajil Kumar P J, Davis Delson P, Thomas Babu P(2012). Appraisal of heavy metals in groundwater in Chennai City using a HPI model. Bull Environ Contam Toxicol, 89(4): 793–798
https://doi.org/10.1007/s00128-012-0794-5
29 Schreiber M E, Simo J A, Freiberg P G (2000). Stratigraphic and geochemical controls on naturally occurring arsenic in groundwater, eastern Wisconsin, USA. Hydrogeol J, 8(2): 161–176
https://doi.org/10.1007/s100400050003
30 Sheykhi V, Moore F (2012). Geochemical characterization of Kor River water quality, Fars Province, Southwest Iran. Water Quality, Exposure and Health, 4(1): 25–38
https://doi.org/10.1007/s12403-012-0063-1
31 Shi J B, Ip C C M, Zhang G, Jiang G B, Li X D (2010). Mercury profiles in sediments of the Pearl River Estuary and the surrounding coastal area of South China. Environ Pollut, 158(5): 1974–1979
https://doi.org/10.1016/j.envpol.2010.01.033
32 Stallard R F, Edmond J M (1983). Geochemistry of the Amazon river: 2. The influence of the geology and weathering environment on dissolved load. J Geophys Res, 88(C14): 9671–9688
https://doi.org/10.1029/JC088iC14p09671
33 Sue F H (2001). Depth Distributions of δ18O and Changes in Mixed Layer Thickness in the South China Sea. Dissertation for Master degree. National Sun Yat-sen University (in Chinese)
34 USSL (1954). Diagnosis and improvement of saline and alkali soils. Washington DC: USDA Handbook No. 60
35 Vasanthavigar M, Srinivasamoorthy K, Vijayaragavan K, Rajiv Ganthi R, Chidambaram S, Anandhan P, Manivannan R, Vasudevan S (2010). Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamil Nadu, India. Environ Monit Assess, 171(1–4): 595–609
https://doi.org/10.1007/s10661-009-1302-1
36 Wang D L, Lin W F, Yang X Q, Zhai W D, Dai M H, Chen C T A (2012). Occurrences of dissolved trace metals (Cu, Cd, and Mn) in the Pearl River Estuary (China), a large river-groundwater-estuary system. Cont Shelf Res, 50–51: 54–63
https://doi.org/10.1016/j.csr.2012.10.009
37 Wang X S, Jiao J J, Wang Y, Cherry J A, Kuang X X, Liu K, Lee C, Gong Z J (2013a). Accumulation and transport of ammonium in aquitards in the Pearl River Delta (China) in the last 10,000 years: conceptual and numerical models. Hydrogeol J, 21(5): 961–976
https://doi.org/10.1007/s10040-013-0976-1
38 Wang Y, Jiao J J (2012). Origin of groundwater salinity and hydrogeochemical processes in the confined Quaternary aquifer of the Pearl River Delta, China. J Hydrol (Amst), 438–439: 112–124
https://doi.org/10.1016/j.jhydrol.2012.03.008
39 Wang Y, Jiao J J, Cherry J A, Lee C M (2013b). Contribution of the aquitard to the regional groundwater hydrochemistry of the underlying confined aquifer in the Pearl River Delta, China. Sci Total Environ, 461–462: 663–671
https://doi.org/10.1016/j.scitotenv.2013.05.046
40 WHO (1993). Guidelines for drinking water quality (2nd ed). Recommendations, Geneva: World Health Organization, 188
41 WHO (2011). Guidelines for drinking-water quality world health organization (4th ed). Geneva: World Health Organization, 340
42 Wilcox L V (1955). Classification and use of irrigation waters (1st ed). Washington DC: United States Department of Agriculture
43 Wong C S C, Li X D, Zhang G, Qi S H, Min Y S (2002). Heavy metals in agricultural soils of the Pearl River Delta, South China. Environ Pollut, 119(1): 33–44
https://doi.org/10.1016/S0269-7491(01)00325-6
44 Wong C S C, Li X D, Zhang G, Qi S H, Peng X Z (2003). Atmospheric deposition of heavy metals in the Pearl River Delta, China. Atmos Environ, 37(6): 767–776
https://doi.org/10.1016/S1352-2310(02)00929-9
45 Wong C S C, Wu S C, Duzgoren-Aydin N S, Aydin A, Wong M H (2007). Trace metal contamination of sediments in an e-waste processing village in China. Environ Pollut, 145(2): 434–442
https://doi.org/10.1016/j.envpol.2006.05.017
46 Yuan J F, Mao X M, Wang Y X (2013). Hydrogeochemical characteristics of low to medium temperature groundwater in the Pearl River Delta region, China. Procedia Earth and Planetary Science, 7: 928–931
https://doi.org/10.1016/j.proeps.2013.03.179
47 Zhang Y, Li F D, Li J, Liu Q, Zhao G S (2013). Quantitative estimation of groundwater recharge ratio along the riparian of the Yellow River. Water Sci Technol, 68(11): 2427–2432
https://doi.org/10.2166/wst.2013.490
48 Zhang Y, Li F D, Zhao G S, Li J, Zhu Q Y (2014). An attempt to evaluate the recharge source and extent using hydrogeochemistry and stable isotopes in North Henan Plain, China. Environ Monit Assess, 186(8): 5185–5197
https://doi.org/10.1007/s10661-014-3768-8
49 Zhao X F, Chen J Y, Tang C Y, Zeng S Q, Lu Y T (2007). Hydrochemical characteristics and evolution of groundwater in a small catchment of Pearl River Delta. Ecol Environ, 16(6): 1620–1626 (in Chinese)
50 Zong Y, Yim W W S, Yu F, Huang G (2009). Late Quaternary environmental changes in the Pearl River Mouth region, China. Quat Int, 206(1–2): 35–45
https://doi.org/10.1016/j.quaint.2008.10.012
[1] Erfu DAI, Zhuo WU, Xiaodian DU. A gradient analysis on urban sprawl and urban landscape pattern between 1985 and 2000 in the Pearl River Delta, China[J]. Front. Earth Sci., 2018, 12(4): 791-807.
[2] Yintao LU, Xinghua ZANG, Hong YAO, Shichao ZHANG, Shaobin SUN, Fang LIU. Assessment of trace metal contamination in groundwater in a highly urbanizing area of Shenfu New District, Northeast China[J]. Front. Earth Sci., 2018, 12(3): 569-582.
[3] Xiaosong HAN, Jiayi PAN, Adam T. DEVLIN. Remote sensing study of wetlands in the Pearl River Delta during 1995---2015 with the support vector machine method[J]. Front. Earth Sci., 2018, 12(3): 521-531.
[4] Xiaoyun FAN, Baoshan CUI, Zhiming ZHANG. Spatial variations of river water quality in Pearl River Delta, China[J]. Front Earth Sci, 2012, 6(3): 291-296.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed