Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2016, Vol. 10 Issue (4) : 621-633    https://doi.org/10.1007/s11707-016-0578-z
RESEARCH ARTICLE
Identifying sediment discontinuities and solving dating puzzles using monitoring and palaeolimnological records
Xuhui DONG1,2,3(),Carl D. SAYER2,Helen BENNION2,Stephen C. MABERLY4,Handong YANG2,Richard W. BATTARBEE2
1. State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
2. Environmental Change Research Centre, Department of Geography, University College London, London WC1E 6BT, UK
3. Aarhus Institute of Advanced Studies, Aarhus University, DK-8000 Aarhus C, Denmark
4. Lake Ecosystems Group, Centre for Ecology & Hydrology, Library Avenue, Lancaster LA1 4AP, UK
 Download: PDF(1177 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Palaeolimnological studies should ideally be based upon continuous, undisturbed sediment sequences with reliable chronologies. However for some lake cores, these conditions are not met and palaeolimnologists are often faced with dating puzzles caused by sediment disturbances in the past. This study chooses Esthwaite Water from England to illustrate how to identify sedimentation discontinuities in lake cores and how chronologies can be established for imperfect cores by correlation of key sediment signatures in parallel core records and with long-term monitoring data (1945–2003). Replicated short cores (ESTH1, ESTH7, and ESTH8) were collected and subjected to loss-on-ignition, radiometric dating (210Pb, 137Cs, and 14C), particle size, trace metal, and fossil diatom analysis. Both a slumping and a hiatus event were detected in ESTH7 based on comparisons made between the cores and the long-term diatom data. Ordination analysis suggested that the slumped material in ESTH7 originated from sediment deposited around 1805–1880 AD. Further, it was inferred that the hiatus resulted in a loss of sediment deposited from 1870 to 1970 AD. Given the existence of three superior 14C dates in ESTH7, ESTH1 and ESTH7 were temporally correlated by multiple palaeolimnological proxies for age-depth model development. High variability in sedimentation rates was evident, but good agreement across the various palaeolimnological proxies indicated coherence in sediment processes within the coring area. Differences in sedimentation rates most likely resulted from the natural morphology of the lake basin. Our study suggests that caution is required in selecting suitable coring sites for palaeolimnological studies of small, relatively deep lakes and that proximity to steep slopes should be avoided wherever possible. Nevertheless, in some cases, comparisons between a range of contemporary and palaeolimnological records can be employed to diagnose sediment disturbances and establish a chronology.

Keywords sediment disturbance      lake sediment      chronology      slumping      hiatus      Esthwaite Water     
Corresponding Author(s): Xuhui DONG   
Just Accepted Date: 12 April 2016   Online First Date: 04 May 2016    Issue Date: 04 November 2016
 Cite this article:   
Xuhui DONG,Carl D. SAYER,Helen BENNION, et al. Identifying sediment discontinuities and solving dating puzzles using monitoring and palaeolimnological records[J]. Front. Earth Sci., 2016, 10(4): 621-633.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-016-0578-z
https://academic.hep.com.cn/fesci/EN/Y2016/V10/I4/621
Fig.1  Location and bathymetric map (unit: meters) of Esthwaite Water, English Lake District, showing the coring location of the three cores.
Fig.2  Fallout radionuclide concentrations and age-depth relationships of cores ESTH1 ((a)?(c)), ESTH7 ((d)?(f)), and ESTH8 ((g)?(i)).
Fig.3  Core correlation (a) organic matter (%LOI) among cores ESTH1, ESTH7, and ESTH8; and (b) median particle size (MD) for cores ESTH1 and ESTH7. The dashed lines and dashed circle indicate correlative features between the two cores and the slumping event, respectively.
Fig.4  Selected metal concentration profiles for cores ESTH1 (a) and ESTH7 (b). Dashed lines indicate correlative features 1, 2, 3, and 4 (also see Table 1).
Fig.5  Relative abundance data of selected dominant diatom species from (a) monitoring records, (b) core ESTH7, and (c) ESTH1. Core correlations as outlined in the text are marked by dotted lines. The shadows around depths of 10 and 30 cm in ESTH7 indicate the slumping and hiatus events, respectively.
Fig.6  Principle component analysis (PCA) of all the proxy data, including LOI, particle size, geochemical data, and diatom composition. Zones A and B show the samples younger or older than the 1900s, respectively. Samples 12?15 (solid circle, representing the slumping samples from the depth 10?12.5 cm) and the most similar samples (filled star) are shown in the dashed circle.
Depth in ESTH7/cm Depth in ESTH1
/cm
Evidence or by core correlation Inferred dates
by core correlation
(AD)
5.25 / Appearance of high percentages of
A. granulata var. angustissima
1999 1)
14?26 0?11 Increase in S. binatus Post-1970
28.5 30 Mg/Ca, Cr, Ni, Mn 1877 2)
38 45.5 LOI, Cr, Mg/Fe, Ca 1630 3)
41 53 Particle size 1550 3)
46.5 63.5 Fe, Cr, Ba, Mn, Fe/Mg 1406 3)
47.5 65.5 LOI, Particle size 1380 4)
49.5 69.5 Ba, Ni, Co 1250 3)
51 72.5 LOI, diatoms 1180 3)
59.5 89.55) / 930 4)
63.5 97.55) / 840 4)
Tab.1  Temporal relationship between sediment cores ESTH1 and ESTH7
1 Anderson N J (1986). Diatom biostratigraphy and comparative core correlation within a small lake basin. Hydrobiologia, 143(1): 105–112
https://doi.org/10.1007/BF00026651
2 Anderson N J (2014). Landscape disturbance and lake response: temporal and spatial perspectives. Freshw Rev, 7(2): 77–120
https://doi.org/10.1608/FRJ-7.2.811
3 Anderson N J, Korsman T, Renberg I (1994). Spatial heterogeneity of diatom stratigraphy in varved and non-varved sediments of a small, boreal-forest Lake. Aquat Sci, 56(1): 40–58
https://doi.org/10.1007/BF00877434
4 Appleby P, Oldfield F (1978). The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena, 5(1): 1–8
https://doi.org/10.1016/S0341-8162(78)80002-2
5 Arnaud F, Lignier V, Revel M, Desmet M, Beck C, Pourchet M, Charlet F, Trentesaux A, Tribovillard N (2002). Flood and earthquake disturbance of 210Pb geochronology (Lake Anterne, NW Alps). Terra Nova, 14(4): 225–232
https://doi.org/10.1046/j.1365-3121.2002.00413.x
6 Bangs M, Battarbee R, Flower R, Jewson D, Lees J, Sturm M, Vologina E G, Mackay A W (2000). Climate change in Lake Baikal: diatom evidence in an area of continuous sedimentation. Int J Earth Sci, 89(2): 251–259
https://doi.org/10.1007/s005319900063
7 Barker P A, Pates J M, Payne R J, Healey R M (2005). Changing nutrient levels in Grasmere, English lake district, during recent centuries. Freshw Biol, 50(12): 1971–1981
https://doi.org/10.1111/j.1365-2427.2005.01439.x
8 Battarbee R, Jones V, Flower R, Cameron N, Bennion H, Carvalho L, Juggins S, Smol J P, Birks H J B, Last W M (2001) Tracking Environmental Change Using Lake Sediments. Volume 3: Terrestrial, Algal, and Siliceous Indicators. Dordrecht: Kluwer Academic Publishers
9 Baxter M S, Farmer J G, McKinley I G, Swan D S, Jack W (1981). Evidence of the unsuitability of gravity coring for collecting sediment in pollution and sedimentation rate studies. Environ Sci Technol, 15(7): 843–846
https://doi.org/10.1021/es00089a014
10 Bennett K (1986). Coherent slumping of early postglacial lake sediments at Hall Lake, Ontario, Canada. Boreas, 15(3): 209–215
https://doi.org/10.1111/j.1502-3885.1986.tb00923.x
11 Bennett K, Fuller J (2002). Determining the age of the mid-Holocene Tsuga cana densis (hemlock) decline, eastern North America. Holocene, 12(4): 421–429
https://doi.org/10.1191/0959683602hl556rp
12 Bennion H, Monteith D, Appleby P (2000). Temporal and geographical variation in lake trophic status in the English Lake District: evidence from (sub) fossil diatoms and aquatic macrophytes. Freshw Biol, 45(4): 394–412
https://doi.org/10.1046/j.1365-2427.2000.00626.x
13 Besonen M, Patridge W, Bradley R, Francus P, Stoner J, Abbott M B (2008). A record of climate over the last millennium based on varved lake sediments from the Canadian High Arctic. Holocene, 18(1): 169–180
https://doi.org/10.1177/0959683607085607
14 Birks H H, Birks H J B (2006). Multi-proxy studies in palaeolimnology. Veg Hist Archaeobot, 15(4): 235–251
https://doi.org/10.1007/s00334-006-0066-6
15 Blockley S P E, Ramsey C B, Lane C S, Lotter A F (2008). Improved age modelling approaches as exemplified by the revised chronology for the Central European varved lake Soppensee. Quat Sci Rev, 27(1‒2): 61–71
https://doi.org/10.1016/j.quascirev.2007.01.018
16 Chambers J, Cameron N (2001). A rod-less piston corer for lake sediments: an improved, rope-operated percussion corer. J Paleolimnol, 25(1): 117–122
https://doi.org/10.1023/A:1008181406301
17 Chu G, Liu J, Schettler G, Li J, Sun Q, Gu Z, Lu H, Liu Q, Liu T (2005). Sediment fluxes and varve formation in Sihailongwan, a maar lake from northeastern China. J Paleolimnol, 34(3): 311–324
https://doi.org/10.1007/s10933-005-4694-0
18 Cohen A (2003) Paleolimnology: the History and Evolution of Lake Systems.New York: Oxford University Press
19 Dong X H, Bennion H, Battarbee R W, Sayer C D (2012). A multiproxy palaeolimnological study of climate and nutrient impacts on Esthwaite Water, England over the past 1200 years. Holocene, 22(1): 107–118
https://doi.org/10.1177/0959683611409780
20 Donovan J, Grimm E (2007). Episodic struvite deposits in a Northern Great Plains flyway lake: indicators of mid-Holocene drought? Holocene, 17(8): 1155–1169
https://doi.org/10.1177/0959683607082556
21 Drzymulska D, Zieliński P (2014). Phases and interruptions in postglacial development of humic lake margin (Lake Suchar Wielki, NE Poland). Limnological Review, 14(1): 13–20
https://doi.org/10.2478/limre-2014-0002
22 George D G (2012). The effect of nutrient enrichment and changes in the weather on the abundance of Daphnia in Esthwaite Water, Cumbria. Freshw Biol, 57(2): 360–372
https://doi.org/10.1111/j.1365-2427.2011.02704.x
23 Gilbert R, Lamoureux S (2004). Processes affecting deposition of sediment in a small, morphologically complex lake. J Paleolimnol, 31(1): 37–48
https://doi.org/10.1023/B:JOPL.0000013279.78388.24
24 Glew J (1988). A portable extruding device for close interval sectioning of unconsolidated core samples. J Paleolimnol, 1(3): 235–239
https://doi.org/10.1007/BF00177769
25 Håkanson L, Jansson M (1983) Principles of Lake Sedimentology. Berlin: Springer
26 Haworth E (1980). Comparison of continuous phytoplankton records with the diatom stratigraphy in the recent sediments of Blelham Tarn. Limnol Oceanogr, 25(6): 1093–1103
https://doi.org/10.4319/lo.1980.25.6.1093
27 Heegaard E, Birks H J B, Telford R J (2005). Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression. Holocene, 15(4): 612–618
https://doi.org/10.1191/0959683605hl836rr
28 Krammer K, Lange-Bertalot H (1986‒1991). Bacillariophyceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D, eds. Süsswasserflora von Mitteleuropa Stuttgart: Gustav Fischer Verlag
29 Larsen C, MacDonald G (1993). Lake morphometry, sediment mixing and the selection of sites for fine resolution palaeoecological studies. Quat Sci Rev, 12(9): 781–792
https://doi.org/10.1016/0277-3791(93)90017-G
30 Lowe D (2008). Globalization of tephrochronology: new views from Australasia. Prog Phys Geogr, 32(3): 311–335
https://doi.org/10.1177/0309133308091949
31 Ludlam S (1974). The role of turbidity currents in lake sedimentation. Limnol Oceanogr, 19(4): 656–664
https://doi.org/10.4319/lo.1974.19.4.0656
32 Lund J W G, Kipling C, Le Cren E D (1958). The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia, 11(2): 143–170
https://doi.org/10.1007/BF00007865
33 Maberly S C, Elliott J A (2012). Insights from long-term studies in the Windermere catchment: external stressors, internal interactions and the structure and function of lake ecosystems. Freshw Biol, 57(2): 233–243
https://doi.org/10.1111/j.1365-2427.2011.02718.x
34 Mackay E B, Jones I D, Folkard A M, Barker P (2012). Contribution of sediment focussing to heterogeneity of organic carbon and phosphorus burial in small lakes. Freshw Biol, 57(2): 290–304
https://doi.org/10.1111/j.1365-2427.2011.02616.x
35 Mackereth F (1969). A short core sampler for subaqueous deposits. Limnol Oceanogr, 14(1): 145–151
https://doi.org/10.4319/lo.1969.14.1.0145
36 Martin P, Boes X, Goddeeris B, Fagel N (2005). A qualitative assessment of the influence of bioturbation in Lake Baikal sediments. Global Planet Change, 46(1‒4): 87–99
https://doi.org/10.1016/j.gloplacha.2004.11.012
37 Morellón M, Valero-Garcés B, González-Sampériz P, Vegas-Vilarrúbia T, Rubio E, Rieradevall M, Delgado-Huertas A, Mata P, Romero Ó, Engstrom D R, López-Vicente M, Navas A, Soto J (2011). Climate changes and human activities recorded in the sediments of Lake Estanya (NE Spain) during the Medieval Warm Period and Little Ice Age. J Paleolimnol, 46(3): 423–452
https://doi.org/10.1007/s10933-009-9346-3
38 Moreno A, Valero-Garcés B, González-Sampériz P, Rico M (2008). Flood response to rainfall variability during the last 2000 years inferred from the Taravilla Lake record (Central Iberian Range, Spain). J Paleolimnol, 40(3): 943–961
https://doi.org/10.1007/s10933-008-9209-3
39 Rasmussen S O, Andersen K K, Svensson A M, Steffensen J P, Vinther B M, Clausen H B, Siggaard-Andersen M L, Johnsen S J, Larsen L B, Dahl-Jensen D, Bigler M, Röthlisberger R, Fischer H, Goto-Azuma K, Hansson M E, Ruth U (2006). A new Greenland ice core chronology for the last glacial termination. J Geophys Res, 111(D6): D06102
https://doi.org/10.1029/2005JD006079
40 Renberg I (1981). Improved methods for sampling, photographing and varve-counting of varved lake-sediments. Boreas, 10(3): 255–258
https://doi.org/10.1111/j.1502-3885.1981.tb00486.x
41 Rose N L, Harlock S, Appleby P, Battarbee R W (1995). Dating of recent lake-sediments in the United-Kingdom and Ireland using spheroidal carbonaceous particle (Scp) concentration profiles. Holocene, 5(3): 328–335
https://doi.org/10.1177/095968369500500308
42 Sadler P (2004). Quantitative biostratigraphy—Achieving finer resolution in global correlation. Annu Rev Earth Planet Sci, 32(1): 187–213
https://doi.org/10.1146/annurev.earth.32.101802.120428
43 Sanchez-Cabeza J A, Ruiz-Fernández A C (2012). 210Pb sediment radiochronology: an integrated formulation and classification of dating models. Geochim Cosmochim Acta, 82: 183–200
https://doi.org/10.1016/j.gca.2010.12.024
44 Sanders G, Jones K, Hamilton-Taylor J, Doerr H (1992). Historical inputs of polychlorinated biphenyls and other organochlorines to a dated lacustrine sediment core in rural England. Environ Sci Technol, 26(9): 1815–1821
https://doi.org/10.1021/es00033a016
45 Smol J (2009). Pollution of Lakes and Rivers: A Paleoenvironmental Perspective. Wiley-Blackwell
46 Telford R, Heegaard E, Birks H (2004). All age–depth models are wrong: but how badly? Quat Sci Rev, 23(1‒2): 1–5
https://doi.org/10.1016/j.quascirev.2003.11.003
47 ter Braak C, Smilauer P (2002). CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Ithaca, N.Y.: Microcomputer Power
48 Tibby J (2001). Diatoms as indicators of sedimentary processes in Burrinjuck reservoir, New South Wales, Australia. Quat Int, 83‒85: 245–256
https://doi.org/10.1016/S1040-6182(01)00043-X
49 Yeloff D, Mauquoy D (2006). The influence of vegetation composition on peat humification: implications for palaeoclimatic studies. Boreas, 35(4): 662–673
https://doi.org/10.1111/j.1502-3885.2006.tb01172.x
[1] Guanxu CHEN, Jinhai LUO, Huan XU, Jia YOU, Yifei LI, Zichen CHE. Geological significance of the former Xiong’er Volcanic Belt on the southwestern margin of the North China Craton[J]. Front. Earth Sci., 2019, 13(1): 191-208.
[2] Chunqing SUN,Haitao YOU,Jiaqi LIU,Xin LI,Jinliang GAO,Shuangshuang CHEN. Distribution, geochemistry and age of the Millennium eruptives of Changbaishan volcano, Northeast China – A review[J]. Front. Earth Sci., 2014, 8(2): 216-230.
[3] Yu LI, Nai’ang WANG, Zhuolun LI, Xuehua ZHOU, Chengqi ZHANG, Yue WANG. Carbonate formation and water level changes in a paleo-lake and its implication for carbon cycle and climate change, arid China[J]. Front Earth Sci, 2013, 7(4): 487-500.
[4] Tao YANG, Xiaohua GOU, Yingjun LI, Keyan FANG, Puxing LIU, . Tree-ring researches over the northwest China: a review[J]. Front. Earth Sci., 2010, 4(2): 181-194.
[5] GE Shulan, WU Yonghua, SHI Xuefa, YANG Gang. Rock magnetic response to climatic changes in west Philippine Sea for the last 780 ka: Discussion based on relative paleointensity assisted chronology[J]. Front. Earth Sci., 2008, 2(3): 314-326.
[6] WANG Xiuxi, SONG Chunhui, ZHANG Jun, GAO Junping, PAN Meihui, LI Jijun, ZHAO Zhijun. Cenozoic uplift of West Qinling, northeast margin of Tibetan plateau—a detrital apatite fission track record from the Tianshui basin[J]. Front. Earth Sci., 2007, 1(3): 304-308.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed