Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2018, Vol. 12 Issue (1) : 215-236    https://doi.org/10.1007/s11707-017-0642-3
RESEARCH ARTICLE
Earthquake hazard potential in the Eastern Anatolian Region of Turkey: seismotectonic b and Dc-values and precursory quiescence Z-value
S. ÖZTÜRK()
Gümüşhane University, Department of Geophysics, TR-29100, Gümüşhane, Turkey
 Download: PDF(7695 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The Eastern Anatolian Region of Turkey is one of the most seismically and tectonically active regions due to the frequent occurrence of earthquakes. Thus, the main goal of this study is to analyze the regional and temporal characteristics of seismicity in the Eastern Anatolia in terms of the seismotectonic b-value, fractal dimension Dc-value, precursory seismic quiescence Z-value, and their interrelationships. This study also seeks to obtain a reliable empirical relation between b and Dc-values and to evaluate the temporal changes of these parameters as they relate to the earthquake potential of the region. A more up-to-date relation of Dc =2.55 0.39*b is found with a very strong negative correlation coefficient (r=−0.95) by using the orthogonal regression method. The b-values less than 1.0 and the Dc-values greater than 2.2 are observed in the Northeast Anatolian Fault Zone, Aşkale, Erzurum, Iğdır and Çaldıran Faults, Doğubeyazıt Fault Zone, around the Genç Fault, the western part of the Bitlis-Zagros Thrust Zone, Pülümür and Karakoçan Faults, and the Sancak-Uzunpınar Fault Zone. In addition, the regions having small b-values and large Z-values are calculated around the Genç, Pülümür and Karakoçan Faults as well as the Sancak-Uzunpınar Fault Zone. Remarkably, the combinations of these seismotectonic parameters could reveal the earthquake hazard potential in the Eastern Anatolian Region of Turkey, thus creating an increased interest in these anomaly regions.

Keywords Eastern Anatolia      b-value      fractal dimension      precursory seismic quiescence      earthquake hazard     
Corresponding Author(s): S. ÖZTÜRK   
Online First Date: 24 April 2017    Issue Date: 23 January 2018
 Cite this article:   
S. ÖZTÜRK. Earthquake hazard potential in the Eastern Anatolian Region of Turkey: seismotectonic b and Dc-values and precursory quiescence Z-value[J]. Front. Earth Sci., 2018, 12(1): 215-236.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-017-0642-3
https://academic.hep.com.cn/fesci/EN/Y2018/V12/I1/215
Fig.1  (a) Simplified tectonic environments in and around Turkey demonstrating main neotectonic structures and provinces (replaced from Bozkurt, 2001). K: Karlıova, KM: Kahramanmaraş. (b) Major tectonic faults in the Eastern Anatolia area of Turkey. Some city locations are shown: AG: Ağrı, Ak: Aşkale, BN: Bingöl, BT: Bitlis, DB: Diyarbakır, ELZ: Elazığ, ERZ: Erzurum, EZN: Erzincan, HK: Hakkari, IR: Iğdır, K: Karlıova, KM: Kahramanmaraş, KR: Kars, Plm: Pülümür. Major structures were taken from Şaroğlu et al., (1992)and Bozkurt (2001). Names of the faults: AF: Ağrı fault, AKF: Aşkale fault, BF: Başkale fault, BFZ: Balıklıgölü Fault Zone, BZF: Bozova fault, ÇF: Çaldıran fault, ÇFZ: Çobandede Fault Zone, DFZ: Doğubeyazıt Fault Zone, DSFZ: Dead Sea Fault Zone, ERF: Erciş fault, EZF: Erzurum fault, GF: Genç fault, GFZ: Göynük Fault Zone, HTF: Hasan-Timur Fault, IF: Iğdır fault, KBF: Kavakbaşı Fault, KEZ: Karacadağ Extension Zone, KF: Kağızman fault, KKF: Karakoçan fault, MLF: Malatya fault, MF: Malazgirt fault, MTZ: Muş Thrust Zone, NEAFZ: North East Anatolian Fault Zone, OF: Ovacık fault, PF: Pülümür fault, SF: Süphan fault, SRF: Sürgü fault, SUFZ: Sancak-Uzunpınar Fault Zone, YŞFZ: Yüksekova-Şemdinli Fault Zone.
Fig.2  Seismic and tectonic sub-regions and the epicenters of 33,865 shallow (depth<70 km) earthquakes with MD≥1.0 between 1970 and 2015.
Fig.3  Changes in magnitude completeness, Mc-value, from 1970 to 2015 in the Eastern Anatolian region of Turkey. Standard deviation (dMc) of the completeness is plotted with dashed line. Completeness is illustrated with overlapping samples and each sample contains 50 events.
Fig.4  Cumulative number of events as a function of time for the original catalog, including all earthquakes with MD≥1.0, and for the declustered catalog, including the events of MD≥2.9 in the Eastern Anatolian Region of Turkey.
Fig.5  Gutenberg-Richter relationships and b-values. b-values and their standard deviations as well as the Mc-values are given.
Fig.6  Correlation integrals and Dc-values for all sub-regions. The slope of the black lines corresponds to Dc-values and dashed lines illustrate the standard errors.
Fig.7  Regional distribution of b-value for the Eastern Anatolian Region of Turkey. The declustered events with MD≥2.9 are plotted in white dots.
Region Tectonic Structures Earthquake Numbers Mc value b-value Dc-value
1 North East Anatolian Fault Zone, Çobandede Fault Zones 632 2.7 0.83±0.16 2.21±0.04
2 Erzurum Fault, Aşkale Fault 1810 2.9 1.15±0.09 2.14±0.06
3 Ağrı and Kağızman Faults, Balıklıgöl Fault Zone 363 2.8 1.00±0.08 2.13±0.03
4 Iğdır and Çaldıran Faults, Doğubeyazıt Fault Zone 593 2.8 0.86±0.07 2.20±0.06
5 Hasan Timur Fault, 636 2.7 0.95±0.05 2.17±0.03
6 Başkale, Erciş and Süphan Faults 8847 2.6 1.05±0.07 2.14±0.03
7 Malazgirt Fault, Muş Thrust Zone 805 3.0 1.16±0.07 2.10±0.02
8 Yüksekova-Şemdinli Fault Zone, 581 3.0 1.20±0.09 2.08±0.04
9 Kavakbaşı Fault, 649 2.9 0.92±0.04 2.13±0.04
10 Genç Fault, 273 2.9 1.13±0.07 2.13±0.02
11 Some sections of the Bitlis-Zagros 452 2.9 0.66±0.04 2.37±0.03
12 Thrust Zone 361 2.7 0.86±0.05 2.20±0.02
13 Karacadağ Extension Zone, 578 2.7 1.08±0.06 2.16±0.04
14 Bozova Fault 1094 2.9 1.60±0.08 1.94±0.04
15 East Anatolian Fault Zone 5015 2.9 1.00±0.02 2.16±0.06
16 Sürgü Fault 1307 2.9 1.11±0.05 2.12±0.04
17 Pülümür, Malatya and
Ovacık Faults
2177 2.7 1.14±0.03 2.12±0.04
18 Karakoçan fault, Göynük and Sancak- Uzunpınar Fault Zones 3187 2.8 0.92±0.02 2.20±0.05
19 Eastern part of the North Anatolian
Fault Zone
1180 2.8 1.01±0.03 2.14±0.03
20 Southwest of the East Anatolian Fault Zone 936 2.6 0.95±0.07 2.19±0.04
21 North part of the Dead Sea Fault Zone 283 3.0 1.05±0.10 2.18±0.05
Tab.1  Tectonic structures, earthquake numbers, Mc-values, b-values and Dc-values for different seismic source zones in the Eastern Anatolian Region of Turkey
Fig.8  Regional distribution of Dc-value for the Eastern Anatolian Region of Turkey. The declustered events with MD≥2.9 are marked in white dots.
Fig.9  Estimated orthogonal regression fit for the relationship between b-value and Dc-value. Resulting equation, correlation coefficient, and confidence interval of 95%, for the Eastern Anatolian Region of Turkey are also given. There are 12 events in the confidence interval of 95%.
Year Earthquake Numbers Mmin Mmax Mc-value a-value b-value Dc-value
1970?1975 75 3.3 5.6 4.2 11.8 1.33±0.07 2.76±0.04
1976?1980 81 2.9 5.6 4.2 14.5 1.06±0.08 2.08±0.03
1981?1985 96 2.0 5.8 4.5 9.79 1.79±0.30 1.72±0.03
1986?1990 90 2.3 5.4 4.3 8.65 1.61±0.20 1.17±0.02
1991?1995 181 2.3 6.5 4.0 6.88 0.95±0.10 1.59±0.03
1996 143 2.4 4.7 3.5 5.49 1.02±0.09 2.11±0.03
1997 187 2.3 5.5 3.4 5.27 0.96±0.08 1.70±0.02
1998 155 2.6 5.0 3.2 4.71 1.15±0.08 2.07±0.02
1999 206 2.6 5.5 3.4 5.82 1.10±0.09 1.72±0.02
2000 305 2.4 5.2 3.0 5.02 1.19±0.07 2.60±0.02
2001 299 2.0 5.5 3.1 5.53 1.04±0.07 2.21±0.03
2002 409 2.2 5.6 3.1 6.11 1.19±0.07 2.02±0.03
2003 1427 2.3 6.2 3.0 7.22 1.49±0.04 2.82±0.06
2004 1350 2.3 5.5 3.0 6.91 1.31±0.04 2.58±0.04
2005 1489 2.4 5.9 3.0 6.45 1.16±0.04 2.58±0.05
2006 723 2.5 4.8 3.0 6.67 1.32±0.06 2.04±0.04
2007 1330 2.4 5.6 2.9 6.62 1.07±0.07 2.24±0.06
2008 1156 2.4 5.1 2.9 7.01 1.43±0.05 2.17±0.04
2009 1404 2.2 5.0 2.9 7.24 1.49±0.05 2.07±0.03
2010 2445 2.0 6.0 2.7 7.12 1.05±0.09 2.73±0.07
2011 6587 1.1 6.6 2.7 6.58 1.09±0.02 2.46±0.05
2012 6096 1.0 5.5 2.5 6.29 1.15±0.03 2.28±0.06
2013 4264 1.0 5.2 2.5 5.95 1.17±0.06 2.21±0.06
2014 3403 1.0 4.6 2.4 5.86 1.07±0.03 2.37±0.02
Tab.2  Variations in the number of earthquakes, minimum (Mmin) and maximum (Mmax) magnitudes, Mc-values, a-value, b-value and Dc-value for the Eastern Anatolian Region of Turkey in time intervals between 1970 and 2015
Fig.10  Magnitude-time histogram for earthquake catalog of the Eastern Anatolian Region of Turkey between 1970 and 2015.
Fig.11  Changes in two fundamental parameters b and Dc-values from 1970 to 2015 in the Eastern Anatolian Region of Turkey. Arrows show the starting times in decreasing b-values and increasing Dc-values. Standard errors are also shown.
Fig.12  Regional changes of standard deviate Z-value at the beginning of 2015 with TW (iwl) equal to 5.5 years for the Eastern Anatolian Region of Turkey. White dots show the declustered events with MD≥2.9. Significant quiescence anomalies detected at the beginning of 2015 are given as regions A (around NEAFZ, AKF and EZF), B and C (including PF and KKF), D (between MLF and EAFZ), E (around GF), and F (around YŞFZ). These regions with clear quiescence are important for estimating future seismic hazards and may show the locations of future earthquakes in the study region.
Fig.13  Annual regional changes of standard deviate Z-value between 2000 and 2015 using the declustered events (white dots) with MD≥2.9. TW (iwl)=5.5 years is selected as the length of time. Positive Z-value (gray color) represents the decrease in seismicity. “Cut at” times for Z-value distributions are considered for; (a) 2000, (b) 2001, (c) 2002, (d) 2003, (e) 2004, (f) 2005, (g) 2006, (h) 2007, (i) 2008, and (j) 2009.
1 Aki K (1965). Maximum likelihood estimate of b in the formula  log⁡N =a−bMand its confidence limits. Bull Earthq Res Inst Univ Tokyo, 43: 237–239
2 Aki K (1981). A probabilistic synthesis of precursory phenomena. In: Simpson D W, Richards P G, eds. Earthquake Prediction: An International Review. Maurice Ewing Series. AGU, Washington, DC, 4: 566–574
3 Arabasz W J, Hill  S J (1996). Applying Reasenberg’s cluster analysis algorithm to regional earthquake catalogs outside California. Seismol Res Lett, 67(2): 30 (abstract)
4 Barton D J, Foulger  G R, Henderson  J R, Julian  B R (1999). Frequency-magnitude statistics and spatial correlation dimensions of earthquakes at Long Valley Caldera, California. Geophys J Int, 138(2): 563–570
https://doi.org/10.1046/j.1365-246X.1999.00898.x
5 Bayrak Y, Öztürk  S, Çınar H, Kalafat D,  Tsapanos T M,  Koravos G Ch,  Leventakis G A (2009). Estimating earthquake hazard parameters from instrumental data for different regions in and around Turkey. Eng Geol, 105(3–4): 200–210
https://doi.org/10.1016/j.enggeo.2009.02.004
6 Bozkurt E (2001). Neotectonics of Turkey-a synthesis. Geodin Acta, 14(1–3): 3–30
https://doi.org/10.1080/09853111.2001.11432432
7 Carrol R J, Ruppert  D (1996). The use and misuse of orthogonal regression estimation in linear errors-in-variables models. Am Stat, 50: 1–6
8 Chen C C, Wang  W C, Chang  Y F, Wu  Y M, Lee  Y H (2006). A correlation between the b-value and the fractal dimension from the aftershock sequence of the 1999 Chi-Chi, Taiwan, earthquake. Geophys J Int, 167(3): 1215–1219
https://doi.org/10.1111/j.1365-246X.2006.03230.x
9 Console R, Montuori  C, Murru M (2000). Statistical assessment of seismicity patterns in Italy: are they precursors of subsequent events? J Seismol, 4(4): 435–449
https://doi.org/10.1023/A:1026540018598
10 Enescu B, Ito  K (2002). Spatial analysis of the frequency-magnitude distribution and decay rate of aftershock activity of the 2000 Western Tottori earthquake. Earth Planets Space, 54(8): 847–859
https://doi.org/10.1186/BF03352077
11 Erdik M, Alpay  B Y, Onur  T, Sesetyan K,  Birgoren G (1999). Assessment of earthquake hazard in Turkey and neighboring regions. Ann Geofis, 42: 1125–1138
12 Frohlich C, Davis  S (1993). Teleseismic b-values: or, much ado about 1.0. J Geophys Res, 98(B1): 631–644
https://doi.org/10.1029/92JB01891
13 Goltz C (1998). Fractal and chaotic properties of earthquakes (Lecture Notes in Earth Sciences, 77).  Springer-Verlag, 178 pp
14 Grassberger P, Procaccia  I (1983). Measuring the strangeness of strange attractors. Physica, 9(D): 189–208
15 Gutenberg R, Richter  C F (1944). Frequency of earthquakes in California. Bull Seismol Soc Am, 34: 185–188
16 Hempton M R (1987). Constraints on Arabian plate motion and extensional history of the Red Sea. Tectonics, 6(6): 687–705
https://doi.org/10.1029/TC006i006p00687
17 Hirabayashi T, Ito  K, Yoshii T (1992). Multifractal analysis of earthquakes. Pure Appl Geophys, 138(4): 591–610
https://doi.org/10.1007/BF00876340
18 Hirata T (1989a). Correlation between the b-value and the fractal dimension of earthquakes. J Geophys Res, 94(B6): 7507–7514
https://doi.org/10.1029/JB094iB06p07507
19 Hirata T (1989b). Fractal dimension of fault systems in Japan: fractal structure in rock fracture geometry at various scales. Pure Appl Geophys, 131(1–2): 157–170
https://doi.org/10.1007/BF00874485
20 Kagan Y Y (2007). Earthquake spatial distribution: the correlation dimension. Geophys J Int, 168(3): 1175–1194
https://doi.org/10.1111/j.1365-246X.2006.03251.x
21 Katsumata K, Kasahara  M (1999). Precursory seismic quiescence before the 1994 Kurile Earthquake (Mw=8.3) revealed by three independent seismic catalogs. Pure Appl Geophys, 155(2–4): 443–470
https://doi.org/10.1007/s000240050274
22 Kember G, Fowler  A C (1992). Random sampling and the Grassberger-Procaccia algorithm. Phys Lett A, 161(5): 429–432
https://doi.org/10.1016/0375-9601(92)90683-D
23 Mandelbrot B B (1982). The Fractal Geometry of Nature. San Francisco: Freeman Press
24 Matcharashvili T, Chelidze  T, Javakhishvili Z (2000). Nonlinear analysis of magnitude and interevent time interval sequences for earthquakes of Caucasian region. Nonlinear Process Geophys, 7(1/2): 9–20
https://doi.org/10.5194/npg-7-9-2000
25 Mogi K (1967). Earthquakes and fractures. Tectonophysics, 5(1): 35–55
https://doi.org/10.1016/0040-1951(67)90043-1
26 Mogi K (1969). Some features of recent seismic activity in and near Japan. 2. Activity before and after great earthquakes. Bull Earthq Res Inst Univ Tokyo, 47: 395–417
27 Mori J, Abercrombie  R E (1997). Depth dependence of earthquake frequency-magnitude distribution in California: implications for the rupture initiation. J Geophys Res, 102(B7): 15081–15090
https://doi.org/10.1029/97JB01356
28 Öncel A O,  Alptekin Ö,  Main I G (1995). Temporal variations of the fractal properties of seismicity in the western part of the North Anatolian fault zone: possible artifacts due to improvements in station coverage. Nonlinear Process Geophys, 2(3/4): 147–157
https://doi.org/10.5194/npg-2-147-1995
29 Öncel A O,  Main I G,  Alptekin Ö,  Cowie P A (1996). Temporal variations of the fractal properties of seismicity in the north Anatolian fault zone between 31°E and 41°E. Pure Appl Geophys, 146: 148–159
30 Öncel A O,  Wilson T H (2002). Space-time correlations of seismotectonic parameters and examples from Japan and Turkey preceding the İzmit earthquake. Bull Seismol Soc Am, 92(1): 339–349
https://doi.org/10.1785/0120000844
31 Öncel A O,  Wilson T H (2004). Correlation of seismotectonic variables and GPS strain- measurements in western Turkey. J Geophys Res, 109(B11): B11306
https://doi.org/10.1029/2004JB003101
32 Öncel A O,  Wilson T H (2007). Anomalous seismicity preceding the 1999 Izmit event, NW Turkey. Geophys J Int, 169(1): 259–270
https://doi.org/10.1111/j.1365-246X.2006.03298.x
33 Ouillon G, Sornette  D, Castaing C (1995). Organisation of joints and faults from 1-cm to 100-km scales revealed by optimized anisotropic wavelet coefficient method and multifractal analysis. Nonlinear Process Geophys, 2(3/4): 158–177
https://doi.org/10.5194/npg-2-158-1995
34 Öztürk S (2009). An application of the earthquake hazard and aftershock probability evaluation methods to Turkey earthquakes. Dissertation for PhD degree. Karadeniz Technical University, Trabzon, Turkey (in Turkish with English abstract)
35 Öztürk S (2011). Characteristics of seismic activity in the western, central and eastern parts of the North Anatolian Fault Zone, Turkey: temporal and spatial analysis. Acta Geophysica, 59(2): 209–238
https://doi.org/10.2478/s11600-010-0050-5
36 Öztürk S (2012). Statistical correlation between b-value and fractal dimension regarding Turkish epicentre distribution. Earth Sciences Research Journal, 16(2): 103–108
37 Öztürk S (2013). A statistical assessment of current seismic quiescence along the North Anatolian Fault Zone: earthquake precursors.Austrian Journal of Earth Sciences, 106(2): 4–17
38 Öztürk S (2015). A study on the correlations between seismotectonic b-value and Dc-value, and seismic quiescence Z-value in the Western Anatolian region of Turkey. Austrian Journal of Earth Sciences, 108(2): 172–184
https://doi.org/10.17738/ajes.2015.0019
39 Öztürk S,  Bayrak Y (2012). Spatial variations of precursory seismic quiescence observed in recent years in the eastern part of Turkey. Acta Geophysica, 60(1): 92–118
https://doi.org/10.2478/s11600-011-0035-z
40 Öztürk S,  Bayrak Y,  Çınar H,  Koravos G Ch,  Tsapanos T M (2008). A quantitative appraisal of earthquake hazard parameters computed from Gumbel I method for different regions in and around Turkey. Nat Hazards, 47(3): 471–495
https://doi.org/10.1007/s11069-008-9234-6
41 Polat O, Gok  E, Yılmaz D (2008). Earthquake hazard of the Aegean Extension region (West Turkey). Turk J Earth Sci, 17: 593–614
42 Prasad S, Singh  C (2015). Evolution of b-values before large earthquakes of mb≥6.0 in the Andaman region. Geol Acta, 13(3): 205–210
43 Reasenberg P A (1985). Second-order moment of Central California seismicity, 1969–1982. J Geophys Res, 90(B7): 5479–5495
https://doi.org/10.1029/JB090iB07p05479
44 Roy S, Ghosh  U, Hazra S,  Kayal J R (2011). Fractal dimension and b-value mapping in the Andaman-Sumatra subduction zone. Nat Hazards, 57(1): 27–37
https://doi.org/10.1007/s11069-010-9667-6
45 Şaroğlu F,  Emre O, Kuşcu  O (1992). Active fault map of Turkey. General Directorate of Mineral Research and Exploration, Ankara, Turkey
46 Şengör A M C,  Yılmaz Y (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75: 181–241
https://doi.org/10.1016/0040-1951(81)90275-4
47 Smith L A (1988). Intrinsic limits on dimension calculations. Phys Lett A, 133(6): 283–288
https://doi.org/10.1016/0375-9601(88)90445-8
48 Teotia S S, Kumar  D (2007). The Great Sumatra-Andaman earthquake of 26 December 2004 was predictable even from seismicity data of mb>4.5: a lesson to learn from natüre. Indian J Mar Sci, 36(2): 122–127
49 Wiemer S (2001). A software package to analyze seismicity: ZMAP. Seismol Res Lett, 72(3): 373–382
https://doi.org/10.1785/gssrl.72.3.373
50 Wiemer S, Katsumata  K (1999). Spatial variability of seismicity parameters in aftershock zones. J Geophys Res, 104(B6): 13,135–13,151
https://doi.org/10.1029/1999JB900032
51 Wiemer S, Wyss  M (1994). Seismic quiescence before the Landers (M=7.5) and Big Bear (6.5) 1992 earthquakes. Bull Seismol Soc Am, 84(3): 900–916
52 Wiemer S, Wyss  M (2000). Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the Western United States, and Japan. Bull Seismol Soc Am, 90(4): 859–869
https://doi.org/10.1785/0119990114
53 Woessner J, Wiemer  S (2005). Assessing the quality of earthquake catalogs: estimating the magnitude of completeness and its uncertainty. Bull Seismol Soc Am, 95(2): 684–698
https://doi.org/10.1785/0120040007
54 Wu Y M, Chiao  Y L (2006). Seismic quiescence before the 1999 Chi-Chi, Taiwan, MW7.6 Earthquake. Bull Seismol Soc Am, 96(1): 321–327
https://doi.org/10.1785/0120050069
55 Wyss M, Burford  R O (1987). Occurrences of predicted earthquake on the San Andreas fault. Nature, 329(6137): 323–325
https://doi.org/10.1038/329323a0
56 Wyss M, Klein  F, Nagamine K,  Wiemer S (2001). Anomalously high b-values in the south flank of Kilauea volcano: evidence for the distribution of magma below Kilauea’s East Rift Zone. J Volcanol Geotherm Res, 106(1−2): 23–37
https://doi.org/10.1016/S0377-0273(00)00263-8
57 Wyss M, Martirosyan  A H (1998). Seismic quiescence before the M7, 1988, Spitak earthquake, Armenia. Geophys J Int, 134(2): 329–340
https://doi.org/10.1046/j.1365-246x.1998.00543.x
58 Wyss M, Sobolev  G A, Clippard  J D (2004). Seismic quiescence precursors to two M7 earthquakes on Sakhalin Island, measured by two methods. Earth Planets Space, 56(8): 725–740
https://doi.org/10.1186/BF03353081
[1] Hongchun ZHU, Yipeng ZHAO, Haiying LIU. Scale characters analysis for gully structure in the watersheds of loess landforms based on digital elevation models[J]. Front. Earth Sci., 2018, 12(2): 431-443.
[2] Haihai HOU, Longyi SHAO, Yonghong LI, Zhen LI, Wenlong ZHANG, Huaijun WEN. The pore structure and fractal characteristics of shales with low thermal maturity from the Yuqia Coalfield, northern Qaidam Basin, northwestern China[J]. Front. Earth Sci., 2018, 12(1): 148-159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed