Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2018, Vol. 12 Issue (1) : 148-159    https://doi.org/10.1007/s11707-016-0617-y
RESEARCH ARTICLE
The pore structure and fractal characteristics of shales with low thermal maturity from the Yuqia Coalfield, northern Qaidam Basin, northwestern China
Haihai HOU1, Longyi SHAO1(), Yonghong LI2, Zhen LI1, Wenlong ZHANG2, Huaijun WEN2
1. School of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China
2. No.105 Exploration Team, Qinghai Bureau of Coal Geological Exploration, Xining 810007, China
 Download: PDF(912 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The continental shales from the Middle Jurassic Shimengou Formation of the northern Qaidam Basin, northwestern China, have been investigated in recent years because of their shale gas potential. In this study, a total of twenty-two shale samples were collected from the YQ-1 borehole in the Yuqia Coalfield, northern Qaidam Basin. The total organic carbon (TOC) contents, pore structure parameters, and fractal characteristics of the samples were investigated using TOC analysis, low-temperature nitrogen adsorption experiments, and fractal analysis. The results show that the average pore size of the Shimengou shales varied from 8.149 nm to 20.635 nm with a mean value of 10.74 nm, which is considered mesopore-sized. The pores of the shales are mainly inkbottle- and slit-shaped. The sedimentary environment plays an essential role in controlling the TOC contents of the low maturity shales, with the TOC values of shales from deep to semi-deep lake facies (mean: 5.23%) being notably higher than those of the shore-shallow lake facies (mean: 0.65%). The fractal dimensions range from 2.4639 to 2.6857 with a mean of 2.6122, higher than those of marine shales, which indicates that the pore surface was rougher and the pore structure more complex in these continental shales. The fractal dimensions increase with increasing total pore volume and total specific surface area, and with decreasing average pore size. With increasing TOC contents in shales, the fractal dimensions increase first and then decrease, with the highest value occurring at 2% of TOC content, which is in accordance with the trends between the TOC and both total specific surface area and total pore volume. The pore structure complexity and pore surface roughness of these low-maturity shales would be controlled by the combined effects of both sedimentary environments and the TOC contents.

Keywords shale gas      pore structure      fractal dimension      Yuqia Coalfield      Jurassic      northern Qaidam Basin     
Corresponding Author(s): Longyi SHAO   
Just Accepted Date: 29 November 2016   Online First Date: 26 December 2016    Issue Date: 23 January 2018
 Cite this article:   
Haihai HOU,Longyi SHAO,Yonghong LI, et al. The pore structure and fractal characteristics of shales with low thermal maturity from the Yuqia Coalfield, northern Qaidam Basin, northwestern China[J]. Front. Earth Sci., 2018, 12(1): 148-159.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-016-0617-y
https://academic.hep.com.cn/fesci/EN/Y2018/V12/I1/148
Fig.1  The location of the studied site and tectonic position of the Yuqia Coalfield, northern Qaidam Basin.
Fig.2  The lithology and sedimentary environments of the Shimengou Formation, as well as the sampled positions of the YQ-1 borehole.
Sample No. Depth/m TOC/% Ro/% As
/m2·g?1
Vt
/10?3cm3·g?1
Sa
/nm
Amic
/m2·g?1
Vmic
/10?3cm3·g?1
YQ-1-1 475.5?476.5 8.43 3.0094 17.756 20.635 1.217 0.883
YQ-1-2 479.5?480.5 6.88 4.3426 21.978 17.559 2.167 1.526
YQ-1-3 483.5?484.5 2.98 0.64 2.2662 12.469 18.738 1.209 0.842
YQ-1-4 491.5?492.5 9.35 12.3751 31.527 11.284 6.337 4.840
YQ-1-5 495.5?496.5 5.92 0.44 12.5456 31.327 11.238 6.433 4.895
YQ-1-6 499.5?500.5 6.12 9.1602 25.06 11.09 5.145 4.046
YQ-1-7 503.5?504.5 3.75 0.39 17.7593 34.247 8.611 10.145 7.669
YQ-1-8 507.5?508.5 8.11 5.8828 19.086 11.66 3.301 2.521
YQ-1-9 511.5?512.5 3.23 0.37 12.7104 32.48 10.235 7.476 5.875
YQ-1-10 515.5?516.5 2.83 14.3149 35.006 9.901 8.493 6.700
YQ-1-11 519.5?520.5 1.81 0.40 18.3285 38.307 8.483 11.419 9.051
YQ-1-12 523.5?524.5 4.76 12.9194 30.924 8.946 7.824 6.058
YQ-1-13 527.5?528.5 3.83 0.36 14.0817 32.749 8.662 8.842 6.833
YQ-1-14 584.5?585.5 0.32 8.3136 18.621 8.993 5.255 4.140
YQ-1-15 588.5?589.5 0.64 0.66 12.9595 25.971 8.61 7.597 5.760
YQ-1-16 592.5?593.5 0.55 13.9949 29.267 8.59 8.628 6.848
YQ-1-17 615.5?616.5 0.41 12.7884 25.421 8.149 7.954 6.341
YQ-1-18 620.5?621.5 1.24 0.65 20.2712 36.244 7.794 12.138 9.136
YQ-1-19 624.5?625.5 0.27 11.7147 27.412 9.197 7.211 5.630
YQ-1-20 628.5?629.5 0.44 12.3261 27.758 9.029 7.405 5.854
YQ-1-21 635.5?636.5 1.12 0.48 13.0032 30.258 9.078 7.969 6.216
YQ-1-22 641.5?642.5 0.86 9.1144 22.727 9.705 5.483 4.260
Tab.1  TOC contents, vitrinite reflectance, and pore parameters of the shale samples determined with the nitrogen adsorption experiment.
Fig.3  The nitrogen adsorption-desorption curves of typical shale samples from the Shimengou Formation.
Fig.4  Double logarithmic curves between adsorption volume and Po/P for typical shale samples.
Sample No. A D = 3+ A D = 3+ 3A R2
YQ-1-1 ?0.5361 2.4639 1.3917 0.9968
YQ-1-2 ?0.5126 2.4874 1.4622 0.9975
YQ-1-3 ?0.5291 2.4709 1.4127 0.9946
YQ-1-4 ?0.3763 2.6237 1.8711 0.9971
YQ-1-5 ?0.3685 2.6315 1.8945 0.9964
YQ-1-6 ?0.3925 2.6075 1.8225 0.9960
YQ-1-7 ?0.3361 2.6639 1.9917 0.9875
YQ-1-8 ?0.4372 2.5628 1.6884 0.9880
YQ-1-9 ?0.3802 2.6198 1.8594 0.9920
YQ-1-10 ?0.3718 2.6282 1.8846 0.9915
YQ-1-11 ?0.3444 2.6556 1.9668 0.9809
YQ-1-12 ?0.3953 2.6047 1.8141 0.9784
YQ-1-13 ?0.3758 2.6242 1.8726 0.9697
YQ-1-14 ?0.3533 2.6467 1.9401 0.9842
YQ-1-15 ?0.3401 2.6599 1.9797 0.9831
YQ-1-16 ?0.3475 2.6525 1.9575 0.9859
YQ-1-17 ?0.3387 2.6613 1.9839 0.9785
YQ-1-18 ?0.3143 2.6857 2.0571 0.9680
YQ-1-19 ?0.3669 2.6331 1.8993 0.9857
YQ-1-20 ?0.3601 2.6399 1.9197 0.9831
YQ-1-21 ?0.3683 2.6317 1.8951 0.9805
YQ-1-22 ?0.3848 2.6152 1.8456 0.9903
Tab.2  Fractal dimensions of the shale samples of the Yuqia Coalfield calculated with the fractal FHH equation
Fig.5  Relationship between the TOC contents of shales and burial depth based on the sedimentary environments in the Yuqia Coalfield of the northern Qaidam Basin.
Fig.6  Relationships between the specific surface areas, pore volumes, and average pore sizes of the shale samples from the Yuqia Coalfield, northern Qaidam Basin.
Fig.7  Relationships between the specific surface areas, pore volumes, the average pore sizes, and the fractal dimensions of the shale samples from the Yuqia Coalfield, northern Qaidam Basin.
Fig.8  Relationship between the fractal dimensions and TOC contents of the shales from the Shimengou Formation in the Yuqia Coalfield, northern Qaidam Basin.
Fig.9  Relationships of the TOC contents with the total specific surface areas and the total pore volumes of the shales from the Shimengou Formation in the Yuqia Coalfield, northern Qaidam Basin.
1 Barrett E P, Joyner  L G, Halenda  P P (1951). The determination of pore volume and area distribution in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc, 73(1): 373–380
https://doi.org/10.1021/ja01145a126
31 Bernard S, Horsfield  B, Schulz H M,  Wirth R,  Schreiber A,  Sherwood N (2012). Geochemical evolution of organic-rich shales with increasing maturity: a STXM and TEM study of the Posidonia Shale (Lower Toarcian, northern Germany). Mar Pet Geol, 31(1): 70–89
https://doi.org/10.1016/j.marpetgeo.2011.05.010
2 Bowker K A (2007). Barnett shale gas production, Fort Worth Basin: issues and discussion. AAPG Bull, 91(4): 523–533
https://doi.org/10.1306/06190606018
3 Brunauer S, Emmett  P H, Teller  E (1938). Adsorption of gases in multimolecular layers. J Am Chem Soc, 60(2): 309–319
https://doi.org/10.1021/ja01269a023
4 Cao T T, Song  Z G, Luo  H Y, Liu  G X (2015). The differences of microscopic pore structure characteristics of coal, oil shale and shales and their storage mechanisms. Natural Gas Geoscience, 26(11): 2208–2218 (in Chinese)
5 Chalmers G R, Bustin  R M (2008). Lower Cretaceous gas shales in northeastern British Columbia, Part I: geological controls on methane sorption capacity. Bull Can Pet Geol, 56(1): 1–21
https://doi.org/10.2113/gscpgbull.56.1.1
6 Chalmers G R, Bustin  R M, Power  I M (2012). Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. AAPG Bull, 96(6): 1099–1119
https://doi.org/10.1306/10171111052
7 Donaldson E C,  Kendall R F,  Baker B A,  Manning F S (1975). Surface-area measurement of geological matereials. Soc Pet Eng J, 15(02): 111–116
https://doi.org/10.2118/4987-PA
8 Dow W G (1977). Kerogen studies and geological interpretations. J Geochem Explor, 7(2): 79–99
https://doi.org/10.1016/0375-6742(77)90078-4
9 Fildani A, Hanson  A D, Chen  Z Z, Moldowan  J D, Graham  S A, Arriola  P R (2005). Geochemical characteristics of oil and source rocks and implication for petroleum system, Talara basin, northwest Peru. AAPG Bull, 89(11): 1519–1545
https://doi.org/10.1306/06300504094
10 Gauden P A, Terzyk  A P, Rychlicki  G (2001). The new correlation between microporosity of strictly microporous activated carbons and fractal dimension on the basis of the Polanyi-Dubinin theory of adsorption. Carbon, 39(2): 267–278
https://doi.org/10.1016/S0008-6223(00)00122-6
11 Gregg S J, Sing  K S W (1982). Adsorption, Surface Area and Porosity (2nd ed). London: Academic Press, 42–55
12 Li A, Ding  W L, He  J H, Dai  P, Yin S,  Xie F (2016). Investigation of pore structure and fractal characteristics of organic-rich shale reservoirs: a case study of Lower Cambrian Qiongzhusi Formation in Malong block of eastern Yunnan Province, South China. Mar Pet Geol, 70: 46–57
https://doi.org/10.1016/j.marpetgeo.2015.11.004
13 Li M, Shao  L Y, Lu  J, Spiro B,  Wen H J,  Li Y H (2014). Sequence stratigraphy and paleogeography of the Middle Jurassic coal measures in the Yuqia Coalfield, northern Qaidam Basin, northwestern China. AAPG Bull, 98(12): 2531–2550
https://doi.org/10.1306/06041413129
14 Li Y J, Li  X J, Wang  Y L, Yu  Q C (2015). Effects of composition and pore structure on the reservoir gas capacity of Carboniferous shale from Qaidam Basin, China. Mar Pet Geol, 62: 44–57
https://doi.org/10.1016/j.marpetgeo.2015.01.011
15 Liang L X, Xiong  J, Liu X J (2015). An investigation of the fractal characteristics of the Upper Ordovician Wufeng Formation shale using nitrogen adsorption analysis. J Nat Gas Sci Eng, 27(10): 402–409
https://doi.org/10.1016/j.jngse.2015.07.023
16 Liu S X, Zhong  J H, Ma  Y S, Yin  C M, Liu  C L, Li  Z X, Liu  X, Li Y,  Liu X G (2015a). Study of microscopic pore structure and adsorption isothermal of carboniferous shale, Eastern Qaidam Basin. Journal of China University of Petroleum, 39(1): 33–42 (in Chinese)
17 Liu X J, Xiong  J, Liang L X (2015b). Investigation of pore structure and fractal characteristics of organic-rich Yanchang Formation shale in central China by nitrogen adsorption/desorption analysis. J Nat Gas Sci Eng, 22: 62–72
https://doi.org/10.1016/j.jngse.2014.11.020
18 Loucks R G, Reed  R M, Ruppel  S C, Hammes  U (2012). Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull, 96(6): 1071–1098
https://doi.org/10.1306/08171111061
19 Luo C, Liu  S G, Sun  W, Ran B,  Wang S Y,  Yang D, Bai  Z Q, Ye  Y C, Zhang  X, Deng B (2014). Pore structure characterization of black shale in the Lower Cambrian Niutitang Formation in western Hubei and eastern Chongqing area. Journal of Northeast Petroleum University, 38(2): 8–17 (in Chinese)
20 Micromeritics Instrument Corporation (2012). TriStarII 3020 Operator’s Manual. Georgia: C15–C20
21 Milliken K L, Rudnicki  M, Awwiller D N,  Zhang T (2013). Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvains. AAPG Bull, 97(2): 177–200
https://doi.org/10.1306/07231212048
22 Montgomery S L,  Jarvie D M,  Bowker K A,  Pollastro R M (2005). Mississippian Barnett shale, Fort Worth Basin, North-Central Texas: gas-shale play with multi-trillion cubic foot potential. AAPG Bull, 89(2): 155–175
https://doi.org/10.1306/09170404042
23 Nakagawa T, Komaki  I, Sakawa M,  Nishikawa K (2000). Small angle X-ray scattering sudy on change of fractal property of Witbank coal with heat treatment. Fuel, 79(11): 1341–1346
https://doi.org/10.1016/S0016-2361(99)00269-0
24 Pfeifer P, Avnir  D (1983). Chemistry in noninteger dimensions between two and three. I. Fractal theory of heterogeneous surfaces. J Chem Phys, 79(7): 3558–3565
https://doi.org/10.1063/1.446210
25 Pyun S I, Rhee  C K (2004). An investigation of fractal characteristics of mesoporous carbon electrodes with various pore structures. Electrochim Acta, 49(24): 4171–4180
https://doi.org/10.1016/j.electacta.2004.04.012
26 Qi H, Ma  J, Wong P Z (2002). Adsorption isotherms of fractal surfaces. Colloid Surface A, 206(1‒3): 401–407 
https://doi.org/10.1016/S0927-7757(02)00063-8
27 Rigby S P (2005). Predicting surface diffusivities of molecules from equilibrium adsorption isotherms. Colloid Surface A, 262(1‒3): 139–149
https://doi.org/10.1016/j.colsurfa.2005.04.021
28 Shao L Y, Li  M, Li Y H,  Zhang Y P,  Lu J, Zhang  W L, Tian  Z, Wen H J (2014). Geological characteristics and controlling factors of shale gas in the Jurassic of the northern Qaidam Basin. Earth Sci Front, 21(4): 311–322 (in Chinese)
29 Shao L Y, Liu  L, Wen H J,  Li Y H,  Zhang W L,  Li M (2016). Characteristics and influencing factors of nanopores in the Midddle Jurassic Shimengou shale in Well YQ-1 of the northern Qaidam Basin. Earth Sci Front, 23(1): 164–173 (in Chinese)
30 Sing K S W (1982). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem, 54(11): 2201–2218
https://doi.org/10.1351/pac198254112201
32 Tang X L, Jiang  Z X, Li  Z, Gao Z Y,  Bai Y Q,  Zhao S, Feng  J (2015). The effect of the variation in material composition on the heterogeneous pore structure of high-maturity shale of the Silurian Longmaxi formation in the southeastern Sichuan Basin, China. J Nat Gas Sci Eng, 23: 464–473
https://doi.org/10.1016/j.jngse.2015.02.031
33 Wang M, Xue  H T, Tian  S S, Wilkins  R W T, Wang  Z W (2015). Fractal characteristics of Upper Cretaceous lacustrine shale from the Songliao Basin, NE China. Mar Pet Geol, 67: 144–153
https://doi.org/10.1016/j.marpetgeo.2015.05.011
34 Wang X Z, Gao  S L, Gao  C (2014). Geological features of Mesozoic lacustrine shale gas in south of Ordos Basin, NW China. Petrol Explor Develop, 41(3): 326–337
https://doi.org/10.1016/S1876-3804(14)60037-9
35 Wu J G, Liu  D M, Yao  Y B (2014). Characteristics and controlling factors of nanopores in shales in Weibei, Ordos Basin. Oil & Gas Geology, 35(4): 542–550 (in Chinese)
36 Xiao Z H, Wang  C H, Yang  F R, Feng  T, Wang Q R,  Huang Y R,  Chen X Y,  Deng Y (2013). Reservoir conditions of shale gas in Lower Cambrian Niutitang Formation, northwestern Hunan. Acta Geol Sin, 87(10): 1612–1623 (in Chinese)
37 Xie H P (1996). A Study for Fractal and Rock Mechanics. Beijing: Science Publishing House, 93–95 (in Chinese)
38 Yang F, Ning  Z F, Liu  H Q (2014). Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China. Fuel, 115(1): 378–384
https://doi.org/10.1016/j.fuel.2013.07.040
39 Yao Y B, Liu  D M, Tang  D Z, Tang  S H, Huang  W H (2008). Fractal characterization of adsorption-pores of coals from North China: an investigation on CH4 adsorption capacity of coals. Int J Coal Geol, 73(1): 27–42
https://doi.org/10.1016/j.coal.2007.07.003
40 Zhang D W, Li  Y X, Zhang  J C, Qiao  D W, Jiang  W L, Zhang  J F (2012). The Evaluation of Shale Gas Resources and Potential Investigation in China. Beijing: Geology Publishing House, 70–78 (in Chinese)
41 Zhang J C, Jin  Z J, Yuan  M S (2004). Reservoir mechanism of shale gas and its distribution. Natural Gas Industry, 24(7): 15–18 (in Chinese)
42 Zhu X M (2008). Sedimentary Petrology (4th ed). Beijing: Petroleum Industry Press, 208–286 (in Chinese)
[1] Guanxu CHEN, Jinhai LUO, Huan XU, Jia YOU, Yifei LI, Zichen CHE. Geological significance of the former Xiong’er Volcanic Belt on the southwestern margin of the North China Craton[J]. Front. Earth Sci., 2019, 13(1): 191-208.
[2] Chang’an SHAN, Tingshan ZHANG, Xing LIANG, Dongchu SHU, Zhao ZHANG, Xiangfeng WEI, Kun ZHANG, Xuliang FENG, Haihua ZHU, Shengtao WANG, Yue CHEN. Effects of nano-pore system characteristics on CH4 adsorption capacity in anthracite[J]. Front. Earth Sci., 2019, 13(1): 75-91.
[3] Hongchun ZHU, Yipeng ZHAO, Haiying LIU. Scale characters analysis for gully structure in the watersheds of loess landforms based on digital elevation models[J]. Front. Earth Sci., 2018, 12(2): 431-443.
[4] S. ÖZTÜRK. Earthquake hazard potential in the Eastern Anatolian Region of Turkey: seismotectonic b and Dc-values and precursory quiescence Z-value[J]. Front. Earth Sci., 2018, 12(1): 215-236.
[5] Chang’an SHAN,Tingshan ZHANG,Yong WEI,Zhao ZHANG. Shale gas reservoir characteristics of Ordovician-Silurian formations in the central Yangtze area, China[J]. Front. Earth Sci., 2017, 11(1): 184-201.
[6] Kongyou WU, Douglas PATON, Ming ZHA. Unconformity structures controlling stratigraphic reservoirs in the north-west margin of Junggar basin, North-west China[J]. Front Earth Sci, 2013, 7(1): 55-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed