Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2018, Vol. 12 Issue (2) : 431-443    https://doi.org/10.1007/s11707-018-0696-x
RESEARCH ARTICLE
Scale characters analysis for gully structure in the watersheds of loess landforms based on digital elevation models
Hongchun ZHU1(), Yipeng ZHAO1, Haiying LIU2()
1. College of Geometrics, Shandong University of Science and Technology, Qingdao 266590, China
2. College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
 Download: PDF(4907 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Scale is the basic attribute for expressing and describing spatial entity and phenomena. It offers theoretical significance in the study of gully structure information, variable characteristics of watershed morphology, and development evolution at different scales. This research selected five different areas in China’s Loess Plateau as the experimental region and used DEM data at different scales as the experimental data. First, the change rule of the characteristic parameters of the data at different scales was analyzed. The watershed structure information did not change along with a change in the data scale. This condition was proven by selecting indices of gully bifurcation ratio and fractal dimension as characteristic parameters of watershed structure information. Then, the change rule of the characteristic parameters of gully structure with different analysis scales was analyzed by setting the scale sequence of analysis at the extraction gully. The gully structure of the watershed changed with variations in the analysis scale, and the change rule was obvious when the gully level changed. Finally, the change rule of the characteristic parameters of the gully structure at different areas was analyzed. The gully fractal dimension showed a significant numerical difference in different areas, whereas the variation of the gully branch ratio was small. The change rule indicated that the development degree of the gully obviously varied in different regions, but the morphological?structure was basically similar.

Keywords watershed      scale features      gully structure      bifurcation ratio      fractal dimension      scale sequence     
Corresponding Author(s): Hongchun ZHU,Haiying LIU   
Just Accepted Date: 02 March 2018   Online First Date: 09 April 2018    Issue Date: 09 May 2018
 Cite this article:   
Hongchun ZHU,Yipeng ZHAO,Haiying LIU. Scale characters analysis for gully structure in the watersheds of loess landforms based on digital elevation models[J]. Front. Earth Sci., 2018, 12(2): 431-443.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-018-0696-x
https://academic.hep.com.cn/fesci/EN/Y2018/V12/I2/431
Fig.1  (a) Distribution of five study areas. (b)–(f) DEM image of watershed in TA-b-TA-f, respectively.
Test area Landform type Feature parameter
Catchment area/km2 Mean slope/(°) Relief/m
TA-b Loess flat-topped ridge and gully 15.84 15.74 232.30
TA-c Loess ridge and gully 19.32 26.57 282.56
TA-d Loess hill ridge and gully 18.14 24.00 319.10
TA-e Loess hill and gully 19.07 28.01 194.46
TA-f Loess hill and gully 20.65 28.20 183.49
Tab.1  Major geomorphologic features of five watersheds extracted from five test areas in Shaanxi Province, China
Fig.2  Diagram of the research method.
Test area Scale
(resolution/m)
Feature parameter
Gully level Mean length ratio Bifurcation ratio Fractal dimension
Yijun 1:10,000 (5 m) 3 2.96 5.43 1.56
1:10,000 (10 m) 3 2.92 5.34 1.56
1:50,000 (25 m) 3 2.68 5.45 1.72
1:50,000 (50 m) 3 2.64 5.28 1.71
Ganquan 1:10,000 (5 m) 4 1.55 4.43 3.41
1:10,000 (10 m) 4 1.55 4.43 3.41
1:50,000 (25 m) 4 1.52 4.43 3.54
1:50,000 (50 m) 4 1.51 4.38 3.59
Yanchuan 1:10,000 (5 m) 4 2.02 5.51 2.43
1:10,000 (10 m) 4 2.02 5.51 2.42
1:50,000 (25 m) 4 1.82 5.47 2.85
1:50,000 (50 m) 4 1.79 5.45 2.92
Suide 1:10,000 (5 m) 3 3.12 7.50 1.77
1:10,000 (10 m) 3 3.15 7.30 1.73
1:50,000 (25 m) 3 3.24 7.64 1.72
1:50,000 (50 m) 3 3.20 7.30 1.71
Jiaxian 1:10,000 (5 m) 3 1.97 4.34 2.17
1:10,000 (10 m) 3 1.88 4.07 2.22
1:50000 (25 m) 3 1.81 4.33 2.48
1:50000 (50 m) 3 1.74 4.42 2.70
Tab.2  Watershed information list based on different data scales
Fig.3  The bifurcation ratio of different data scales.
Fig.4  The fractal dimension of different data scales.
Fig.5  The gully network of Ganquan area by different scales of analysis. The maximum flow accumulation of (a) 5.0%, (b) 1.0%, and (c) 0.1%.
Fig.6  The extraction result of watershed structure, with the analysis scale less than 0.1%.
Test area The analysis scale range
Gully level 5 to 4 Gully level 4 to 3 Gully level 3 to 2
Yijun (0.30%, 0.50%) (0.70%, 0.90%) (2.00%, 2.20%)
Ganquan (0.10%, 0.30%) (1.10%, 1.30%) (3.40%, 3.60%)
Yanchuan (0.10%, 0.30%) (0.70%, 0.90%) (2.00%, 2.20%)
Suide (0.10%, 0.30%) (0.70%, 0.90%) (4.60%, 4.80%)
Jiaxian (0.10%, 0.30%) (0.70%, 0.90%) (2.00%, 2.20%)
Tab.3  The analysis scale range in the change of gully level
Analysis scale Fractal dimension of test area
Yijun Ganquan Yanchuan Suide Jiaxian
2.00% 1.28 1.70 0.96 1.45 1.44
1.70% 1.46 1.64 1.15 1.6 1.45
1.50% 1.53 1.67 1.18 1.43 1.53
1.30% 1.66 1.39 1.19 1.51 1.59
1.10% 1.78 1.68 1.18 1.5 1.59
0.90% 1.55 1.83 1.28 1.52 1.64
0.70% 1.82 1.69 1.77 1.56 1.66
0.50% 1.93 1.71 1.27 1.59 1.69
0.30% 2.11 1.49 1.35 1.76 1.64
0.10% 1.85 1.77 1.34 2.26 1.79
Tab.4  The fractal dimension of the watersheds at different analysis scales
Fig.7  The fractal dimension of different analysis scales. (a) Yijun; (b) Ganquan; (c) Yanchuan; (d) Suide; (e) Jiaxian.
Analysis scale Bifurcation ratio of test area
Yijun Ganquan Yanchuan Suide Jiaxian
2.00% 4.17 4.00 3.88 4.38 3.88
1.70% 4.50 4.25 4.50 4.63 4.40
1.50% 4.50 4.50 4.50 4.88 4.50
1.30% 4.84 4.84 4.80 5.38 5.10
1.10% 5.67 3.07 5.25 5.75 5.72
0.90% 6.00 3.17 5.84 5.9 6.22
0.70% 3.92 3.33 3.76 3.63 3.80
0.50% 4.24 4.26 3.93 3.68 3.83
0.30% 3.29 4.64 4.53 4.20 4.60
0.10% 4.03 4.00 4.03 4.67 3.89
Tab.5  The bifurcation ratio of watershed in different scales of analysis
Fig.8  The bifurcation ratio of different analysis scales.
Test area Fractal dimension Bifurcation ratio
Correlation coefficient Coefficient of?variation Mean value Correlation coefficient Coefficient of?variation Mean value
Yijun ?0.89 0.15 1.70 0.29 0.18 4.52
Ganquan ?0.01 0.08 1.66 0.08 0.16 4.01
Yanchuan ?0.63 0.17 1.27 0.09 0.15 4.50
Suide ?0.70 0.15 1.62 0.25 0.17 4.71
Jiaxian ?0.95 0.07 1.60 0.10 0.18 4.59
Tab.6  Results of the correlation analysis
1 Altaf F, Meraj G, Romshoo S A (2014). Morphometric analysis to infer hydrological behaviour of Lidder watershed, Western Himalaya, India. Geography Journal, 2013(2013): 1–12
2 Babu K J, Sreekumar S, Aslam A (2016). Implication of drainage basin parameters of a tropical river basin of South India. Appl Water Sci, 6(1): 67–75
https://doi.org/10.1007/s13201-014-0212-8
3 Band L E (1989). A terrain-based watershed information system. Hydrol Processes, 3(2): 151–162
https://doi.org/10.1002/hyp.3360030205
4 Bultreys T, De Boever W, Cnudde V (2016). Imaging and image-based fluid transport modeling at the pore scale in geological materials: a practical introduction to the current state-of-the-art. Earth Sci Rev, 155: 93–128
https://doi.org/10.1016/j.earscirev.2016.02.001
5 Chen Y Z (1984). The classification of gully in hilly loess region in the middle reaches of the yellow river. Scientla Geographica Sinica, (04): 321–327 (in Chinese)
6 Cheng J C, Jiang M Q (1986). Watershed Topography System. Beijing: Science Press (in Chinese)
7 Dungan J L, Perry J N, Dale M R T, Legendre P, Citron-Pousty S, Fortin M J, Jakomulska A, Miriti M, Rosenberg M S (2002). A balanced view of scale in spatial statistical analysis. Ecography, 25(5): 626–640
https://doi.org/10.1034/j.1600-0587.2002.250510.x
8 Frankl A, Poesen J, Deckers J, HaileM,Nyssen J (2012). Gully head retreat rates in the semi-arid highlands of northern Ethiopia. Geomorphology, 173‒174: 185–195
https://doi.org/10.1016/j.geomorph.2012.06.011
9 Gao J (1997). Resolution and accuracy of terrain representation by grid DEMs at a micro-scale. Int J Geogr Inf Sci, 11(2): 199–212
https://doi.org/10.1080/136588197242464
10 Hong S Z, Hong S M (1988). A study of fractals in geoscience: drainages, earthquakes and others. Exploration of Nature, (02): 33–40 (in Chinese)
11 Horton R E (1945). Erosional development of streams and their drainage basins; Hydrophysical approach to quantitative morphology. Bull Geol Soc Am, 56(3): 275–370
https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
12 Huang C C, Pang J, Zha X, Su H, Zhou Y (2012). Development of gully systems under the combined impact of monsoonal climatic shift and neo-tectonic uplift over the Chinese Loess Plateau. Quat Int, 263(12): 46–54
https://doi.org/10.1016/j.quaint.2011.06.022
13 La Barbera P, Rosso R (1989). On the fractal dimension of stream networks. Water Resour Res, 25(4): 735–741
https://doi.org/10.1029/WR025i004p00735
14 Li L, Ying S (2005). Fundamental problem on spatial scale. Geomatics and Information Science of Wuhan University, 30(03): 199–203 (in Chinese)
15 Li Z J, Liu J, Yang Z (2014). Estimating the fractal dimension value of valley based on DEM data. Geomatics and Information Science of Wuhan University, 39(11): 1277–1281 (in Chinese)
16 Lin S, Jing C, Coles N A, Chaplot V, Moore N J, Wu J (2013). Evaluating DEM source and resolution uncertainties in the Soil and Water Assessment Tool. Stochastic Environ Res Risk Assess, 27(1): 209–221
https://doi.org/10.1007/s00477-012-0577-x
17 Lu X J, Li H G, Chen S P, (2000). The initial research on the geographical spatial-temporal system spatial-temporal hierarchy. Geo-Information Science, 2(1): 60–66 (in Chinese)
18 Lu Z C, Jia S F, Huang K X (1991). The Drainage Geomorphic System. Dalian: Dalian Publishing House (in Chinese)
19 Mandelbrot B B (1967). How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science, 156 (3775): 636–638
https://doi.org/10.1126/science.156.3775.636
20 Mandelbrot B B, Wheeler J A (1982). The fractal geometry of nature. J R Stat Soc [Ser A], 147(4): 468–469
21 Oguchi T (2015). Drainage density and relative relief in humid steep mountains with frequent slope failure. Earth Surf Process Landf, 2(22): 107–120
22 Pan B, Hu Z, Wang J, Vandenberghe J, Hu X, Wen Y, Li Q, Cao B (2012). The approximate age of the planation surface and the incision of the Yellow River. Palaeogeogr Palaeoclimatol Palaeoecol, 356– 357(9): 54–61
https://doi.org/10.1016/j.palaeo.2010.04.011
23 Schuller D J, Rao A R, Jeong G D (2001). Fractal characteristics of dense stream networks. J Hydrol (Amst), 243(1–2): 1–16
https://doi.org/10.1016/S0022-1694(00)00395-4
24 Sen Roy S, Rouault M (2013). Spatial patterns of seasonal scale trends in extreme hourly precipitation in South Africa. Appl Geogr, 39: 151–157
https://doi.org/10.1016/j.apgeog.2012.11.022
25 Sharma A, Tiwari K N, Bhadoria P B S (2011). Determining the optimum cell size of digital elevation model for hydrologic application. J Earth Syst Sci, 120(4): 573–582
https://doi.org/10.1007/s12040-011-0092-3
26 Shen X H, Zou L J, Zhang G F, Su N, Wu W Y, Yang S F (2011). Fractal characteristics of the main channel of Yellow River and its relation to regional tectonic evolution. Geomorphology, 127(1–2): 64–70
https://doi.org/10.1016/j.geomorph.2010.12.007
27 Stevens T, Carter A, Watson T P, Vermeesch P, Andò S, Bird A F, Lu H, Garzanti E, Cottam M A, Sevastjanova I (2013). Genetic linkage between the Yellow River, the Mu Us desert and the Chinese Loess Plateau. Quat Sci Rev, 78(19): 355–368
https://doi.org/10.1016/j.quascirev.2012.11.032
28 Strahler A N (1957). Quantitative analysis of watershed geomorphology. Eos (Wash DC), 6(38): 913–920
29 Strahler A N (1958). Dimensional Analysis Applied to Fluvially Eroded Landforms. Geol Soc Am Bull, 69(3): 279–300
https://doi.org/10.1130/0016-7606(1958)69[279:DAATFE]2.0.CO;2
30 Tang G, Liu X, Fang L, Luo M (2006). A review on the scale issue in DEMs and digital terrain analysis. Geomatics and Information Science of Wuhan University, 31(12): 1059–1066
31 Tian S M, Su X H, Wang W H, Lai R X (2012). Application of fractal theory in the river regime in the Lower Yellow River. Appl Mech Mater, 190 ‒ 191: 1238–1243
https://doi.org/10.4028/www.scientific.net/AMM.190-191.1238
32 Wang L, Fan W, Xu X, Liu Y (2014). The spatial scaling effect of canopy FAPAR retrieved by remote sensing. In: Geoscience and Remote Sensing Symposium. IEEE: 804–807
33 William D C (2011). Scaling relations between riparian vegetation and stream order in the Whitewater River network. Wildl Soc Bull, 2(32): 594–597
34 Xiong L Y, Tang G A, Zhu A X, Li J L, Duan J Z, Qian Y Q (2016). Landform-derived placement of electrical resistivity prospecting for paleotopography reconstruction in the loess landforms of China. J Appl Geophys, 131: 1–13
https://doi.org/10.1016/j.jappgeo.2016.05.003
35 Xiong L Y, Tang G A, Zhu A X, Yuan B Y Lu B Y, Dang T M (2017). Paleotopographic controls on modern gully evolution in the loess landforms of China. Sci China Earth Sci, 60(3): 438–451
https://doi.org/10.1007/s11430-016-0211-5
36 Zhou Q M, Lees B, Tang G A (2008). Advances in digital terrain analysis. Lecture Notes in Geoinformation & Cartography, 2008: 3–10
37 Zhu H C, Huang W, Liu H Y (2018). Loess terrain segmentation from digital elevation models based on the region growth method. Phys Geogr, 39(1): 51–66 doi:10.1080/02723646.2017.1342215
38 Zhu H C, Tang G A, Qian K J, Liu H Y (2014). Extraction and analysis of gully head of Loess Plateau in China based on digital elevation model. Chin Geogr Sci, 24(3): 328–338
https://doi.org/10.1007/s11769-014-0663-8
[1] Melinda LAITURI. The hydrosocial cycle in rapidly urbanizing watersheds[J]. Front. Earth Sci., 2020, 14(2): 256-267.
[2] Soheila SAFARYAN, Mohsen TAVAKOLI, Noredin ROSTAMI, Haidar EBRAHIMI. Evaluation of climate change effects on extreme flows in a catchment of western Iran[J]. Front. Earth Sci., 2019, 13(3): 523-534.
[3] Haihai HOU, Longyi SHAO, Yonghong LI, Zhen LI, Wenlong ZHANG, Huaijun WEN. The pore structure and fractal characteristics of shales with low thermal maturity from the Yuqia Coalfield, northern Qaidam Basin, northwestern China[J]. Front. Earth Sci., 2018, 12(1): 148-159.
[4] S. ÖZTÜRK. Earthquake hazard potential in the Eastern Anatolian Region of Turkey: seismotectonic b and Dc-values and precursory quiescence Z-value[J]. Front. Earth Sci., 2018, 12(1): 215-236.
[5] Weizhong SU. Measuring the past 20 years of urban-rural land growth in flood-prone areas in the developed Taihu Lake watershed, China[J]. Front. Earth Sci., 2017, 11(2): 361-371.
[6] Fayuan LI,Guoan TANG,Chun WANG,Lingzhou CUI,Rui ZHU. Slope spectrum variation in a simulated loess watershed[J]. Front. Earth Sci., 2016, 10(2): 328-339.
[7] Brooke B. OSBORNE,Jill S. BARON,Matthew D. WALLENSTEIN. Moisture and temperature controls on nitrification differ among ammonia oxidizer communities from three alpine soil habitats[J]. Front. Earth Sci., 2016, 10(1): 1-12.
[8] A.O AISUEBEOGUN, I.C EZEKWE. Application of Basin Morphometry Laws in catchments of the south-western quadrangle of south-eastern Nigeria[J]. Front Earth Sci, 2013, 7(3): 361-374.
[9] Xiaodong HUANG, Hongjie XIE, Guoqing ZHANG, Tiangang LIANG. A novel solution for outlier removal of ICESat altimetry data: a case study in the Yili watershed, China[J]. Front Earth Sci, 2013, 7(2): 217-226.
[10] Aiping PANG, Chuihui LI, Tao SUN, Zhifeng YANG. An improved ET control method to determine the water-saving potential for farmland in Baiyangdian Watershed, China[J]. Front Earth Sci, 2013, 7(2): 151-158.
[11] Xiaoduo PAN, Xin Li, Xiaokang SHI, Xujun HAN, Lihui LUO, Liangxu WANG. Dynamic downscaling of near-surface air temperature at the basin scale using WRF–a case study in the Heihe River Basin, China[J]. Front Earth Sci, 2012, 6(3): 314-323.
[12] Mohammad Reza Mansouri Daneshvar, Ali Bagherzadeh. Evaluation of sediment yield in PSIAC and MPSIAC models by using GIS at Toroq Watershed, Northeast of Iran[J]. Front Earth Sci, 2012, 6(1): 83-94.
[13] Mohammad Reza MANSOURI DANESHVAR, Ali BAGHERZADEH. Landslide hazard zonation assessment using GIS analysis at Golmakan Watershed, northeast of Iran[J]. Front Earth Sci, 2011, 5(1): 70-81.
[14] Changbin LI, Jiaguo QI, Zhaodong FENG, Runsheng YIN, Songbing ZOU, Feng ZHANG, . Parameters optimization based on the combination of localization and auto-calibration of SWAT model in a small watershed in Chinese Loess Plateau[J]. Front. Earth Sci., 2010, 4(3): 296-310.
[15] Rebecca L. SCHNEIDER, . Integrated, watershed-based management for sustainable water resources[J]. Front. Earth Sci., 2010, 4(1): 117-125.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed