Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2020, Vol. 14 Issue (4) : 783-788    https://doi.org/10.1007/s11707-020-0829-x
RESEARCH ARTICLE
Different patterns of molecular, carbon and hydrogen isotope compositions of n-alkanes between heterotrophic plant and its hosts
Xin YANG1, Xianyu HUANG1,2()
1. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
2. Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430078, China
 Download: PDF(530 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This study investigates the molecular, carbon, and hydrogen isotope compositions of n-alkanes in eight pairs of a holoparasitic plant (Cuscuta chinensis) and its hosts. It is unexpected that C. chinensis has a higher concentration of n-alkanes than its hosts in seven of the eight pairs, and it is preferentially dominated by n-C29 alkane (representing>75% of the total n-alkanes). In addition, the d13C values of C29 alkane in C. chinensis are less negative (avg. 1.8‰) than those in the hosts, while the d2H values of C29 alkane are more negative in C. chinensis (the difference averages 48‰). We propose that the 2H-depletion of n-alkanes in the stem parasite C. chinensis may result from the utilization of stem water with less influence from evapotranspiration or the use of newly synthesized carbohydrates which is 2H-depleted relative to stored sugars. These results highlight the importance of plant nutrient status on the molecular and isotopic compositions of leaf waxes, which shed light on the (paleo)ecological potential of leaf wax d2H values.

Keywords heterotrophic plant      Cuscuta      n-alkane      carbon isotope      hydrogen isotope     
Corresponding Author(s): Xianyu HUANG   
Online First Date: 09 December 2020    Issue Date: 08 January 2021
 Cite this article:   
Xin YANG,Xianyu HUANG. Different patterns of molecular, carbon and hydrogen isotope compositions of n-alkanes between heterotrophic plant and its hosts[J]. Front. Earth Sci., 2020, 14(4): 783-788.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-020-0829-x
https://academic.hep.com.cn/fesci/EN/Y2020/V14/I4/783
Fig.1  Distribution of n-alkanes in Cuscuta and its hosts. The yellow twill-filled bars indicate Cuscuta, and the green bars indicate their hosts. (a) Sapium sebiferum; (b) Alangium chinense; (c) Debregeasia orientalis; (d) Boehmeria nivea; (e) Alchornea davidii; (f) Parthenocissus dalzielii; (g) Vitis amurensis; (h) Ampelopsis delavayana.
Fig.2  d13C29 values (a) and d2H29 values (b) in Cuscuta (pink bars) and its hosts (black bars: tree; dark bars: shrub; gray bars: vine), together with the differences of d13C29 and d2H29 values between Cuscuta and its hosts.
Sample pair Species C23 C24 C25 C26 C27 C28 C29 C30 C31 C32 C33 Sum ACLa CPIb
Pair-1 Cuscuta 0.0 12.6 1.6 19.6 1.2 37.4 670.9c 16.5 43.6 0.5 1.3 805.2 28.9 8.3
Sapium sebiferum 1.5 1.5 6.1 2.9 14.2 5.0 71.9 4.7 27.0 1.2 3.3 139.4 28.9 8.0
Pair-2 Cuscuta 7.1 2.3 14.9 4.1 32.6 13.8 273.9 4.2 13.0 0.0 0.0 365.8 28.5 14.0
Alangium chinense 0.6 0.5 2.1 1.1 9.5 4.2 57.5 4.7 29.2 1.4 2.9 113.8 29.3 8.4
Pair-3 Cuscuta 13.8 3.5 34.7 10.0 124.2 45.6 1171.6 18.6 99.9 0.0 0.0 1521.9 28.8 18.6
Debregeasia orientalis 2.0 0.8 5.7 0.9 21.8 8.6 475.2 46.8 1804.1 70.9 491.5 2930.9 31.0 20.0
Pair-4 Cuscuta 0.0 1.0 0.3 5.5 2.2 26.5 370.0 10.7 25.9 0.4 0.4 442.9 29.0 9.0
Boehmeria nivea 0.7 0.4 3.7 2.4 29.6 10.5 469.3 27.0 831.5 20.3 182.3 1577.6 30.5 23.6
Pair-5 Cuscuta 0.0 2.7 1.4 8.7 4.7 34.8 472.4 8.4 26.7 0.3 0.4 560.4 29.0 9.2
Parthenocissus dalzielii 3.2 3.5 6.6 7.7 10.9 10.3 40.0 36.4 17.6 1.6 1.6 139.8 28.7 1.3
Pair-6 Cuscuta 0.0 1.5 0.5 7.4 2.4 46.5 635.6 9.4 61.5 0.3 0.5 765.6 29.1 10.8
Vitis amurensis 0.0 0.3 0.4 3.4 3.0 96.8 495.5 27.8 520.3 5.8 18.0 1171.3 29.9 7.7
Pair-7 Cuscuta 0.0 2.3 1.3 8.9 4.0 33.9 508.8 10.2 43.5 0.5 0.8 615.0 29.0 10.0
Ampelopsis delavayana 1.8 2.2 4.9 5.7 13.6 9.9 47.0 6.9 22.9 3.1 5.4 123.7 28.9 3.3
Pair-8 Cuscuta 0.0 1.2 0.8 8.1 2.5 33.3 432.7 9.5 31.7 0.3 0.5 521.3 29.0 8.9
Alchornea davidii 1.1 3.0 3.4 17.4 2.8 17.9 93.7 15.5 55.5 5.8 13.7 233.8 29.4 2.7
Tab.1  Concentration (μg/g) of n-alkanes inthe host-Cuscuta pairs
1 F W Badeck, G Tcherkez, S Nogués, C Piel, J Ghashghaie (2005). Post-photosynthetic fractionation of stable carbon isotopes between plant organs—a widespread phenomenon. Rapid Commun Mass Spectrom, 19(11): 1381–1391
https://doi.org/10.1002/rcm.1912 pmid: 15880634
2 R T Bush, F A McInerney (2013). Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy. Geochim Cosmochim Acta, 117: 161–179
https://doi.org/10.1016/j.gca.2013.04.016
3 M A Cormier, R A Werner, P E Sauer, D R Gröcke, M C Leuenberger, T Wieloch, J Schleucher, A Kahmen (2018). 2H-fractionations during the biosynthesis of carbohydrates and lipids imprint a metabolic signal on the d2H values of plant organic compounds. New Phytol, 218(2): 479–491
https://doi.org/10.1111/nph.15016 pmid: 29460486
4 M A Cormier, R A Werner, M C Leuenberger, A Kahmen (2019). 2H-enrichment of cellulose and n-alkanes in heterotrophic plants. Oecologia, 189(2): 365–373
https://doi.org/10.1007/s00442-019-04338-8 pmid: 30659382
5 G Eglinton, R J Hamilton (1967). Leaf epicuticular waxes. Science, 156(3780): 1322–1335
https://doi.org/10.1126/science.156.3780.1322 pmid: 4975474
6 T I Eglinton, G Eglinton (2008). Molecular proxies for paleoclimatology. Earth Planet Sci Lett, 275(1–2): 1–16
https://doi.org/10.1016/j.epsl.2008.07.012
7 J R Ehleringer, C S Cook, L L Tieszen (1986). Comparative water use and nitrogen relationships in a mistletoe and its host. Oecologia, 68(2): 279–284
https://doi.org/10.1007/BF00384800 pmid: 28310140
8 G Gleixner, H J Danier, R A Werner, H L Schmidt (1993). Correlations between the 13C content of primary and secondary plant products in different cell compartments and that in decomposing basidiomycetes. Plant Physiol, 102(4): 1287–1290
https://doi.org/10.1104/pp.102.4.1287 pmid: 12231905
9 A Kahmen, T E Dawson, A Vieth, D Sachse (2011). Leaf wax n-alkane dD values are determined early in the ontogeny of Populus trichocarpa leaves when grown under controlled environmental conditions. Plant Cell Environ, 34(10): 1639–1651
https://doi.org/10.1111/j.1365-3040.2011.02360.x pmid: 21696403
10 A Kahmen, B Hoffmann, E Schefuß, S K Arndt, L A Cernusak, J B West, D Sachse (2013). Leaf water deuterium enrichment shapes leaf wax n-alkane dD values of angiosperm plants II: observational evidence and global implications. Geochim Cosmochim Acta, 111: 50–63
https://doi.org/10.1016/j.gca.2012.09.004
11 K Koch, H J Ensikat (2008). The hydrophobic coatings of plant surfaces: epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly. Micron, 39(7): 759–772
https://doi.org/10.1016/j.micron.2007.11.010 pmid: 18187332
12 C Li, Z Fu, Y Wang, H Tang, J Yan, W Gong, W Yao, R E Criss (2019). Susceptibility of reservoir-induced landslides and strategies for increasing the slope stability in the Three Gorges Reservoir Area: Zigui Basin as an example. Eng Geol, 261: 105279
https://doi.org/10.1016/j.enggeo.2019.105279
13 J Liu, Z An (2020). Comparison of different chain n-fatty acids in modern plants on the Loess Plateau of China. Front Earth Sci.
https://doi.org/10.1007/s11707-019-0801-9
14 J S Mishra (2009). Biology and management of Cuscuta species. Indian J Weed Sci, 41: 1–11
15 S L Newberry, A Kahmen, P Dennis, A Grant (2015). n-Alkane biosynthetic hydrogen isotope fractionation is not constant throughout the growing season in the riparian tree Salix viminalis. Geochim Cosmochim Acta, 165: 75–85
https://doi.org/10.1016/j.gca.2015.05.001
16 M H O’Leary (1981). Carbon isotope fractionation in plants. Royal Society of New Zealand Wellington New Zealand, 20(4): 553–567
17 Y Pu, J H Jia, J C Cao (2018). The aliphatic hydrocarbon distributions of terrestrial plants around an alpine lake: a pilot study from Lake Ximencuo, Eastern Qinghai-Tibet Plateau. Front Earth Sci, 12(3): 600–610
https://doi.org/10.1007/s11707-017-0685-5
18 D Sachse, I Billault, G J Bowen, Y Chikaraishi, T E Dawson, S J Feakins, K H Freeman, C R Magill, F A McInerney, M T Van der Meer, P Polissar, R J Robins, J P Sachs, H Schmidt, A L Sessions, J W C White, J B West, A Kahmen (2012). Molecular paleohydrology: interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms. Annu Rev Earth Planet Sci, 40(1): 221–249
https://doi.org/10.1146/annurev-earth-042711-105535
19 A L Sessions (2016). Factors controlling the deuterium contents of sedimentary hydrocarbons. Org Geochem, 96: 43–64
https://doi.org/10.1016/j.orggeochem.2016.02.012
20 B J Tipple (2013). Capturing climate variability during our ancestors’ earliest days. Proc Natl Acad Sci USA, 110(4): 1144–1145
https://doi.org/10.1073/pnas.1220747110 pmid: 23307813
21 J Zang, Y Lei, H Yang (2018). Distribution of glycerol ethers in Turpan soils: implications for use of GDGT-based proxies in hot and dry regions. Front Earth Sci, 12(4): 862–876
https://doi.org/10.1007/s11707-018-0722-z
22 B Zhao, Y Zhang, X Huang, R Qiu, Z Zhang, P A Meyers (2018). Comparison of n-alkane molecular, carbon and hydrogen isotope compositions of different types of plants in the Dajiuhu peatland, central China. Org Geochem, 124: 1–11
https://doi.org/10.1016/j.orggeochem.2018.07.008
23 H Ziegler (1995). Deuterium content in organic material of hosts and their parasites. In: Schulze E D, Caldwell M, eds. Ecophysiology of Photosynthesis. Ecological Studies, Vol 100. Berlin: Springer, 393–408
[1] Bing YANG, Xionghua ZHANG, Wenkun QIE, Yi WEI, Xing HUANG, Haodong XIA. Variabilities of carbonate δ13C signal in response to the late Paleozoic glaciations, Long’an, South China[J]. Front. Earth Sci., 2020, 14(2): 344-359.
[2] Yang PU, Jihong JIA, Jicheng CAO. The aliphatic hydrocarbon distributions of terrestrial plants around an alpine lake: a pilot study from Lake Ximencuo, Eastern Qinghai-Tibet Plateau[J]. Front. Earth Sci., 2018, 12(3): 600-610.
[3] Xianyu HUANG, Jiantao XUE, Shouyu GUO. Long chain n-alkanes and their carbon isotopes in lichen species from western Hubei Province: implication for geological records[J]. Front Earth Sci, 2012, 6(1): 95-100.
[4] Jianying MA, Wei SUN, Huiwen ZHANG, Dunsheng XIA, Chengbang AN, Fahu CHEN. Stable carbon isotope characteristics of different plant species and surface soil in arid regions[J]. Front Earth Sci Chin, 2009, 3(1): 107-111.
[5] HUANG Junhua, LUO Genming, BAI Xiao, TANG Xinyan. Organic fraction of the total carbon burial flux deduced from carbon isotopes across the Permo-Triassic boundary at Meishan, Zhejiang Province, China[J]. Front. Earth Sci., 2007, 1(4): 425-430.
[6] MA Jianying, XIA Dunsheng, CHEN Fahu, ZHANG Huiwen. Spatial distribution characteristics of stable carbon isotope compositions in desert plant Reaumuria soongorica (Pall.) Maxim.[J]. Front. Earth Sci., 2007, 1(2): 150-156.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed