Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2021, Vol. 15 Issue (3) : 705-718    https://doi.org/10.1007/s11707-020-0843-z
REVIEW ARTICLE
Prediction of natural fracture in shale oil reservoir based on R/S analysis and conventional logs
Haoran XU1,2, Wei JU1,2(), Xiaobing NIU3,4, Shengbin FENG4, Yuan YOU4, Hui YANG1,2, Sijia LIU5, Wenbo LUAN2
1. Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process (Ministry of Education) China University of Mining and Technology, Xuzhou 221008, China
2. School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China
3. School of Geosciences, China University of Petroleum (East China), Qingdao 266580, China
4. Institute of Exploration and Development, PetroChina Changqing Oilfield Company, Xi’an 710018, China
5. School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
 Download: PDF(6123 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Investigation into natural fractures is extremely important for the exploration and development of low-permeability reservoirs. Previous studies have proven that abundant oil resources are present in the Upper Triassic Yanchang Formation Chang 7 oil-bearing layer of the Ordos Basin, which are accumulated in typical low-permeability shale reservoirs. Natural fractures are important storage spaces and flow pathways for shale oil. In this study, characteristics of natural fractures in the Chang 7 oil-bearing layer are first analyzed. The results indicate that most fractures are shear fractures in the Heshui region, which are characterized by high-angle, unfilled, and ENE-WSW-trending strike. Subsequently, natural fracture distributions in the Yanchang Formation Chang 7 oil-bearing layer of the study area are predicted based on the R/S analysis approach. Logs of AC, CAL, ILD, LL8, and DEN are selected and used for fracture prediction in this study, and the R(n)/S(n) curves of each log are calculated. The quadratic derivatives are calculated to identify the concave points in the R(n)/S(n) curve, indicating the location where natural fracture develops. Considering the difference in sensitivity of each log to natural fracture, gray prediction analysis is used to construct a new parameter, fracture prediction indicator K, to quantitatively predict fracture development. In addition, fracture development among different wells is compared. The results show that parameter K responds well to fracture development. Some minor errors may probably be caused by the heterogeneity of the reservoir, limitation of core range and fracture size, dip angle, filling minerals, etc.

Keywords natural fracture prediction      shale oil reservoir      R/S analysis      Chang 7 oil-bearing layer      Ordos Basin     
Corresponding Author(s): Wei JU   
Online First Date: 24 March 2021    Issue Date: 17 January 2022
 Cite this article:   
Haoran XU,Wei JU,Xiaobing NIU, et al. Prediction of natural fracture in shale oil reservoir based on R/S analysis and conventional logs[J]. Front. Earth Sci., 2021, 15(3): 705-718.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-020-0843-z
https://academic.hep.com.cn/fesci/EN/Y2021/V15/I3/705
Fig.1  Regional geological background of the Ordos Basin (Darby and Ritts, 2002; Ritts et al., 2004).
Fig.2  Stratigraphic column of the Yanchang Formation in the Ordos Basin (Zeng and Li, 2009).
Fig.3  Frequency histogram of the types of fractures obtained from the imaging logs date and core date.
Fig.4  Fracture characteristics from the cores, where the red arrows indicate natural fracture.
Fig.5  Fracture characteristics in the imaging logs.
Fig.6  Rose diagram of the strikes of natural fractures in the study area.
Fig.7  Double logarithm curve of R(n)/S(n) and n of AC, CAL, ILD, LL8 and DEN in Well Z200.
Fig.8  The relationship between the concave sections of the R(n)/S(n) curve and their quadratic derivative.
Fig.9  Log curves of the fracture zones in the core data and R/S calculation results of each log in Well Z200. The fracture density is the surface density observed in the core. K is the strength of the fracture response. The gray solid line is the dividing line of the gray correlation analysis.
Depth Fracture K-AC K-CAL K-ILD K-LL8 K-DEN
1845-1850m 1.043 0.105 0.046 0.074 0.144 0.146
1850-1855m 0.000 0.005 0.020 0.001 0.000 0.005
1855-1860m 0.000 0.017 0.027 0.019 0.003 0.039
1860-1865m 0.141 0.016 0.002 0.033 0.001 0.051
1865-1870m 0.729 0.040 0.000 0.037 0.029 0.085
1870-1875m 0.000 0.006 0.000 0.011 0.032 0.040
1875-1880m 0.000 0.025 0.001 0.002 0.010 0.041
1880-1885m 0.196 0.010 0.007 0.028 0.018 0.039
Tab.1  The basic data of the gray correlation analysis
Depth Fracture K-AC K-CAL K-ILD K-LL8 K-DEN
1845-1850m 1.000 1.000 1.000 1.000 1.000 1.000
1850-1855m 0.000 0.048 0.435 0.014 0.000 0.034
1855-1860m 0.000 0.162 0.587 0.257 0.021 0.267
1860-1865m 0.135 0.152 0.043 0.446 0.007 0.349
1865-1870m 0.699 0.381 0.000 0.500 0.201 0.582
1870-1875m 0.000 0.057 0.000 0.149 0.222 0.274
1875-1880m 0.000 0.238 0.022 0.027 0.069 0.281
1880-1885m 0.188 0.095 0.152 0.378 0.125 0.267
Tab.2  The standardized data of the gray correlation analysis
Depth K-AC K-CAL K-ILD K-LL8 K-DEN
ξ 1845-1850m 1.000 1.000 1.000 1.000 1.000
1850-1855m 1.136 2.244 1.039 1.000 1.098
1855-1860m 1.463 2.680 1.735 1.060 1.764
1860-1865m 1.049 1.262 1.889 1.367 1.613
1865-1870m 1.910 3.000 1.569 2.424 1.334
1870-1875m 1.164 1.000 1.425 1.636 1.784
1875-1880m 1.681 1.062 1.077 1.199 1.804
1880-1885m 1.265 1.102 1.545 1.180 1.227
r 0.786 0.724 0.748 0.798 0.722
Tab.3  The gray relation coefficient and gray relational grade
Logging parameter AC CAL ILD LL8 DEN Sum
r 0.786 0.724 0.748 0.798 0.722 3.777
Weight (a) 0.208 0.192 0.198 0.211 0.191
Tab.4  Weight value of each conventional logs
Fig.10  Comparison of natural fracture zones in the core data and fracture zones recognized by the R/S analysis method in Well Z200.
Fig.11  Comparison of natural fracture zones in the core data and fracture zones recognized by the R/S analysis method in Wells Z15(a), Z87(b), Z186(c) and Z230(d).
Fig.12  The factors that influence the errors found in the rock core. (a) interbedded sandstones and mudstones, Z186,1703.5 m; (b) plant fossils, Z186, 1707.45 m; (c) carbonaceous particles, Z186,1731.5 m; (d) sulfur, Z186, 1732.87 m; (e) flowing structure, Z15, 1988.05 m; (f) sulfur, Z15, 1991.15 m.
Fig.13  Comparison of the average K values among different wells.
1 G Aghli, R Moussavi-Harami, B Tokhmechi (2020). Integration of sonic and resistivity conventional logs for identification of fracture parameters in the carbonate reservoirs (a case study, Carbonate Asmari Formation, Zagros Basin, SW Iran). J Petrol Sci Eng, 186: 106728
https://doi.org/10.1016/j.petrol.2019.106728
2 A Beretta, H E Roman, F Raicich, F Crisciani (2005). Long-time correlations of sealevel and local atmospheric pressure fluctuations at trieste. Physica A, 347: 695–703
https://doi.org/10.1016/j.physa.2004.08.027
3 B J Darby, B D Ritts (2002). Mesozoic contractional deformation in the middle of the Asian tectonic collage: the intraplate Western Ordos fold–thrust belt, China. Earth Planet Sci Lett, 205(1–2): 13–24
https://doi.org/10.1016/S0012-821X(02)01026-9
4 J H Fu, S X Li, L M Xu, X B Niu (2018). Paleo-sedimentary environmental restoration and its significance of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China. Pet Explor Dev, 45(6): 998–1008
https://doi.org/10.1016/S1876-3804(18)30104-6
5 X M Ge, Y R Fan, X J Zhu, S G Deng, Y Wang (2014). A method to differentiate degree of volcanic reservoir fracture development using conventional well logging data—an application of kernel principal component analysis (KPCA) and multifractal detrended fluctuation analysis (MFDFA). IEEE J Sel Top Appl Earth Obs Remote Sens, 7(12): 4972–4978
https://doi.org/10.1109/JSTARS.2014.2319392
6 G T Hou (1994). Fractral geostatistics. Geology-geochemistry, 02: 68–70 (in Chinese)
7 G T Hou, Y X Wang, K R Hari (2010). The late Triassic and late Jurassic stress fields and tectonic transmission of North China craton. J Geodyn, 50(3–4): 318–324
https://doi.org/10.1016/j.jog.2009.11.007
8 Z Q Hu (2000). Application of R/S analysis in the evaluation of vertical reservoir heterogeneity and fracture development. Experimental Petroleum Geology, 22(5): 382–386 (in Chinese)
9 H E Hurst (1951). Long term storage capacity of reservoirs. Trans Am Soc Civ Eng, 116(12): 776–808
10 A Ja’fari, A Kadkhodaie-Ilkhchi, Y Sharghi, K Ghanavati (2012). Fracture density estimation from petrophysical log data using the adaptive neuro-fuzzy inference system. J Geophys Eng, 9(1): 105–114
https://doi.org/10.1088/1742-2132/9/1/013
11 W Ju, X B Niu, S B Feng, Y You, K Xu, G Wang, H R Xu (2020a). Present-day in-situ stress field within the Yanchang Formation tight oil reservoir of Ordos Basin, central China. J Petrol Sci Eng, 187: 106809
https://doi.org/10.1016/j.petrol.2019.106809
12 W Ju, X B Niu, S B Feng, Y You, K Xu, G Wang, H R Xu (2020b). Predicting the present-day in situ stress distribution within the Yanchang Formation Chang 7 shale oil reservoir of Ordos Basin, central China. Petrol Sci, 17(4): 912–924
https://doi.org/10.1007/s12182-020-00448-8
13 W Ju, W F Sun, G T Hou (2015). Insights into the tectonic fractures in the Yanchang Formation interbedded sandstone-mudstone of the Ordos Basin based on core data and geomechanical models. Acta Geologica Sinica-English Edition, 89(6): 1986–1997
https://doi.org/10.1111/1755-6724.12612
14 J Lai, G W Wang, S Wang, J T Cao, M Li, X J Pang, C Han, X Q Fan, L Yang, Z B He, Z Q Qin (2018). A review on the applications of image logs in structural analysis and sedimentary characterization. Mar Pet Geol, 95: 139–166
https://doi.org/10.1016/j.marpetgeo.2018.04.020
15 A Li, W L Ding, K P Luo, Z K Xiao, R Y Wang, S Yin, M Deng, J H He (2020). Application of R/S analysis in fracture identification of shale reservoir of the Lower Cambrian Niutitang Formation in northern Guizhou Province, South China. Geol J, 55(5): 4008–4020
https://doi.org/10.1002/gj.3648
16 C Y Liu, H G Zhao, Y Z Sun (2009). Tectonic background of Ordos Basin and its controlling role for basin evolution and energy mineral deposits. Energy Exploration and Exploitation, 27(1): 15–27
https://doi.org/10.1260/014459809788708219
17 L L Liu, Z P Zhao, L Li, W L Chen, Y A He (2008). Application of the variable scale fractal technique in fracture prediction and reservoir evaluation. Oil and Gas Geology, 29(1): 31–37 (in Chinese)
18 W Y Lyu, L B Zeng, Z Q Liu, G P Liu, K W Zu (2016). Fracture responses of conventional logs in tight-oil sandstones: a case study of the Upper Triassic Yanchang Formation in southwest Ordos Basin, China. AAPG Bull, 100(9): 1399–1417
https://doi.org/10.1306/04041615129
19 W Y Lyu, L B Zeng, B J Zhang, F B Miao, P Lyu, S Q Dong (2017). Influence of natural fractures on gas accumulation in the Upper Triassic tight gas sandstones in the northwestern Sichuan Basin, China. Mar Pet Geol, 83: 60–72
https://doi.org/10.1016/j.marpetgeo.2017.03.004
20 J G V Miranda, R F S Andrade (1999). Rescaled range analysis of pluviometric records in northeast Brazil. Theor Appl Climatol, 63(1–2): 79–88
https://doi.org/10.1007/s007040050094
21 J Pang, C P North (1996). Fractals and their applicability in geological wireline log analysis. J Pet Geol, 19(3): 339–350
https://doi.org/10.1111/j.1747-5457.1996.tb00438.x
22 G Rangarajan, D A Sant (2004). Fractal dimensional analysis of Indian climatic dynamics. Chaos Solitons Fractals, 19(2): 285–291
https://doi.org/10.1016/S0960-0779(03)00042-0
23 B D Ritts, A D Hanson, B J Darby, L Nanson, A Berry (2004). Edimentary record of Triassic intraplate extension in North China: evidence from the nonmarine NW Ordos Basin, Helan Shan and Zhuozi Shan. Tectonophysics, 386(3–4): 177–202
https://doi.org/10.1016/j.tecto.2004.06.003
24 J X Shi, L B Zeng, X Y Zhao, Y Z Zhang, J P Wang (2020). Characteristics of natural fractures in the upper Paleozoic coal bearing strata in the southern Qinshui Basin, China: implications for coalbed methane (CBM) development. Marine and Petroleum Geology, 113: UNSP10415
25 H Su, Z D Lei, D Q Zhang, J C Li, Z R Zhang, B S Ju, Z P Li (2017). Dynamic and static comprehensive prediction method of natural fractures in fractured oil reservoirs: a case study of Triassic Chang 63 reservoirs in Huaqing Oilfield, Ordos Basin, NW China. Pet Explor Dev, 44(6): 972–982
https://doi.org/10.1016/S1876-3804(17)30109-X
26 B Tokhmechi, H Memarian, H A Noubari, B Moshiri (2009). A novel approach proposed for fractured zone detection using petrophysical logs. J Geophys Eng, 6(4): 365–373
https://doi.org/10.1088/1742-2132/6/4/004
27 S T Wu, R K Zhu, J G Cui, J W Cui, B Bai, X X Zhang, X Jin, D S Zhu, J L Yao, J C You, X H Li (2015). Characteristics of lacustrine shale porosity evolution, Triassic Chang 7 Member, Ordos Basin, NW China. Petroleum Exploration and Development, 42(2): 185–195
https://doi.org/10.1016/S1876-3804(15)30005-7
28 Z K Xiao, W L Ding, J S Liu, M Z Tian, S Yin, X H Zhou, Y Gu (2019). A fracture identification method for low-permeability sandstone based on R/S analysis and the finite difference method: a case study from the Chang 6 reservoir in Huaqing Oilfield, Ordos Basin. J Petrol Sci Eng, 174: 1169–1178
https://doi.org/10.1016/j.petrol.2018.12.017
29 H Yang, X W Liang, X B Niu, S B Feng, Y You (2017). Geological conditions for continental tight oil formation and the main controlling factors for the enrichment: a case of Chang 7 Member, Triassic Yanchang Formation, Ordos Basin, NW China. Petroleum Exploration and Development, 44(1): 11–19
https://doi.org/10.1016/S1876-3804(17)30003-4
30 H Yang, X B Niu, L M Xu, S B Feng, Y You, X W Liang, F Wang, D D Zhang (2016). Exploration potential of shale oil in Chang7 Member, Upper Triassic Yanchang Formation, Ordos Basin, NW China. Petroleum Exploration and Development, 43(4): 560–569
https://doi.org/10.1016/S1876-3804(16)30066-0
31 R S Zazoun (2013). Fracture density estimation from core and conventional well logs data using artificial neural networks: the Cambro-Ordovician reservoir of Mesdar oil field, Algeria. J Afr Earth Sci, 83: 55–73
https://doi.org/10.1016/j.jafrearsci.2013.03.003
32 L B Zeng, X Y Li (2009). Fractures in sandstone reservoirs with ultra-low permeability: a case study of the Upper Triassic Yanchang Formation in the Ordos Basin, China. AAPG Bull, 93(4): 461–477
https://doi.org/10.1306/09240808047
33 L B Zeng, H T Liu (2010). Influence of fractures on the development of low-permeability sandstone reservoirs: a case study from the Taizhao district, Daqing Oilfield, China. J Petrol Sci Eng, 72(1–2): 120–127
https://doi.org/10.1016/j.petrol.2010.03.009
34 L B Zeng, W Y Lyu, J Li, L F Zhu, J Q Weng, F Yue, K W Zu (2016). Natural fractures and their influence on shale gas enrichment in Sichuan Basin, China. J Nat Gas Sci Eng, 30: 1–9
https://doi.org/10.1016/j.jngse.2015.11.048
35 L B Zeng, Y H He, W L Xiong (2010). Origin and Geological Significance of the Cross Fractures in the Upper Triassic Yanchang Formation, Ordos Basin, China. Energy Exploration & Exploitation, 28(2): 59–70
https://doi.org/10.1260/0144-5987.28.2.59
36 L B Zeng, Z G Wang, S R Xiao, G B Zhang (2009). The origin and geological significance of low dip-angle fractures in the thrust zones of the western basins of China. Acta Petrol Sin, 30(1): 56–60
37 X F Zhang, B Z Pan, F Wang, X Han (2011). A study of wavelet transforms applied for fracture identification and fracture density evaluation. Appl Geophys, 8(2): 164–169
https://doi.org/10.1007/s11770-011-0282-4
38 J F Zhao, X H Chen, Q Zhang (2003). Application of grey association analysis in reservoir evaluation. Progress in Exploration Geophysics, 4: 282–286 (in Chinese)
39 W T Zhao, G T Hou (2017). Fracture prediction in the tight-oil reservoirs of the Triassic Yanchang Formation in the Ordos Basin, northern China. Petrol Sci, 14(1): 1–23
https://doi.org/10.1007/s12182-016-0141-2
40 Z Y Zhao, Y L Wang, G D Liu, X Sun (2011). A rescaled range analysis on the characteristics of coal seam development in the eastern depression of the Liaohe Basin. Mining Science and Technology (China), 21(2): 223–227
https://doi.org/10.1016/j.mstc.2011.02.011
[1] Bingbing SHI, Xiangchun CHANG, Zhongquan LIU, Ye LIU, Tianchen GE, Pengfei ZHANG, Yongrui WANG, Yue WANG, Lixin MAO. Physical-property cutoffs of tight reservoirs by field and laboratory experiments: a case study from Chang 6, 8–9 in Ordos Basin[J]. Front. Earth Sci., 2021, 15(2): 471-489.
[2] Chao LUO, Ailin JIA, Jianlin GUO, Qing TIAN, Junlei WANG, Hun LIN, Nanxin YIN, Xuanbo GAO. A quantitative study of the scale and distribution of tight gas reservoirs in the Sulige gas field, Ordos Basin, northwest China[J]. Front. Earth Sci., 2021, 15(2): 457-470.
[3] Wei JU, Jian SHEN, Chao LI, Kun YU, Hui YANG. Natural fractures within unconventional reservoirs of Linxing Block, eastern Ordos Basin, central China[J]. Front. Earth Sci., 2020, 14(4): 770-782.
[4] Wei JU, Jian SHEN, Yong QIN, Shangzhi MENG, Chao LI, Guozhang LI, Guang YANG. In-situ stress distribution and coalbed methane reservoir permeability in the Linxing area, eastern Ordos Basin, China[J]. Front. Earth Sci., 2018, 12(3): 545-554.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed