Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2021, Vol. 15 Issue (4) : 790-802    https://doi.org/10.1007/s11707-021-0869-x
RESEARCH ARTICLE
Numerical modeling of the dynamic variation in multiphase CH4 during CO2 enhanced gas recovery from depleted shale reservoirs
Jun LIU1,2(), Ye ZHANG1, Lijun CHENG1, Zhaohui LU1, Chunlin ZENG1, Peng ZHAO3()
1. Key Laboratory of Shale Gas Exploration (Ministry of Natural Resources), Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China
2. Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, China
3. College of Architecture and Environment, Sichuan University, Chengdu 610065, China
 Download: PDF(2611 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Regarding CO2 enhanced shale gas recovery, this work focuses on changes in the multiphase (free/adsorbed) CH4 in the process of CO2 enhanced shale gas recovery, by utilizing a rigorous numerical model with real geological parameters. This work studies nine injection well (IW) and CH4 production well (PW) combinations of CO2 to determine the influence of IW and PW locations on the dynamic interaction of multiphase CH4 during 10000 d of CO2 injection. The results indicate that the content of both the adsorbed CH4 and free CH4 is strongly variable before (and during) the CO2-CH4 displacement. In addition, during the simulation process, the proportion of the adsorbed CH4 among all extracted CH4 phases dynamically increases first and then tends to stabilize at 70%–80%. Moreover, the IW-PWs combinations significantly affect the outcomes of CO2 enhanced shale gas recovery – for both the proportion of adsorbed/free CH4 and the recovery efficiency. A longer IW-PW distance enables more adsorbed CH4 to be recovered but results in a lower efficiency of shale gas recovery. Basically, a shorter IW-PWs distance helps recover CH4 via CO2 injection if the IW targets the bottom layer of the Wufeng-Longmaxi shale formation. This numerical work expands the knowledge of CO2 enhanced gas recovery from depleted shale reservoirs.

Keywords CO2-CH4 displacement      free gas      Longmaxi shale      CH4 desorption      numerical simulation     
Corresponding Author(s): Jun LIU,Peng ZHAO   
Online First Date: 24 March 2021    Issue Date: 20 January 2022
 Cite this article:   
Jun LIU,Ye ZHANG,Lijun CHENG, et al. Numerical modeling of the dynamic variation in multiphase CH4 during CO2 enhanced gas recovery from depleted shale reservoirs[J]. Front. Earth Sci., 2021, 15(4): 790-802.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-021-0869-x
https://academic.hep.com.cn/fesci/EN/Y2021/V15/I4/790
Fig.1  Schematic diagram of the geological settings, model description and THM coupling process (Liu et al., 2017a; Zhao et al., 2020). (a) regional overview of Well-WQ2; (b) schematic diagram of the IW and PWs; (c) the dual-porosity modeling system; (d) THM coupling relations.
Layer No. Depth/m E /GPa v/10-1 j/% K/(10-18 m2) VL/(m3·t-1) PL/MPa
jm jf kh kv VL-CH4 VL-CO2 PL-CH4 PL-CO2
1 1200–1210 44.4 2.27 3.54 0.51 4.2 1.44 1.26 10.68 4.12 10.68
2 1210–1220 45.6 2.7 2.78 0.32 1.82 0.72 1.57 8.75 3.84 8.75
3 1220–1230 51.5 2.52 2.07 0.43 3.2 1.1 1.57 8.69 3.58 8.69
4 1230–1240 63.8 2.08 2.84 0.66 4.6 0.86 2.46 9.5 3.04 9.5
5 1240–1250 62.4 2.13 1.36 0.44 1.68 0.58 2.17 11.75 2.28 11.75
6 1250–1260 60.7 2.19 2.88 0.42 6.4 2.06 2.01 8.79 3.16 8.79
7 1260–1270 60.9 2.18 1.72 0.53 5 1.14 2.78 13.99 2.6 13.99
8 1270–1280 61.3 2.17 5.54 0.66 8.1 2.11 2.49 10.09 3.21 10.09
9 1280–1290 58.6 2.26 1.26 0.51 3.8 1.28 3.01 9.11 2.87 9.11
10 1290–1300 57.8 2.29 2.59 0.78 3.6 1.36 3.59 6.01 4.01 6.01
Tab.1  Vertical heterogeneity of the WL shales at Well-WQ2
Parameter Value Parameter Value
Langmuir strain coefficient of CH4 (eL1) 8.1e-4 Endpoint relative permeability of gas (krg0) 0.875
Langmuir strain coefficient of CO2 (eL2) 3.6e-3 Endpoint relative permeability of water (krw0) 1.0
Dynamic viscosity of CH4 (mg1, Pa·s) 1.34e-5 Biot coefficient of matrix (am) 0.8
Dynamic viscosity of CO2 (mg2, Pa·s) 1.84e-5 Biot coefficient of fracture (af) 0.1
Dynamic viscosity of water (mw, Pa·s) 8.9e-4 Density of the shale skeleton (rc, kg/m3) 2470
Diffusion coefficient of CH4 (D1, m2/s) 3.6e-12 Initial fracture width (b, m) 5e-4
Diffusion coefficient of CO2 (D2, m2/s) 5.8e-12 Initial fracture stiffness (Knj, GPa/m) 10
Thermal coefficient of gas sorption (c1, 1/K) 0.021 Maximum fracture aperture (Dvmax, m) 0.001
Thermal coefficient of gas sorption (c2, 1/MPa) 0.071 Thermal expansion coefficient (aT, 1/K) 2.4e-5
Capillary pressure (pcgw, MPa) 0.035 Specific heat capacities of shale (Cs, J/(kg·K)) 1380
Initial density of saturated vapor (rfv0, kg/m3) 0.13 Specific heat capacities of CH4 (Cg1, J/(kg·K)) 2220
Latent heat of vapor (Rv, J/(K·kg)) 461.51 Specific heat capacities of CO2 (Cg2, J/(kg·K)) 844
Klinkenberg factor (bk, MPa) 0.76 Specific heat capacities of water (Cw, J/(kg·K)) 4187
Desorption time of CH4 (t1, d) 0.221 Specific heat capacities of vapor (Cv, J/(kg·K)) 1996
Desorption time of CO2 (t2, d) 0.334 Thermal conduction coefficient of shale (ls, W/(m·K)) 0.1913
Henry’s coefficient of CH4 (Hg1) 0.0014 Thermal conduction coefficient of CH4 (lg1, W/(m·K)) 0.0301
Henry’s coefficient of CO2 (Hg2) 0.0347 Thermal conduction coefficient of CO2 (lg2, W/(m·K)) 0.0137
Residual gas saturation (sgr) 0.05 Thermal conduction coefficient of water (lw, W/(m·K)) 0.5985
Irreducible water saturation (swr) 0.42 Isosteric heat of CH4 adsorption (qst1, kJ/mol) 16.4
Reference temperature for test (Tref, K) 300 Isosteric heat of CO2 adsorption (qst2, kJ/mol) 19.2
Tab.2  Key parameters for CS-EGR in this numerical simulation
Fig.2  Original content of multiphase CH4 in each layer before CO2 injection.
Fig.3  Dynamic decrement of multiphase CH4 in representative cases (a) H50 and (b) M150.
Fig.4  Variation in the rate of decrease in multiphase CH4 during the CS-EGR process of representative cases (a) H50 and (5) M150.
Fig.5  Percentage variation of free CH4 in whole reservoir of each operation condition.
Fig.6  Dynamic variation of free CH4 in the matrix and in the fracture of representative cases (a) H50 and (b) M150.
Fig.7  Relative content of CH4 in the fracture to that in the matrix during the CS-EGR process for each operation case.
Fig.8  Residual content of multiphase CH4 in the whole reservoir of representative cases (a) H50 and (b) M150.
Fig.9  Decrease in multiphase CH4 from each layer in all simulation cases after 10000 d of CS-EGR operation.
Fig.10  Final residual CH4 in whole reservoir under each IW-PWs combination at the end of CS-EGR operation.
Fig.11  Multiphase recovered CH4 from the whole reservoir and the corresponding proportion of free/adsorbed CH4.
Fig.12  Total recovery efficiency of multiphase CH4 from whole reservoir under each IW-PWs combination.
1 L K Abidoye, K J Khudaida, D B Das (2015). Geological carbon sequestration in the context of two-phase flow in porous media: a review. Crit Rev Environ Sci Technol, 45(11): 1105–1147
https://doi.org/10.1080/10643389.2014.924184
2 B Chen, D R Harp, Z Lu, R J Pawar (2020). Reducing uncertainty in geologic CO2 sequestration risk assessment by assimilating monitoring data. Int J Greenh Gas Control, 94: 102926
https://doi.org/10.1016/j.ijggc.2019.102926
3 J Chi, B Ju, G Lyu, X Zhang, J Wang (2017). A computational method of critical well spacing of CO2 miscible and immiscible concurrent flooding. Pet Explor Dev, 44(5): 771–778
https://doi.org/10.1016/S1876-3804(17)30092-7
4 J W Cui, R K Zhu, Z G Mao, S X Li (2019). Accumulation of unconventional petroleum resources and their coexistence characteristics in Chang7 shale formations of Ordos Basin in central China. Front Earth Sci, 13(3): 575–587
https://doi.org/10.1007/s11707-019-0756-x
5 C Fan, D Elsworth, S Li, L Zhou, Z Yang, Y Song (2019a). Thermo-hydro-mechanical-chemical couplings controlling CH4 production and CO2 sequestration in enhanced coalbed methane recovery. Energy, 173: 1054–1077
https://doi.org/10.1016/j.energy.2019.02.126
6 C Fan, M Luo, S Li, H Zhang, Z Yang, Z Liu (2019b). A thermo-hydro-mechanical-chemical coupling model and its application in acid fracturing enhanced coalbed methane recovery simulation. Energies, 12(4): 626
https://doi.org/10.3390/en12040626
7 Y Fan, C Deng, X Zhang, F Li, X Wang, L Qiao (2018). Numerical study of CO2-enhanced coalbed methane recovery. Int J Greenh Gas Control, 76: 12–23
https://doi.org/10.1016/j.ijggc.2018.06.016
8 E Fathi, I Y Akkutlu (2014). Multi-component gas transport and adsorption effects during CO2 injection and enhanced shale gas recovery. Int J Coal Geol, 123: 52–61
https://doi.org/10.1016/j.coal.2013.07.021
9 Z Gao, Y Fan, Q Xuan, G Zheng (2020). A review of shale pore structure evolution characteristics with increasing thermal maturities. Advances in Geo-Energy Research, 4(3): 247–259
https://doi.org/10.46690/ager.2020.03.03
10 C Guo, R Li, J Sun, X Wang, H Liu (2020a). A review of gas transport and adsorption mechanisms in two-component methane-carbon dioxide system. Int J Energy Res, 44(4): 2499–2516
https://doi.org/10.1002/er.5114
11 C Guo, R Li, X Wang, H Liu (2020b). Study on two component gas transport in nanopores for enhanced shale gas recovery by using carbon dioxide injection. Energies, 13(5): 1–21
https://doi.org/10.3390/en13051101
12 H H Hou, L Y Shao, Y H Li, Z Li, W L Zhang, H J Wen (2018). The pore structure and fractal characteristics of shales with low thermal maturity from the Yuqia Coalfield, northern Qaidam Basin, northwestern China. Front Earth Sci, 12(1): 148–159
https://doi.org/10.1007/s11707-016-0617-y
13 S Hu, X Hu, L He, W Chen (2019). A new material balance equation for dual-porosity media shale gas reservoir. Energy Procedia, 158: 5994–6002
https://doi.org/10.1016/j.egypro.2019.01.520
14 R Iddphonce, J Wang, L Zhao (2020). Review of CO2 injection techniques for enhanced shale gas recovery: prospect and challenges. J Nat Gas Sci Eng, 77: 103240
https://doi.org/10.1016/j.jngse.2020.103240
15 I Klewiah, D S Berawala, H C Alexander Walker, P Ø Andersen, P H Nadeau (2020). Review of experimental sorption studies of CO2 and CH4 in shales. J Nat Gas Sci Eng, 73: 103045
https://doi.org/10.1016/j.jngse.2019.103045
16 D Li, Y He, H Zhang, W Xu, X Jiang (2017). A numerical study of the impurity effects on CO2 geological storage in layered formation. Appl Energy, 199: 107–120
https://doi.org/10.1016/j.apenergy.2017.04.059
17 J Li, B Li, Z Wang, C Ren, K Yang, S Chen (2020a). An anisotropic permeability model for shale gas recovery considering slippage effect and embedded proppants. Nat Resour Res, 29(5): 3319–3333
https://doi.org/10.1007/s11053-020-09660-0
18 J Li, S Lu, J Cai, P Zhang, H Xue, X Zhao (2018). Adsorbed and free oil in lacustrine nanoporous shale: a theoretical model and a case study. Energy Fuels, 32(12): 12247–12258
https://doi.org/10.1021/acs.energyfuels.8b02953
19 X Li, D Elsworth (2015). Geomechanics of CO2 enhanced shale gas recovery. J Nat Gas Sci Eng, 26: 1607–1619
https://doi.org/10.1016/j.jngse.2014.08.010
20 Y Li, Y B Wang, J Wang, Z J Pan (2020b). Variation in permeability during CO2-CH4 displacement in coal seams: part 1-experimental insights. Fuel, 263: 116666
https://doi.org/10.1016/j.fuel.2019.116666
21 Y Li, Z S Wang, Z J Pan, X L Niu, Y Yu, S Z Meng (2019a). Pore structure and its fractal dimensions of transitional shale: A cross-section from east margin of the Ordos Basin, China. Fuel, 241: 417–431
https://doi.org/10.1016/j.fuel.2018.12.066
22 Y Li, J H Yang, Z J Pan, S Z Meng, K Wang, X L Niu (2019b). Unconventional natural gas accumulations in stacked deposits: a discussion of Upper Paleozoic coal-bearing strata in the east margin of the Ordos Basin, China. Acta Geologica Sinica (English Edition), 93(1): 111–129
https://doi.org/10.1111/1755-6724.13767
23 Y Li, J H Yang, Z J Pan, W S Tong (2020c). Nanoscale pore structure and mechanical property analysis of coal: an insight combining AFM and SEM images. Fuel, 260: 116352
https://doi.org/10.1016/j.fuel.2019.116352
24 Z Li, D Elsworth (2019). Controls of CO2–N2 gas flood ratios on enhanced shale gas recovery and ultimate CO2 sequestration. J Petrol Sci Eng, 179: 1037–1045
https://doi.org/10.1016/j.petrol.2019.04.098
25 J Liu, L Xie, D Elsworth, Q Gan (2019). CO2/CH4 competitive adsorption in shale: implications for enhancement in gas production and reduction in carbon emissions. Environ Sci Technol, 53(15): 9328–9336
https://doi.org/10.1021/acs.est.9b02432 pmid: 31318200
26 J Liu, L Xie, B He, Q Gan, P Zhao (2021a). Influence of anisotropic and heterogeneous permeability coupled with in-situ stress on CO2 sequestration with simultaneous enhanced gas recovery in shale: Quantitative modeling and case study. Int J Greenh Gas Control, 104: 103208
https://doi.org/10.1016/j.ijggc.2020.103208
27 J Liu, L Xie, B He, P Zhao, H Ding (2021b). Performance of free gases during the recovery enhancement of shale gas by CO2 injection: a case study on the depleted Wufeng–Longmaxi shale in northeastern Sichuan Basin, China. Petrol Sci, doi:10.1007/s12182-020-00533-y
28 J Liu, Y Yao, D Elsworth, D Liu, Y Cai, L Dong (2017a). Vertical heterogeneity of the shale reservoir in the Lower Silurian Longmaxi Formation: analogy between the southeastern and northeastern Sichuan Basin, SW China. Minerals (Basel), 7(8): 151
https://doi.org/10.3390/min7080151
29 J Liu, Y Yao, D Liu, D Elsworth (2017b). Experimental evaluation of CO2 enhanced recovery of adsorbed-gas from shale. Int J Coal Geol, 179: 211–218
https://doi.org/10.1016/j.coal.2017.06.006
30 J Liu, Y Yao, D Liu, Z Pan, Y Cai (2017c). Comparison of three key marine shale reservoirs in the southeastern margin of the Sichuan Basin, SW China. Minerals (Basel), 7(10): 179
https://doi.org/10.3390/min7100179
31 J Liu, Y Yao, Z Zhu, L Cheng, G Wang (2016). Experimental investigation of reservoir characteristics of the upper Ordovician Wufeng Formation shale in middle–upper Yangtze region, China. Energy Exploration & Exploitation, 34(4): 527–542
https://doi.org/10.1177/0144598716650553
32 S Liu, H Fang, S Sang, T Ashutosh, J Wu, S Zhang, B Zhang (2020). CO2 injectability and CH4 recovery of the engineering test in qinshui Basin, China based on numerical simulation. Int J Greenh Gas Control, 95: 102980
https://doi.org/10.1016/j.ijggc.2020.102980
33 C J Luo, D F Zhang, Z M Lun, C P Zhao, H T Wang, Z J Pan, Y H Li, J Zhang, S Q Jia (2019). Displacement behaviors of adsorbed coalbed methane on coals by injection of SO2/CO2 binary mixture. Fuel, 247: 356–367
https://doi.org/10.1016/j.fuel.2019.03.057
34 M Mazumder, L Chen, Q Xu (2020). Integrated ejector-based flare gas recovery and on-site desalination of produced water in shale gas production. Chem Eng Technol, 43(2): 200–210
https://doi.org/10.1002/ceat.201900350
35 E Mohagheghian, H Hassanzadeh, Z Chen (2019). CO2 sequestration coupled with enhanced gas recovery in shale gas reservoirs. Journal of CO2 Utilization, 34: 646–655
36 Y Pan, D Hui, P Luo, Y Zhang, L Sun, K Wang (2018). Experimental investigation of the geochemical interactions between supercritical co2 and shale: implications for co2 storage in gas-bearing shale formations. Energy Fuels, 32(2): 1963–1978
https://doi.org/10.1021/acs.energyfuels.7b03074
37 Z Pan, Y Ma, L D Connell, D I Down, M Camilleri (2015). Measuring anisotropic permeability using a cubic shale sample in a triaxial cell. Journal of Natural Gas ence & Engineering, 26: 336–344
38 C Shan, T Zhang, Y Wei, Z Zhang (2017). Shale gas reservoir characteristics of Ordovician-Silurian formations in the central Yangtze area, China. Front Earth Sci, 11(1): 184–201
https://doi.org/10.1007/s11707-016-0565-4
39 W Su, Z Li, F Ettensohn, M Johnson, W Huff, W Wang, C Ma, L Li, L Zhang, H Zhao (2007). Tectonic and eustatic control on the distribution of black-shale source beds in the Wufeng and Longmaxi formations (Ordovician-Silurian), South China. Front Earth Sci China, 1(4): 470–481
https://doi.org/10.1007/s11707-007-0058-6
40 H Sun, J Yao, S H Gao, D Y Fan, C C Wang, Z X Sun (2013). Numerical study of CO2 enhanced natural gas recovery and sequestration in shale gas reservoirs. Int J Greenh Gas Control, 19: 406–419
https://doi.org/10.1016/j.ijggc.2013.09.011
41 Z Tao, J M Bielicki, A F Clarens (2014). Physicochemical factors impacting CO2 sequestration in depleted shale formations: The case of the Utica shale. Energy Procedia, 63: 5153–5163
https://doi.org/10.1016/j.egypro.2014.11.545
42 B Vega, A Dutta, A R Kovscek (2014). CT imaging of low-permeability, dual-porosity systems using high X-ray contrast gas. Transp Porous Media, 101(1): 81–97
https://doi.org/10.1007/s11242-013-0232-0
43 M Wang, Z M Lun, C P Zhao, H T Wang, C J Luo, X X Fu, C Li, D F Zhang (2020). Influences of primary moisture on methane adsorption within Lower Silurian Longmaxi Shales in the Sichuan Basin, China. Energy Fuels, 34(9): 10810–10824
https://doi.org/10.1021/acs.energyfuels.0c01932
44 T Wang, S Tian, G Li, M Sheng, W Ren, Q Liu, S Zhang (2018). Molecular simulation of CO2/CH4 competitive adsorption on shale kerogen for co2 sequestration and enhanced gas recovery. J Phys Chem C, 122(30): 17009–17018
https://doi.org/10.1021/acs.jpcc.8b02061
45 G Zhang, W Zhou, S Ji, J Liu, J Zhang, H Yang (2015). Experimental study on CO2 replacement method used in shale gas exploration. Journal of Chengdu University of Technology, 42(3): 366–371
46 H Zhang, R Diao, M Mostofi, B Evans (2020). Monte carlo simulation of the adsorption and displacement of CH4 by CO2 injection in shale organic carbon slit micropores for CO2 enhanced shale gas recovery. Energy Fuels, 34(1): 150–163
https://doi.org/10.1021/acs.energyfuels.9b03349
47 K Zhang, H Jiang, G Qin (2019). Utilization of zeolite as a potential multi-functional proppant for CO2 enhanced shale gas recovery and CO2 sequestration: A molecular simulation study on the competitive adsorption of CH4 and CO2 in zeolite and organic matter. Fuel, 249(1): 119–129
https://doi.org/10.1016/j.fuel.2019.03.061
48 L Zhang, S Lu, S Jiang, D Xiao, L Chen, Y Liu, Y Zhang, B Li, C Gong (2018). Effect of shale lithofacies on pore structure of the Wufeng-Longmaxi Shale in southeast Chongqing, China. Energy Fuels, 32(6): 6603–6618
https://doi.org/10.1021/acs.energyfuels.8b00799
49 P Zhang, S Lu, J Li, H Xue, W Li, P Zhang (2017). Characterization of shale pore system: a case study of Paleogene Xin’gouzui Formation in the Jianghan basin, China. Mar Pet Geol, 79: 321–334
https://doi.org/10.1016/j.marpetgeo.2016.10.014
50 P Zhao, L Xie, B He, J Liu (2020). Strategy optimization on industrial CO2 sequestration in the depleted Wufeng-Longmaxi Formation shale in the northeastern Sichuan Basin, SW China: from the perspective of environment and energy. ACS Sustain Chem& Eng, 8(30): 11435–11445
https://doi.org/10.1021/acssuschemeng.0c04114
51 J Zhou, N Hu, X Xian, L Zhou, J Tang, Y Kang, H Wang (2019a). Supercritical CO2 fracking for enhanced shale gas recovery and CO2 sequestration: results, status and future challenges. Advances in Geo-Energy Research, 3(2): 207–224
https://doi.org/10.26804/ager.2019.02.10
52 J Zhou, Z Jin, K H Luo (2019b). Effects of Moisture contents on shale gas recovery and CO2 sequestration. Langmuir, 35(26): 8716–8725
https://doi.org/10.1021/acs.langmuir.9b00862 pmid: 31244260
53 J Zhou, M Liu, X Xian, Y Jiang, Q Liu, X Wang (2019c). Measurements and modelling of CH4 and CO2 adsorption behaviors on shales: Implication for CO2 enhanced shale gas recovery. Fuel, 251: 293–306
https://doi.org/10.1016/j.fuel.2019.04.041
[1] Rongze YU, Wei GUO, Lin DING, Meizhu WANG, Feng CHENG, Xiaowei ZHANG, Shangwen ZHOU, Leifu ZHANG. Quantitative characterization of horizontal well production performance with multiple indicators: a case study on the Weiyuan shale gas field in the Sichuan Basin, China[J]. Front. Earth Sci., 2021, 15(2): 395-405.
[2] Pingzhi FANG, Deqian ZHENG, Liang LI, Wenyong MA, Shengming TANG. Numerical and experimental study of the aerodynamic characteristics around two-dimensional terrain with different slope angles[J]. Front. Earth Sci., 2019, 13(4): 705-720.
[3] Rui XING,Zhiying DING,Sangjie YOU,Haiming XU. Relationship of tropical-cyclone-induced remote precipitation with tropical cyclones and the subtropical high[J]. Front. Earth Sci., 2016, 10(3): 595-606.
[4] Shou MA,Jianchun GUO,Lianchong LI,Leslie George THAM,Yingjie XIA,Chun’an TANG. Influence of pore pressure on tensile fracture growth in rocks: a new explanation based on numerical testing[J]. Front. Earth Sci., 2015, 9(3): 412-426.
[5] Xinwen LI,Yongming SHEN. Numerical simulation of the impacts of water level variation on water age in Dahuofang Reservoir[J]. Front. Earth Sci., 2015, 9(2): 209-224.
[6] Lianchong LI,Shaohua LI,Chun’an TANG. Fracture spacing behavior in layered rocks subjected to different driving forces: a numerical study based on fracture infilling process[J]. Front. Earth Sci., 2014, 8(4): 472-489.
[7] Da AN, Yonghai JIANG, Beidou XI, Zhifei MA, Yu YANG, Queping YANG, Mingxiao LI, Jinbao ZHANG, Shunguo BAI, Lei JIANG. Analysis for remedial alternatives of unregulated municipal solid waste landfills leachate-contaminated groundwater[J]. Front Earth Sci, 2013, 7(3): 310-319.
[8] Kyungjeen PARK, X. ZOU, Gang LI. A numerical study on rapid intensification of Hurricane Charley (2004) near landfall[J]. Front. Earth Sci., 2009, 3(4): 457-470.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed