Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    0, Vol. Issue () : 457-470    https://doi.org/10.1007/s11707-009-0048-y
Research articles
A numerical study on rapid intensification of Hurricane Charley (2004) near landfall
Kyungjeen PARK1,X. ZOU2,Gang LI3, 4,
1.National Center for Atmospheric Research, Boulder, CO 80301, USA; 2.Department of Meteorology, Florida State University, Tallahassee, FL 32306-4052, USA; 3.Nanjing University of Information Science & Technology, Nanjing 210044, China; 4.2010-01-14 15:01:14;
 Download: PDF(1106 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The rapid intensification of Hurricane Charley (2004) near landfall is studied using the fifth-generation Pennsylvania State University/National Center for Atmospheric Research (PSU/NCAR) Mesoscale Model (MM5) and its adjoint system for both vortex initialization and forecasts. A significant improvement in both track and intensity forecasts is achieved after an ill-defined storm vortex, derived from large-scale analysis, in the initial condition is replaced by the vortex generated by a four-dimensional data variational (4D-Var) hurricane initialization scheme. Results from numerical experiments suggest that both the inclusion of the upper-level trough and the use of high horizontal resolution (6 km) are important for numerical simulations to capture the observed rapid intensification as well as the size reduction during the rapid intensification of Hurricane Charley. The approach of the upper-level trough significantly enhanced the upper-level divergence and vertical motion within simulated hurricanes. Small-scale features that are not resolvable at 18 km resolution are important to the rapid intensification and shrinking of Hurricane Charley (2004). Numerical results from this study further confirm that the theoretical relationship between the intensification and shrinking of tropical cyclones based on the angular momentum conservation and the cyclostrophic approximation can be applied to the azimuthal mean flows.
Keywords hurricane      rapid intensification      numerical simulation      
Issue Date: 05 December 2009
 Cite this article:   
Kyungjeen PARK,Gang LI,X. ZOU, et al. A numerical study on rapid intensification of Hurricane Charley (2004) near landfall[J]. Front. Earth Sci., 0, (): 457-470.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-009-0048-y
https://academic.hep.com.cn/fesci/EN/Y0/V/I/457
Bosart L E, Velden C S, Bracken W E, Molinari J, Black P G(2000). Environ-mentalinfluences on the rapid intensification of Hurricane Opal (1995) overthe Gulf of Mexico. Mon Wea Rev, 128: 322―352

doi: 10.1175/1520-0493(2000)128<0322:EIOTRI>2.0.CO;2
Brand S(1973). Rapid intensification and low-latitude weakening oftropical cyclones of the western North Pacific Ocean. J Appl Meteor, 12: 94―109

doi: 10.1175/1520-0450(1973)012<0094:RIALLW>2.0.CO;2
DeMaria M(1996). The effect of vertical shear on tropical cyclone intensitychange. J Atmos Sci, 53: 2076―2087

doi: 10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2
DeMaria M, Baik J J, Kaplan J(1993). Upper-level eddy angular momentumfluxes and tropical cyclone intensity change. J Atmos Sci, 50: 1133―1147

doi: 10.1175/1520-0469(1993)050<1133:ULEAMF>2.0.CO;2
Dudhia J(1993). A nonhydrostatic version of the Penn State-NCAR mesoscalemodel: validation tests and simulation of an Atlantic cyclone andcold front. Mon Wea Rev, 121: 1493―1513

doi: 10.1175/1520-0493(1993)121<1493:ANVOTP>2.0.CO;2
Gray M W(1968). Global view of the origin of tropical disturbances andstorms. Mon Wea Rev, 96: 669―700

doi: 10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2
Holliday C R, Thompson A H(1979). Climatologicalcharacteristic of rapidly intensifying typhoons. Mon Wea Rev, 107: 1022―1034

doi: 10.1175/1520-0493(1979)107<1022:CCORIT>2.0.CO;2
Kaplan J, DeMaria M(2003). Large-scalecharacteristics of rapidly intesifying tropical cyclones in the NorthAtlantic basic. Wea Forecasting, 18: 1093―1108

doi: 10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2
Knaff J A, DeMaria M, Sampson C R, Gross J M(2003). Statistical, 5 day tropical cyclone intensity forecasts derived fromclimatology and persistence. Wea Forecasting, 18: 80―92

doi: 10.1175/1520-0434(2003)018<0080:SDTCIF>2.0.CO;2
Krishnamurti T N, Han W, Jha Bhaskar, Bedi H S(1998). Numerical prediction on Hurricane Opal. Mon Wea Rev, 126: 1347―1363

doi: 10.1175/1520-0493(1998)126<1347:NPOHO>2.0.CO;2
Kuo Y H, Simon L N, Richard J R(1991). Effects of surface energy fluxesduring the early development and rapid intensification stages of sevenexplosive cyclones in the western Atlantic. Mon Wea Rev, 119: 457―476

doi: 10.1175/1520-0493(1991)119<0457:EOSEFD>2.0.CO;2
Merrill (1988). Environmentalinfluences on hurricane intensification. J Atmos Sci, 45: 1678―1687
Molinari J, Vollaro D(1989). Externalinfluence on hurricane intensity. Part I: Outflow layer eddy angularmomentum flux. J Atmos Sci, 46: 1093―1105

doi: 10.1175/1520-0469(1989)046<1093:EIOHIP>2.0.CO;2
Molinari J, Vollaro D(1990). Externalinfluence on hurricane intensity. Part I: Vertical strucutre and responseof Hurricane vortex. J Atmos Sci, 47: 1902―1918

doi: 10.1175/1520-0469(1990)047<1902:EIOHIP>2.0.CO;2
Park K, Zou X(2004). Towarddeveloping an objective 4DVAR BDA scheme for Hurricane initializationbased on TPC observed parameters. Mon WeaRev, 132: 2054―2069

doi: 10.1175/1520-0493(2004)132<2054:TDAODB>2.0.CO;2
Persing J, Montgomery M T, Tuleya R E(2002). Environmental interactions in theGFDL hurricane model of Hurricane Opal. Mon Wea Rev, 130: 298―317

doi: 10.1175/1520-0493(2002)130<0298:EIITGH>2.0.CO;2
Pfeffer R L, Challa M(1981). A nemericalstudy of the role of eddy fluxes of momentum in the development ofAtlantic hurricanes. J Atmos Sci, 38: 2392―2398

doi: 10.1175/1520-0469(1981)038<2393:ANSOTR>2.0.CO;2
Shapiro L J, Moller J D(2003). Influenceof atmospheric asymmetries on the intensifi-cation of Hurricane Opal:Picewase PV intersion diagnosis of a GFDL model forecast. Mon Wea Rev, 131: 1637―1649

doi: 10.1175//2552.1
Wu C C, Cheng H J(1999). An observationalstudy of environmental influences on the intensity changes of TyphoonsFlo (1990) and Gene (1990). Mon Wea Rev, 127: 3003―3031

doi: 10.1175/1520-0493(1999)127<3003:AOSOEI>2.0.CO;2
Zou X, Xiao Q(2000). Studieson the initialization and simulation of a mature Hurricane using avariational bogus data assimilation scheme. J Atmos Sci, 57: 836―860

doi: 10.1175/1520-0469(2000)057<0836:SOTIAS>2.0.CO;2
[1] Xin QUAN, Xiaofan LI, Guoqing ZHAI. Physical processes associated with movement of maximum wind of Typhoon Rammasun (2014)[J]. Front. Earth Sci., 2023, 17(2): 407-416.
[2] Taotao YAN, Shan HE, Shuai ZHENG, Yadong BAI, Wei CHEN, Yanjun MENG, Shangwen JIN, Huifang YAO, Xiaobao JIA. Critical tectonic events and their geological controls on deep buried coalbed methane accumulation in Daning-Jixian Block, eastern Ordos Basin[J]. Front. Earth Sci., 2023, 17(1): 197-217.
[3] Huihuang FANG, Hongjie XU, Shuxun SANG, Shiqi Liu, Shuailiang SONG, Huihu LIU. 3D reconstruction of coal pore network and its application in CO2-ECBM process simulation at laboratory scale[J]. Front. Earth Sci., 2022, 16(2): 523-539.
[4] Siqi CHEN, Feng XU, Yu ZHANG, Guiling YE, Jianjun XU, Chunlei LIU. Sensitivity of Typhoon Lingling (2019) simulations to horizontal mixing length and planetary boundary layer parameterizations[J]. Front. Earth Sci., 2022, 16(2): 304-322.
[5] Weicheng NI, Ad STOFFELEN, Kaijun REN. Hurricane eye morphology extraction from SAR images by texture analysis[J]. Front. Earth Sci., 2022, 16(1): 190-205.
[6] Mengting XU, Hong LI, Jingyao LUO, Hairong BEN, Yijie ZHU. Predictability and dynamics of the rapid intensification of Super Typhoon Lekima (2019)[J]. Front. Earth Sci., 2022, 16(1): 132-143.
[7] Jun LIU, Ye ZHANG, Lijun CHENG, Zhaohui LU, Chunlin ZENG, Peng ZHAO. Numerical modeling of the dynamic variation in multiphase CH4 during CO2 enhanced gas recovery from depleted shale reservoirs[J]. Front. Earth Sci., 2021, 15(4): 790-802.
[8] Pingzhi FANG, Deqian ZHENG, Liang LI, Wenyong MA, Shengming TANG. Numerical and experimental study of the aerodynamic characteristics around two-dimensional terrain with different slope angles[J]. Front. Earth Sci., 2019, 13(4): 705-720.
[9] Rui XING,Zhiying DING,Sangjie YOU,Haiming XU. Relationship of tropical-cyclone-induced remote precipitation with tropical cyclones and the subtropical high[J]. Front. Earth Sci., 2016, 10(3): 595-606.
[10] Shou MA,Jianchun GUO,Lianchong LI,Leslie George THAM,Yingjie XIA,Chun’an TANG. Influence of pore pressure on tensile fracture growth in rocks: a new explanation based on numerical testing[J]. Front. Earth Sci., 2015, 9(3): 412-426.
[11] Xinwen LI, Yongming SHEN. Numerical simulation of the impacts of water level variation on water age in Dahuofang Reservoir[J]. Front. Earth Sci., 2015, 9(2): 209-224.
[12] Lianchong LI,Shaohua LI,Chun’an TANG. Fracture spacing behavior in layered rocks subjected to different driving forces: a numerical study based on fracture infilling process[J]. Front. Earth Sci., 2014, 8(4): 472-489.
[13] Da AN, Yonghai JIANG, Beidou XI, Zhifei MA, Yu YANG, Queping YANG, Mingxiao LI, Jinbao ZHANG, Shunguo BAI, Lei JIANG. Analysis for remedial alternatives of unregulated municipal solid waste landfills leachate-contaminated groundwater[J]. Front Earth Sci, 2013, 7(3): 310-319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed