Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2021, Vol. 15 Issue (4) : 831-848    https://doi.org/10.1007/s11707-021-0927-4
RESEARCH ARTICLE
Evolution of pore structure in organic shale with type III kerogen and high kaolinite content in Ningwu Basin
Qiang XU1, Hangbing LIN2(), Yue ZHAO1, Bo WANG3, Bin MA4, Rong DING5, Jianxin WANG6, Tao HOU7
1. General Prospecting Institute, China National Administration of Coal Geology, Beijing 100039, China
2. Purdue University Northwest, Hammond IN 46323, USA
3. Information Institute of the Ministry of Emergency Management of China, Beijing 100029, China
4. Shanxi Lanhua CBM Co. Ltd, Jincheng 048026, China
5. PetroChina Coalbed Methane Co. Ltd, Beijing 100028, China
6. Research Institute of China National Offshore Oil Corporation, Beijing 100028, China
7. PetroChina Huabei Oilfield Company, Renqiu 062550, China
 Download: PDF(9526 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Special deposition environment makes organic-rich shales in Ningwu Basin have type III kerogen and high kaolinite content, which are also famous as the kaolinite ore. The specific composition of shale in Ningwu Basin can change the pore structure and thus, influence the shale gas storage and transport. This study focuses on the pore structure and its evolution in shales with type III kerogen and high kaolinite content. In this study, 14 Upper Paleozoic shale samples, whose total organic matter contents (TOC) range from 0.39% to 5.91% and maturities (represented by vitrinite reflectance) range from 1.22% to 2.06%, were collected. Scanning electron microscopy (SEM), high-pressure mercury injection, and low-temperature N2 adsorption experiments were used to analyze pore structure of these shale samples. Results show that when the TOC content is smaller than 1.4%, the kaolinite content decreases linearly and quartz content increases linearly with increasing the TOC content. In contrast, when TOC content is>1.4%, the clay content tends to increase with increasing TOC. Based on the SEM images, organic pores and clay pores were identified in shale samples with type III kerogen and high kaolinite content. During the maturation process, the kaolinite content decreases and illite content increases with increasing the vitrinite reflectance. At the same time, the pore volume and pore surface area both increase with increasing the vitrinite reflectance, and it may be because more organic pores and clay pores in the illite were generated during the maturation process. This study can provide further understandings of shale gas accumulation in shale with type III kerogen and high kaolinite content.

Keywords pore structure      type III kerogen      kaolinite      low-temperature N2 adsorption      high-pressure mercury porosimetry      influencing factors     
Corresponding Author(s): Hangbing LIN   
Online First Date: 29 October 2021    Issue Date: 20 January 2022
 Cite this article:   
Qiang XU,Hangbing LIN,Yue ZHAO, et al. Evolution of pore structure in organic shale with type III kerogen and high kaolinite content in Ningwu Basin[J]. Front. Earth Sci., 2021, 15(4): 831-848.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-021-0927-4
https://academic.hep.com.cn/fesci/EN/Y2021/V15/I4/831
Fig.1  Schematic map showing sampling wells location (Xu et al., 2018).
Fig.2  The influencing factors on pore structure (Li et al., 2017, 2020).
Sample ID Depth/m Formation TOC/% Ro/% Mineraloglcal composition/% ??Clay composition/%
Quartz Feldspar Clay Dolomite Calcite Pyrite I K C
H1 933.2 Shanxi 3.17 1.67 21.8 76.9 0 0 1.3 17 83 0
H2 1045.1 Taiyuan 2.01 1.22 30.2 69.0 0.8 14.4 85.6 0
H3 1090.1 Taiyuan 1.05 1.27 42.8 56.3 0.9 26.4 73.6
S1 1228.1 Shanxi 5.8 1.61 12.9 82.0 5.1 2.4 97.6 0
S2 1303.1 Taiyuan 1.34 2.21 47.8 52.2 13.8 86.2 0
S3 1360.1 Benxi 0.93 1.37 32 67.1 0.9 29.4 67.8 2.8
S4 1241 Shanxi 2.08 15.9 20.4 63.7 11.7 88.3 0
S5 1287 Taiyuan 1.45 21.9 6.6 49.2 3.4 5.7 44.3 51.3 4.4
X1 1238.1 Benxi 1.39 1.69 50.6 43.7 5.7 44.3 51.3 4.4
X2 1169.1 Taiyuan 5.91 1.82 22.4 71.6 6 5.5 94.5 0
X3 1082.1 Shanxi 0.39 1.67 10 90.0 5.9 94.1 0
N1 911.1 Benxi 0.62 2.06 29.3 68.5 2.2 7.6 86.1 6.3
N2 860 Taiyuan 2.51 1.63 28.8 67.4 3.8 17 83 0
N3 770.6 Shanxi 2.44 1.68 21.5 77.8 0.7 9.4 90.6 0
Tab.1  Mineral compositions and characteristic parameters of shale samples
Fig.3  Organic pores in SEM images. (a) and (b) different shapes of OM pores, well S301, 1214 m; (c) slit OM pores, well S301, 1214 m; (d) circular and elliptical OM pores, well H201, 1117 m; (e) densely distributed circular organic pores, S301,1214 m; (f) organic matter without pore, well N901, 829 m.
Fig.4  The inorganic pores and micro-fractures in the shale samples. (a) Kaolinite pores, well H201, 938 m; (b) kaolinite pores, N901, 829 m; (c) intra-particle pores, well N901, 829 m; (d) micro-fractures and inter-particle pores between organic matter and clay minerals, well H201, 914 m; (e) inter-particle pores in pyrite, well S301, 1214 m; (f) pores formed by pyrite, well S301, 1332m; (g) pores in clay minerals, well X702, 1078 m; (h) inter-particle pores, well H201, 938 m; (i) dissolution pores, well H201, 1049 m.
Fig.5  The mercury saturation under different mercury intrusion pressure.
Fig.6  Pore size distribution with the mercury intrusion method.
Sample ID TSSA/(m2·g1) TPV/(cm3·g1) Porosity/%
H1 0.0024 0.0161 4.00
H2 0.0142 0.0057 1.29
H3 0.0012 0.0059 1.54
S1 3.7167 0.0162 4.21
S2 5.7247 0.0209 5.06
S3 0.0453 0.0133 3.14
S4 0.5797 0.0060 1.54
S5 0.9435 0.0076 2.26
X1 1.4690 0.0223 5.58
X2 0.4629 0.0166 4.38
X3 0.9469 0.0187 4.58
N1 0.0091 0.0206 5.03
N2 0.0004 0.0020 0.52
N3 0.2552 0.0036 0.93
Tab.2  Pore structure parameters of shale obtained by MIP
Fig.7  Representative N2 adsorption/desorption isotherms and the corresponding pore shapes of different samples.
Smple ID TSSA/(m2·g1) SSAmic/(m2·g1) SSAmes/(m2·g1) SSAmac/(m2·g1) TPV/(cm3·g1) PVmic/(cm3·g1) PVmes/(cm3·g1) PVmac/(cm3·g1) Rave/nm Porosity/%
H1 18.2043 3.208 14.9122 0.0841 0.0211 0.0013 0.0176 0.0022 7.33 5.15
H2 8.4958 0.5006 7.9093 0.0859 0.0146 0.0002 0.0121 0.0023 9.61 3.25
H3 9.004 2.0091 6.7894 0.2019 0.0148 0.0008 0.0084 0.0056 11.22 3.76
S1 13.9538 0.4185 13.3018 0.2335 0.0252 0.0001 0.0212 0.0039 11.14 6.38
S2 12.2099 0.0001 11.9925 0.2173 0.024 0.0000 0.0193 0.0047 12.60 5.75
S3 10.0063 0.0001 10.0259 0.2003 0.0201 0.0000 0.0159 0.0042 12.34 4.69
S4 13.9672 0.8566 12.8705 0.2401 0.031 0.0003 0.0258 0.0049 11.41 7.49
S5 13.9538 0.4185 13.4646 0.0707 0.0252 0.0001 0.0234 0.0017 11.14 7.14
X1 14.0239 2.7524 11.1585 0.113 0.0180 0.0011 0.0143 0.0026 8.07 4.55
X2 6.8867 0.5387 6.2381 0.1099 0.0122 0.0002 0.0095 0.0025 9.72 3.25
X3 13.9796 1.9287 11.9641 0.0868 0.0192 0.0008 0.0159 0.0025 9.13 4.70
N1 13.4832 4.0997 9.3081 0.0754 0.0175 0.003 0.0145 0.0027 9.26 4.31
N2 5.8391 0.6671 4.9164 0.2556 0.0141 0.0002 0.0079 0.006 13.03 3.50
N3 8.4837 0.5784 7.6787 0.2266 0.0168 0.0002 0.011 0.0056 11.70 4.25
Tab.3  Pore structure parameters of shale obtained by N2
Fig.8  pore volume and surface area distribution of the shale samples.
Fig.9  Pore size distribution of different shale samples: (a) incremental SSA vs. pore width, (b) incremental PV vs. pore width.
Samples D1 R12 D2 R22
H1 2.207 0.7749 2.828 0.9388
H2 2.271 0.8714 2.747 0.9858
H3 2.300 0.8057 2.746 0.9998
S1 2.087 0.8497 2.726 0.8917
S2 2.279 0.8943 2.668 0.9571
S3 2.309 0.8767 2.726 0.9574
X1 2.062 0.8286 2.809 0.9669
N1 2.112 0.7531 2.828 0.9649
N3 2.310 0.8716 2.726 0.9999
Tab.4  Fractal analysis of the samples from N2 adsorption
Fig.10  Plots of lnV vs ln(ln(p0/p)) from N2 adsorption data.
Fig.11  Correlation between fractal dimensions and pore structure parameters.
Fig.12  The relationship between clay content, quartz content and organic matter content.
Fig.13  the relationship between kaolinite content, illite content and vitrinite reflectance.
Fig.14  The relationship between HI and Tmax of Carboniferous-Permian shale in the study area.
Fig.15  The impact on pore structure of the shale from organic geochemical characteristics: (a) TOC vs porosity; (b) TOC vs TPV; (c) TOC vs TSSA; MIP: data obtained based on mercury injection experiment (MIP); N2 adsorption: data obtained from the low temperature N2 adsorption experiment.
Fig.16  The relationship between TOC content and fractal parameter D1.
Fig.17  The effect of vitrinite reflectance on surface area obtained from the low temperature N2 adsorption experiment.
Fig.18  The correlation between pore volume and vitrinite reflectance in shale samples.
Fig.19  The correlation between kaolinite content and surface area.
Fig.20  Comprehensive analysis of pore structure in shale.
1 D Avnir, M Jaroniec (1989). An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials. Langmuir, 5(6): 1431–1433
https://doi.org/10.1021/la00090a032
2 J Bahadur, L F Ruppert, V Pipich, R Sakurovs, Y B Melnichenko (2018). Porosity of the Marcellus Shale: a contrast matching small-angle neutron scattering study. Int J Coal Geol, 188: 156–164
https://doi.org/10.1016/j.coal.2018.02.002
3 S Bernard, B Horsfield, H M Schulz, R Wirth, A Schreiber, N Sherwood (2012). Geochemical evolution of organic-rich shales with increasing maturity: a STXM and TEM study of the Posidonia Shale (Lower Toarcian, northern Germany). Marine Petrol Geo, 31(1): 70–89
4 S Brunauer, L S Deming, W E Deming, E Teller (1940). On the theory of Van der Waal’s adsorption of gases. J Am Chem Soc, 62(7): 1723–1732
https://doi.org/10.1021/ja01864a025
5 Y Chen, J Xu, P Wang (2020). Shale gas potential in China: a production forecast of the Wufeng-Longmaxi Formation and implications for future development. Energ Polic, 147: 111868
https://doi.org/10.1016/j.enpol.2020.111868
6 C R Clarkson, N R Solano, R M Bustin, A M M Bustin, G R L Chalmers, L He, Y B Melnichenko, A P Radliński, T P Blach (2013). Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion. Fuel, 103: 606–616
https://doi.org/10.1016/j.fuel.2012.06.119
7 J B Curtis (2002). Fractured shale-gas systems. AAPG Bull, 86(11): 1921–1938
8 M E Curtis, B J Cardott, C H Sondergeld, C S Rai (2012). Development of organic porosity in the woodford shale with increasing thermal maturity. Int J Coal Geol, 103: 26–31
https://doi.org/10.1016/j.coal.2012.08.004
9 Z Feng, D Dong, J Tian, Z Qiu, W Wu, C Zhang (2018). Geochemical characteristics of Longmaxi Formation shale gas in the Weiyuan area, Sichuan Basin, China. J Petrol Sci Eng, 167: 538–548
https://doi.org/10.1016/j.petrol.2018.04.030
10 H Fu, X Wang, L Zhang, R Gao, Z Li, T Xu, X Zhu, W Xu, Q Li (2015). Investigation of the factors that control the development of pore structure in lacustrine shale: a case study of block X in the Ordos Basin, China. J Nat Gas Sci Eng, 26: 1422–1432
https://doi.org/10.1016/j.jngse.2015.07.025
11 X Guo (2019). Major factors controlling the shale gas accumulations in Wufeng-Longmaxi Formation of the Pingqiao Shale Gas Field in Fuling Area, Sichuan Basin, China. J Nat Gas Geosci, 4(3): 129–138
https://doi.org/10.1016/j.jnggs.2019.06.002
12 B Hazra, D A Wood, S Kumar, S Saha, S Dutta, P Kumari, A K Singh (2018). Fractal disposition, porosity characterization and relationships to thermal maturity for the Lower Permian Raniganj Basin shales, India. J Nat Gas Sci Eng, 59: 452–465
https://doi.org/10.1016/j.jngse.2018.09.014
13 D M Jarvie, R J Hill, T E Ruble, R M Pollastro (2007). Unconventional shale-gas systems: the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bull, 91(4): 475–499
https://doi.org/10.1306/12190606068
14 F Jiang, D Chen, Z Wang, Z Xu, J Chen, L Liu, Y Huyan, Y Liu (2016). Pore characteristic analysis of a lacustrine shale: a case study in the Ordos Basin, NW China. Mar Pet Geol, 73: 554–571
https://doi.org/10.1016/j.marpetgeo.2016.03.026
15 P Jiang, J Xu (1989). Formation and evolution of the Ningwu Basin as a Mesozoic pull-apart basin. Chinese J Geo, 24(4): 314–322
16 V Kanniah, P Wu, N Mandzy, E A Grulke (2012). Fractal analysisasa complimentary technique for characterizing nanoparticle size distributions. Powder Technol, 226: 189–198
https://doi.org/10.1016/j.powtec.2012.04.041
17 B J Katz, I Arango (2018). Organic porosity: a geochemist’s view of the current state of understanding. Org Geochem, 123: 1–16
https://doi.org/10.1016/j.orggeochem.2018.05.015
18 L Kuang, D Dong, W He, S Wen, S Sun, S Li, Z Qiu, X Liao, Y Li, J Wu, L Zhang, Z Shi, W Guo, S Zhang (2020). Geological characteristics and development potential of transitional shale gas in the east margin of the Ordos Basin, NW China. Petrol Explor Devel, 47(3): 471–482
https://doi.org/10.1016/S1876-3804(20)60066-0
19 J Li, S Zhou, Y Li, Y Ma, Y Yang, C Li (2016c). Effect of organic matter on pore structure of mature lacustrine organic-rich shale: a case study of the Triassic Yanchang shale, Ordos Basin, China. Fuel, 185: 421–431
https://doi.org/10.1016/j.fuel.2016.07.100
20 Y Li, D Tang, P Wu, X Niu, K Wang, P Qiao, Z Wang (2016a). Continuous unconventional natural gas accumulations of Carboniferous-Permian coal-bearing strata in the Linxing area, northeastern Ordos Basin, China. J Nat Gas Sci Eng, 36: 314–327
https://doi.org/10.1016/j.jngse.2016.10.037
21 Y Li, Z Wang, Q Gan, X Niu, W Xu (2019a). Paleoenvironmental conditions and organic matter accumulation in Upper Paleozoic organic-rich rocks in the east margin of the Ordos Basin, China. Fuel, 252: 172–187
https://doi.org/10.1016/j.fuel.2019.04.095
22 Y Li, J Yang, Z Pan, S Meng, K Wang, X Niu (2019b). Unconventional natural gas accumulations in stacked deposits: a discussion of Upper Paleozoic coal-bearing strata in the east margin of the Ordos Basin, China. Acta Geol Sin (English Ed) , 93(1): 111–129
https://doi.org/10.1111/1755-6724.13767
23 Y Li, J Yang, Z Pan, W Tong (2020). Nanoscale pore structure and mechanical property analysis of coal: an insight combining AFM and SEM images. Fuel, 260: 116352
https://doi.org/10.1016/j.fuel.2019.116352
24 Y Li, C Zhang, D Tang, Q Gan, X Niu, K Wang, R Shen (2017). Coal pore size distributions controlled by the coalification process: an experimental study of coals from the Junggar, Ordos, and Qinshui basins in China. Fuel, 206: 352–363
https://doi.org/10.1016/j.fuel.2017.06.028
25 Z Li, I A Oyediran, R Huang, F Hu, T Du, R Hu, X Li (2016b). Study on pore structure characteristics of marine and continental shale in China. J Nat Gas Sci Eng, 33: 143–152
https://doi.org/10.1016/j.jngse.2016.05.011
26 Z Li, X Shen, Z Qi, R Hu (2018). Study on the pore structure and fractal characteristics of marine and continental shale based on mercury porosimetry, N2 adsorption and NMR methods. J Nat Gas Sci Eng, 53: 12–21
https://doi.org/10.1016/j.jngse.2018.02.027
27 G Liu, Z Huang, F Chen, Z Jiang, X Gao, T Li, L Chen, L Xia, W Han (2016). Reservoir characterization of Chang 7 member shale: a case study of lacustrine shale in the Yanchang Formation, Ordos Basin, China. J Nat Gas Sci Eng, 34: 458–471
https://doi.org/10.1016/j.jngse.2016.06.071
28 K Liu, M Ostadhassan, L Sun, J Zou, Y Yuan, T Gentzis, Y Zhang, H Carvajal-Ortiz, R Rezaee(2019). A comprehensive pore structure study of the Bakken Shale with SANS, N2 adsorption and mercury intrusion. Fuel, 245: 274–285
https://doi.org/10.1016/j.fuel.2019.01.174
29 W Liu, J Wu, H Jiang, Z Zhou, C Luo, W Wu, X Li, S Liu, B Deng (2021). Cenozoic exhumation and shale-gas enrichment of the Wufeng-Longmaxi formation in the southern Sichuan Basin, western China. Mar Pet Geol, 125: 104865
https://doi.org/10.1016/j.marpetgeo.2020.104865
30 X Liu, J Xiong, L Liang (2015). Investigation of pore structure and fractal characteristics of organic-rich Yanchang formation shale in central China by nitrogen adsorption/desorption analysis. J Nat Gas Sci Eng, 22(7): 62–72
https://doi.org/10.1016/j.jngse.2014.11.020
31 R G Loucks, R M Reed, S C Ruppel, U Hammes (2012). Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull, 96(6): 1071–1098
https://doi.org/10.1306/08171111061
32 H Nie, D Li, G Liu, Z Lu, W Hu, R Wang, G Zhang (2020). An overview of the geology and production of the Fuling shale gas field, Sichuan Basin, China. Energy Geoscience, 1(3–4): 147–164
https://doi.org/10.1016/j.engeos.2020.06.005
33 Y Pan, D Hui, P Luo, Y Zhang, L Zhang, L Sun (2018). Influences of subcritical and supercritical CO2 treatment on the pore structure characteristics of marine and terrestrial shales. J CO2 Utilization, 28: 152–67
34 L Qin, S Li, C Zhai, H Lin, P Zhao, Y Shi, Y Bai (2020). Changes in the pore structure of lignite after repeated cycles of liquid nitrogen freezing as determined by nitrogen adsorption and mercury intrusion. Fuel, 267: 117214
https://doi.org/10.1016/j.fuel.2020.117214
35 D Sanyal, P Ramachandrarao, O P A Gupta (2006). Fractal description of transport phenomena in dendritic porous network. Chem Eng Sci, 61(2): 307–315
https://doi.org/10.1016/j.ces.2005.06.005
36 M Shi, B Yu, Z Xue, J Wu, Y Yuan (2015). Pore characteristics of organic-rich shaleswith high thermal maturity: a case study of the Longmaxi gas shale reservoirs from well Yuye-1 in southeastern Chongqing, China. J Nat Gas Sci Eng, 26: 948–959
https://doi.org/10.1016/j.jngse.2015.07.042
37 R M Slatt, N R O’Brien (2011). Pore types in the Barnett and Woodford gas shales: contribution to understanding gas storage and migration pathways in fine-grained rocks. AAPG Bull, 95(12): 2017–2030
https://doi.org/10.1306/03301110145
38 C Sun, S Tang, S Zhang, J Wei, Y Hou, T Zhang (2017). Nanopore characteristics of Late Paleozoic transitional facies coal-bearing shale in Ningwu Basin, China investigated by nuclear magnetic resonance and low-pressure nitrogen adsorption. J Nanosci Nanotechnol, 17(9): 6433–6444
https://doi.org/10.1166/jnn.2017.14477
39 Q Wang, X Chen, A N Jha, H Rogers (2014a). Natural gas from shale formation- the evolution, evidences and challenges of shale gas revolution in United States. Renew Sustain Energy Rev, 30(2): 1–28
https://doi.org/10.1016/j.rser.2013.08.065
40 X Wang, S Gao, C Gao (2014b). Geological features of Mesozoic lacustrine shale gas in south of Ordos Basin, NW China. Pet Explor Dev, 41(3): 326–337
https://doi.org/10.1016/S1876-3804(14)60037-9
41 X Wang, Y Zhu, Y Song, P Jonathan (2020). Structure and partial ordering of terrestrial kerogen: insight from high-resolution transmission electron microscopy. Fuel, 281: 118759
https://doi.org/doi.org/10.1016/j.fuel.2020.118759
42 Y Wang, L Wang, J Wang, Z Jiang, C Jin, Y Wang (2018). Characterization of organic matter pores in typical marine and terrestrial shales, China. J Nat Gas Sci Eng, 49: 56–65
https://doi.org/10.1016/j.jngse.2017.11.002
43 Y Wang, L Wang, J Wang, Z Jiang, C Wang, Y Fu, F Song, Y Wang, D Liu, C Jin (2019). Multiscale characterization of three-dimensional pore structures in a shale gas reservoir: a case study of the Longmaxi shale in Sichuan Basin, China. J Nat Gas Sci Eng, 66: 207–216
https://doi.org/10.1016/j.jngse.2019.04.009
44 F Xiong, Z Jiang, P Li, X Wang, H Bi, Y Li, Z Wang, M A Amooie, M R Soltanian, J Moortgat(2017). Pore structure of transitional shales in the Ordos Basin, NW China: effects of composition on gas storage capacity. Fuel, 206: 504–515
https://doi.org/10.1016/j.fuel.2017.05.083
45 Q Xu, B Liu, Y Ma, X Song, Y Wang, Z Chen (2017). Geological and geochemical characterization of lacustrine shale: a case study of the Jurassic Da’anzhai member shale in the central Sichuan Basin, southwest China. J Nat Gas Sci Eng, 47: 124–139
https://doi.org/10.1016/j.jngse.2017.09.008
46 Q Xu, F Xu, B Jiang, Y Zhao, X Zhao, R Ding, J Wang (2018). Geology and transitional shale gas resource potentials in the Ningwu Basin, China. Energy Explor & Exploit, 36(6): 1482–1497
https://doi.org/10.1177/0144598718772316
47 F Yang, Z Ning, H Liu (2014). Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China. Fuel, 115: 378–384
https://doi.org/10.1016/j.fuel.2013.07.040
48 F Yang, Z Ning, Q Wang, R Zhang, B M Krooss (2016a). Pore structure characteristics of lower Silurian shales in the southern Sichuan Basin, China: insights to pore development and gas storage mechanism. Int J Coal Geol, 156: 12–24
https://doi.org/10.1016/j.coal.2015.12.015
49 Y Yang, W Zhang, Y Gao, Y Wan, Y Su, S An, H Sun, L Zhang, J Zhao, L Liu (2016b). Influence of stress sensitivity on microscopic pore structure and fluid flow in porous media. J Nat Gas Sci Eng, 36 (Part A): 20–31
50 R Yang, S He, J Yi, Q Hu (2016c). Nano-scale pore structure and fractal dimension of organic-rich Wufeng-Longmaxi shale from Jiaoshiba area, Sichuan Basin: investigations using FE-SEM, gas adsorption and helium pycnometry. Mar Pet Geol, 70: 27–45
https://doi.org/10.1016/j.marpetgeo.2015.11.019
51 Y Yuan, R Rezaee (2019). Fractal analysis of the pore structure for clay bound water and potential gas storage in shales based on NMR and N2 gas adsorption. J Petrol Sci Eng, 177: 756–765
https://doi.org/10.1016/j.petrol.2019.02.082
52 B X Zhang, X H Fu, Y L Shen, Q H Zhang, Z Deng (2021). Mineral composition and its control on nanopores of marine-continental transitional shale from the Ningwu Basin, North China. J Nanosci Nanotechnol, 21(1): 168–180
https://doi.org/10.1166/jnn.2021.18750 pmid: 33213621
53 J Zhang, X Li, Z Xie, J Li, X Zhang, K Sun, F Wang (2018). Characterization of microscopic pore types and structures in marine shale: examples from the Upper Permian Dalong Formation, Northern Sichuan Basin, South China. J Nat Gas Sci Eng, 59: 326–342
https://doi.org/10.1016/j.jngse.2018.09.012
54 M Zhang, X Fu, Q Zhang, W Cheng (2019). Research on the organic geochemical and mineral composition properties and its influence on pore structure of coal-measure shales in Yushe-Wuxiang Block, South Central Qinshui Basin, China. J Petrol Sci Eng, 173: 1065–1079
https://doi.org/10.1016/j.petrol.2018.10.079
55 J Zhou, K Yang, S Tian, L Zhou, X Xian, Y Jiang, M Liu, J Cai (2020). CO2-water-shale interaction induced shale microstructural alteration. Fuel, 263: 116642
https://doi.org/10.1016/j.fuel.2019.116642
56 L Zhou, Z Kang (2016). Fractal characterization of pores in shales using NMR: a case study from the Lower Cambrian Niutitang Formation in the Middle Yangtze Platform, Southwest China. J Nat Gas Sci Eng, 35: 860–872
https://doi.org/10.1016/j.jngse.2016.09.030
[1] Weidong XIE, Meng WANG, Hua WANG, Ruying MA, Hongyue DUAN. Diagenesis of shale and its control on pore structure, a case study from typical marine, transitional and continental shales[J]. Front. Earth Sci., 2021, 15(2): 378-394.
[2] Xiangzeng WANG, Junping ZHOU, Xiao SUN, Shifeng TIAN, Jiren TANG, Feng SHEN, Jinqiao WU. The influences of composition and pore structure on the adsorption behavior of CH4 and CO2 on shale[J]. Front. Earth Sci., 2021, 15(2): 283-300.
[3] Aikuan WANG, Pei SHAO, Qinghui WANG. Biogenic gas generation effects on anthracite molecular structure and pore structure[J]. Front. Earth Sci., 2021, 15(2): 272-282.
[4] Wei JU, Jian SHEN, Chao LI, Kun YU, Hui YANG. Natural fractures within unconventional reservoirs of Linxing Block, eastern Ordos Basin, central China[J]. Front. Earth Sci., 2020, 14(4): 770-782.
[5] Chang’an SHAN, Tingshan ZHANG, Xing LIANG, Dongchu SHU, Zhao ZHANG, Xiangfeng WEI, Kun ZHANG, Xuliang FENG, Haihua ZHU, Shengtao WANG, Yue CHEN. Effects of nano-pore system characteristics on CH4 adsorption capacity in anthracite[J]. Front. Earth Sci., 2019, 13(1): 75-91.
[6] Haihai HOU, Longyi SHAO, Yonghong LI, Zhen LI, Wenlong ZHANG, Huaijun WEN. The pore structure and fractal characteristics of shales with low thermal maturity from the Yuqia Coalfield, northern Qaidam Basin, northwestern China[J]. Front. Earth Sci., 2018, 12(1): 148-159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed