Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2022, Vol. 16 Issue (3) : 774-785    https://doi.org/10.1007/s11707-021-0933-6
Research Article
Seasonal variations of leaf wax n-alkane distributions and δ2H values in peat-forming vascular plants from the Dajiuhu peatland, central China
Jiantao XUE1(), Xueying ZHANG1, Jinzhi LI1, Zhiqi ZHANG2, Huaiying YAO1,3
1. Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China
2. Administration of Dajiuhu National Wetland Park of Shennongjia, Shennongjia 442417, China
3. Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
 Download: PDF(3740 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Leaf wax n-alkane compositions have been widely applied to reconstruct paleoclimate histories in peat deposits, yet understanding of how the n-alkanes vary during seasonal plant growth remains limited. Here we report variations in the molecular and wax-derived n-alkane hydrogen isotope (δ2Halk) in the three dominant vascular plant species (Sanguisorba officinalis, Carex argyi, Euphorbia esula) and surface peat deposits nearby from the Dajiuhu peatland over a growing season. All three species show a relatively high carbon preference index (CPI) in the beginning of the growing season, with the CPI values reaching as high as 50 in two of the three species. Two species (S. officinalis, E. esula) display relatively stable average chain length (ACL) values over the four sampling intervals, with standard derivations of 0.2–0.3. In contrast, C. argyi exhibits a significant fluctuation of ACL values (averaging 28.1±1.4) over the growing season. The δ2Halk in all three species decreased during leaf growth. In the final stage of growth, the δ2Halk values of the three species are similar to those in the surface peats collected from the peatland. Combining the results of our measurements of alkane concentration and δ2H values, it is likely that de novo synthesis of leaf wax n-alkanes in the peat-forming plant species is mainly at the early stage of leaf development. In the following months, the removal process exceeds renewal, resulting in a general decrease of the concentration of the total n-alkanes and the integrated δ2Halk values. Thus the δ2Halk values probably integrate the environmental variations at the end of the plant growth period rather than the whole period or the early growth period. These results are significant and have the potential to improve the utility of δ2Halk values in paleoenvironmental reconstructions.

Keywords peat-forming vascular plants      n-alkanes      δ2H ratio      seasonal variations      central China     
Corresponding Author(s): Jiantao XUE   
Online First Date: 17 March 2022    Issue Date: 29 December 2022
 Cite this article:   
Jiantao XUE,Xueying ZHANG,Jinzhi LI, et al. Seasonal variations of leaf wax n-alkane distributions and δ2H values in peat-forming vascular plants from the Dajiuhu peatland, central China[J]. Front. Earth Sci., 2022, 16(3): 774-785.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-021-0933-6
https://academic.hep.com.cn/fesci/EN/Y2022/V16/I3/774
Fig.1  (a) Image of the Dajiuhu peatland (downloaded from Google Earth); (b) live action photo taken on dajiuhu peatland; (c), (d), and (e) pictures of plants downloaded from the internet.
Fig.2  (a) Monthly mean precipitation (MMP) and (b) mean air temperature (MAT) in Dajiuhu National Wetland Park during 2010.
Sanguisorba officinalis Euphorbia esula Carex argyi
May July September November May July September November May July September November
n-C23 0.8 0.7 1.9 2.6 3 2.5 0.1 4 8.7 4.3 8.4 0.8
n-C24 0.4 0.7 2.7 1.7 0.4 0.8 0.2 2.3 1.9 0.8 2.3 0.1
n-C25 4.4 3.9 7 9.7 27.6 16.9 1.4 28.1 26.5 8.7 32.9 1.2
n-C26 1.1 1.3 6.8 3.4 2 4.5 1.5 17.6 2 0.8 1.2 0.2
n-C27 16.7 10.7 21.6 48.9 80.4 50.5 4.1 117 44.7 9.7 8.1 2.8
n-C28 0.9 7.6 9.1 4 0.4 6.5 2.1 33.4 2.5 1.1 0.5 0.5
n-C29 53 22.5 23.3 56.2 20 28.6 3.3 94.3 53.1 21 9 9.7
n-C30 1.7 4.3 4.7 9.2 0.6 2.4 0.6 11.1 1.8 1.4 0.3 0.7
n-C31 253.1 114 75.6 225.9 62.5 69.7 2.8 92.1 26.7 14 6.9 11.2
n-C32 8.5 7.3 5.1 13.3 0.7 0.9 0.1 2.3 0.7 0.5 0.4 0.5
n-C33 533.9 303.9 188.5 644.4 40.7 34.4 1.5 51.5 3.5 3.3 2.5 3.5
CPI 47.2 14.3 7.8 21 51.2 12.2 2.8 5.4 17.6 12.3 13.5 13
ACL 32 32.1 31.6 31.9 29 29.5 28.8 29.1 27.9 28.4 26.4 29.7
δ2H27 –159(5) –174(1) –182(2) –206(6) –171(2) –191(0) –229(2) –211(2) –176(2) –210(2) –195(7) –242(0)
δ2H29 –149(3) –189(0) –184(4) –204(1) –171(5) –186(1) –218(2) –221(0) –194(2) –201(3) –208(4) –221(0)
δ2H31 –131(3) –179(4) –179(2) –217(1) –177(1) –191(0) –212(0) –216(1) –151(3) –194(3) –189(8) –217(2)
Tab.1  The concentration (μg/g dry weight), CPI, ACL values, and δ2Halk values (‰; standard deviation at least duplicate analyses shown in the parentheses) of leaf wax n-alkanes in the peat-forming plants collected from the Dajiuhu peatland at May, July, September, and November 2010
Fig.3  (a) Variations of the total concentration (µg/g dry weight) and (b) CPI and (c) ACL values of the plant leaves and surface peat deposits over the sampling period in the Dajiuhu peatland.
Source water Surface peat deposit
δ2Hsw/‰ STD##δHsw n### CPI STD##CPI ACL STD##ACL δ2H27/‰ STD##δH27 δ2H29/‰ STD##δH29 δ2H31/‰ STD##δH31 n###
May# –29.4 9.5 15 6.1 0.8 29.9 0.9 –207 13.6 –204 8.9 –201 10.2 8
July –43.7 9.6 26 5.8 1.0 29 1.0 –196 12.9 –199 13.9 –194 11.7 8
September –72.4 5.1 26 5.3 0.9 29.2 0.8 –211 13.2 –208 9.1 –202 9.8 9
November –72.7 3.7 26 5.2 1.0 29.3 1.0 –210 6.5 –200 16.7 –201 13.0 7
Tab.2  The δ2H values of peat source water (δ2Hsw) and surface peat deposits n-alkanes (δ2H27, δ2H29, δ2H31) collected from the Dajiuhu peatland at May, July, September, and November 2014
Fig.4  Seasonal variations of δ2H values of n-C27, n-C29, and n-C31 alkanes in the leaves of three plant species during 2010 and August 2017 (Huang et al., 2018a) and surface peat deposits during 2014.
Sanguisorba officinalis Euphorbia esula Carex argyi Surface peat deposit Source water
δ2H27 δ2H29 δ2H31 δ2H27 δ2H29 δ2H31 δ2H27 δ2H29 δ2H31 δ2H27 δ2H29 δ2H31 δ2Hsw
MAT r 0.69 0.33 0.50 0.14 0.47 0.46 0.62 0.71 0.42 0.61 -0.22 0.55 0.42
p 0.31 0.69 0.50 0.86 0.53 0.54 0.38 0.29 0.52 0.34 0.78 0.45 0.58
MMP r 0.96 0.73 0.85 0.56 0.81 0.82 0.85 0.97 0.78 0.55 -0.21 0.41 0.78
p 0.04 0.27 0.15 0.44 0.19 0.18 0.15 0.03 0.21 0.45 0.79 0.59 0.22
Sanguisorba officinalis Euphorbia esula Carex argyi Surface peat deposit
ε27/sw ε29/sw ε31/sw ε27/sw ε29/sw ε31/sw ε27/sw ε29/sw ε31/sw ε27/sw ε29/sw ε31/sw
MAT r 0.59 0.01 0.46 –0.45 0.59 0.48 0.46 0.08 0.24 –0.15 –0.22 –0.13
p 0.41 0.99 0.54 –0.56 0.41 0.52 0.54 0.92 0.77 0.42 0.22 0.48
MMP r 0.41 0.18 0.69 0.06 0.89 0.46 0.44 –0.31 0.43 –0.52 –0.59 –0.52
p 0.59 0.82 0.31 0.94 0.11 0.55 0.56 0.69 0.57 0.00 0.00 0.00
Tab.3  The correlation efficiency between the δ2Hsw, δ2Halk, εalk/sw, and environmental factors (MAT and MMP)
  Seasonal variations of εalk/sw in the leaves of three plant species during 2010 and August 2017 (Huang et al., 2018a) and surface peat deposits during 2014.
1 R A Andersson, P A Meyers, E Hornibrook, P Kuhry, C M Mörth (2012). Elemental and isotopic carbon and nitrogen records of organic matter accumulation in a Holocene permafrost peat sequence in the East European Russian Arctic. J Quat Sci, 27(6): 545–552
https://doi.org/10.1002/jqs.2541
2 M Baas, R Pancost, B van Geel, J S Sinninghe Damsté (2000). A comparative study of lipids in Sphagnum species. Org Geochem, 31(6): 535–541
https://doi.org/10.1016/S0146-6380(00)00037-1
3 Y Bai, X Fang, G Jia, J Sun, R Wen, Y Ye (2015). Different altitude effect of leaf wax n-alkane δD in surface soils along two vapor transport pathways, southeastern Tibetan Plateau. Geochim Cosmochim Acta, 170: 94–107
https://doi.org/10.1016/j.gca.2015.08.016
4 Y Bai, M Azamdzhon, S Wang, X Fang, H Guo, P Zhou, C Chen, X Liu, S Jia, Q Wang (2019). An evaluation of biological and climatic effects on plant n-alkane distributions and δ2Halk in a field experiment conducted in central Tibet. Org Geochem, 135: 53–63
https://doi.org/10.1016/j.orggeochem.2019.06.003
5 N L Balascio, W J D’Andrea, R S Anderson, S Wickler (2018). Influence of vegetation type on n-alkane composition and hydrogen isotope values from a high latitude ombrotrophic bog. Org Geochem, 121: 48–57
https://doi.org/10.1016/j.orggeochem.2018.03.008
6 E M Bingham, E L McClymont, M Väliranta, D Mauquoy, Z Roberts, F M Chambers, R D Pancost, R P Evershed (2010). Conservative composition of n-alkane biomarkers in Sphagnum species: implications for palaeoclimate reconstruction in ombrotrophic peat bogs. Org Geochem, 41(2): 214–220
https://doi.org/10.1016/j.orggeochem.2009.06.010
7 J Blackford (2000). Palaeoclimatic records from peat bogs. Trends Ecol Evol, 15(5): 193–198
https://doi.org/10.1016/S0169-5347(00)01826-7 pmid: 10782133
8 Z J Bu, H Rydin, X Chen (2011). Direct and interaction-mediated effects of environmental changes on peatland bryophytes. Oecologia, 166(2): 555–563
https://doi.org/10.1007/s00442-010-1880-1 pmid: 21170747
9 R T Bush, F A McInerney (2013). Leaf wax n-alkane distributions in and across modern plants: implications for paleoecology and chemotaxonomy. Geochim Cosmochim Acta, 117: 161–179
https://doi.org/10.1016/j.gca.2013.04.016
10 R T Bush, F A McInerney (2015). Influence of temperature and C4 abundance on n-alkane chain length distributions across the central USA. Org Geochem, 79: 65–73
https://doi.org/10.1016/j.orggeochem.2014.12.003
11 F M Chambers, R K Booth, F De Vleeschouwer, M Lamentowicz, G, Le Roux D Mauquoy, J E Nichols, B van Geel (2012). Development and refinement of proxy-climate indicators from peats. Quat Int, 268: 21–33
https://doi.org/10.1016/j.quaint.2011.04.039
12 Y Chikaraishi, H Naraoka (2006). Carbon and hydrogen isotope variation of plant biomarkers in a plant-soil system. Chem Geol, 231(3): 190–202
https://doi.org/10.1016/j.chemgeo.2006.01.026
13 L M Cisneros-Dozal, J M Heikoop, J Fessenden, R S Anderson, P A Meyers, C D Allen, M Hess, T Larson, G Perkins, M Rearick (2010). A 15000-year record of climate change in northern New Mexico, USA, inferred from isotopic and elemental contents in bog sediments. J Quat Sci, 25(6): 1001–1007
https://doi.org/10.1002/jqs.1387
14 Y Duan, Y Wu, X Cao, Z Yang, L Ma (2014). Hydrogen isotope ratios of individual n-alkanes in plants from Gannan Gahai Lake (China) and surrounding area. Org Geochem, 77: 96–105
https://doi.org/10.1016/j.orggeochem.2014.10.005
15 P Farrimond, R L Flanagan (1996). Lipid stratigraphy of a Flandrian peat bed (Northumberland, UK): comparison with the pollen record. Holocene, 6(1): 69–74
https://doi.org/10.1177/095968369600600108
16 E Freimuth, A Diefendorf, T V Lowell (2017). Hydrogen isotopes of n-alkanes and n-alkanoic acids as tracers of precipitation in a temperate forest and implications for paleorecords. Geochim Cosmochim Acta, 206: 166–183
https://doi.org/10.1016/j.gca.2017.02.027
17 E Freimuth, A Diefendorf, T V Lowell, G C Wiles (2019). Sedimentary n-alkanes and n-alkanoic acids in a temperate bog are biased toward woody plants. Org Geochem, 128: 94–107
https://doi.org/10.1016/j.orggeochem.2019.01.006
18 L Gao, A Burnier, Y Huang (2012a). Quantifying instantaneous regeneration rates of plant leaf waxes using stable hydrogen isotope labeling. Rapid Commun Mass Sp, 26(2): 115–122
https://doi.org/10.1002/rcm.5313 pmid: 22173799
19 L Gao, Y J Tsai, Y Huang (2012b). Assessing the rate and timing of leaf wax regeneration in Fraxinus americana using stable hydrogen isotope labeling. Rapid Commun Mass Sp, 26(19): 2241–2250
https://doi.org/10.1002/rcm.6348 pmid: 22956315
20 L Gao, E J Edwards, Y Zeng, Y Huang (2014). Major evolutionary trends in hydrogen isotope fractionation of vascular plant leaf waxes. PLoS One, 9(11): e112610
https://doi.org/10.1371/journal.pone.0112610 pmid: 25402476
21 S Gogo, F Laggoun-Défarge, F Merzouki, S Mounier, A Guirimand-Dufour, N Jozja, A Huguet, F Delarue, C Défarge (2016). In situ and laboratory non-additive litter mixture effect on C dynamics of sphagnum rubellum and molinia caerulea litters. J Soils Sediments, 16(1): 13–27
https://doi.org/10.1007/s11368-015-1178-3
22 P G Gülz, E Muller (1992). Seasonal variation in the composition of epicuticular waxes of Quercus robur leaves. Z Naturforsch C, 47(11–12): 800–806
https://doi.org/10.1515/znc-1992-11-1204
23 D, He S Nemiah Ladd, C J Saunders, R N Mead, R Jaffé (2020). Distribution of n-alkanes and their δ2H and δ13C values in typical plants along a terrestrial-coastal-oceanic gradient. Geochim Cosmochim Acta, 281: 31–52
https://doi.org/10.1016/j.gca.2020.05.003
24 B R Helliker, J R Ehleringer (2000). Establishing a grassland signature in veins: 18O in the leaf water of C3 and C4 grasses. Proc Natl Acad Sci USA, 97(14): 7894–7898
https://doi.org/10.1073/pnas.97.14.7894 pmid: 10884421
25 A V Herrera-Herrera, L Leierer, M Jambrina-Enríquez, R Connolly, C Mallol (2020). Evaluating different methods for calculating the carbon preference index (CPI): implications for palaeoecological and archaeological research. Org Geochem, 146: 104056
https://doi.org/10.1016/j.orggeochem.2020.104056
26 Y Hong, Z Wang, H Jiang, Q Lin, B Hong, Y Zhu, Y Wang, L Xu, X Leng, H Li (2001). A 6000-year record of changes in drought and precipitation in northeastern China based on a δ13C time series from peat cellulose. Earth Planet Sci Lett, 185(1–2): 111–119
https://doi.org/10.1016/S0012-821X(00)00367-8
27 X Huang, C Wang, J Zhang, G L B Wiesenberg, Z Zhang, S Xie (2011). Comparison of free lipid compositions between roots and leaves of plants in the Dajiuhu Peatland, Central China. Geochem J, 45(5): 365–373
https://doi.org/10.2343/geochemj.1.0129
28 X Huang, J Xue, P A Meyers, L Gong, X Wang, Q Liu, Y Qin, H Wang (2014). Hydrologic influence on the δ13C variation in long chain n-alkanes in the Dajiuhu peatland, central China. Org Geochem, 69: 114–119
https://doi.org/10.1016/j.orggeochem.2014.01.016
29 X Huang, P A Meyers, J Xue, Y Zhang, X Wang (2016). Paleoclimate significance of n-alkane molecular distributions and δ2H values in surface peats across the monsoon region of China. Palaeogeogr Palaeoclimatol Palaeoecol, 461: 77–86
https://doi.org/10.1016/j.palaeo.2016.08.011
30 X Huang, P A Meyers (2018a). Assessing paleohydrologic controls on the hydrogen isotope compositions of leaf wax n-alkanes in chinese peat deposits. Palaeogeogr Palaeoclimatol Palaeoecol, 516: 354–363
https://doi.org/10.1016/j.palaeo.2018.12.017
31 X Huang, R D Pancost, J Xue, Y Gu, R P Evershed, S Xie (2018b). Response of carbon cycle to drier conditions in the mid-Holocene in central China. Nat Commun, 9(1): 1369
https://doi.org/10.1038/s41467-018-03804-w pmid: 29636471
32 X Huang, B Zhao, K Wang, Y Hu, P A Meyers (2018c). Seasonal variations of leaf wax n-alkane molecular composition and δD values in two subtropical deciduous tree species: results from a three-year monitoring program in central China. Org Geochem, 118: 15–26
https://doi.org/10.1016/j.orggeochem.2018.01.009
33 K R Johnson, B L Ingram (2004). Spatial and temporal variability in the stable isotope systematics of modern precipitation in China: implications for paleoclimate reconstructions. Earth Planet Sci Lett, 220(3–4): 365–377
https://doi.org/10.1016/S0012-821X(04)00036-6
34 A Kahmen, T E Dawson, A Vieth, D Sachse (2011). Leaf wax n-alkane δD values are determined early in the ontogeny of Populus trichocarpa leaves when grown under controlled environmental conditions. Plant Cell Environ, 34(10): 1639–1651
https://doi.org/10.1111/j.1365-3040.2011.02360.x pmid: 21696403
35 A Kahmen, E Schefuß, D Sachse (2013a). Leaf water deuterium enrichment shapes leaf wax n-alkane δD values of angiosperm plants I: experimental evidence and mechanistic insights. Geochim Cosmochim Acta, 111: 39–49
https://doi.org/10.1016/j.gca.2012.09.003
36 A Kahmen, B Hoffmann, E Schefuß, S K Arndt, L A Cernusak, J B West, D Sachse (2013b). Leaf water deuterium enrichment shapes leaf wax n-alkane δD values of angiosperm plants II: observational evidence and global implications. Geochim Cosmochim Acta, 111: 50–63
https://doi.org/10.1016/j.gca.2012.09.004
37 H Liu, Y Gu, Z Yu, C Huang, J Ge, X Huang, S Xie, M Zheng, Z Zhang, S Cheng (2020). Holocence peatland water regulation response to 1000-year solar cycle indicated by phytoliths in central China. J Hydrol (Amst), 589: 125169
https://doi.org/10.1016/j.jhydrol.2020.125169
38 J Liu, W Liu, Z An, H Yang (2016). Different hydrogen isotope fractionations during lipid formation in higher plants: implications for paleohydrology reconstruction at a global scale. Sci Rep, 6(1): 19711
https://doi.org/10.1038/srep19711 pmid: 26806719
39 J Liu, Z An, Z Wang, H Wu (2017). Using δDn-alkane as a proxy for paleo-environmental reconstruction: a good choice to sample at the site dominated by woods. Sci Total Environ, 599-600: 554–559
https://doi.org/10.1016/j.scitotenv.2017.05.004 pmid: 28494281
40 J Liu, Z An, H Liu (2018). Leaf wax n-alkane distributions across plant types in the central Chinese Loess Plateau. Org Geochem, 125: 260–269
https://doi.org/10.1016/j.orggeochem.2018.09.006
41 J Liu, Z An, H Wu, Y Yu (2019). Comparison of n-alkane concentrations and δD values between leaves and roots in modern plants on the Chinese Loess Plateau. Org Geochem, 138: 103913
https://doi.org/10.1016/j.orggeochem.2019.103913
42 J Liu (2021a). Seasonality of the altitude effect on leaf wax n-alkane distributions, hydrogen and carbon isotopes along an arid transect in the Qinling Mountains. Sci Total Environ, 778: 146272
https://doi.org/10.1016/j.scitotenv.2021.146272 pmid: 33725603
43 J Liu, Z An, G Lin (2021b). Intra-leaf heterogeneities of hydrogen isotope compositions in leaf water and leaf wax of monocots and dicots. Sci Total Environ, 770: 145258
https://doi.org/10.1016/j.scitotenv.2021.145258 pmid: 33513516
44 P Luo, P Peng, H Lü, Z Zheng, X Wang (2012). Latitudinal variations of CPI values of long-chain n-alkanes in surface soils: evidence for CPI as a proxy of aridity. Sci China Earth Sci, 55(7): 1134–1146
https://doi.org/10.1007/s11430-012-4401-8
45 T Luo, Z Lun, Y Gu, Y Qin, Z Zhang, B Zhang (2015). Plant community survey and ecological of Dajiuhu Wetland in Shennongjia Area. Wetland Sci, 13: 153–160 (in Chinese)
46 R Marzi, B E Torkelson, R K Olson (1993). A revised carbon preference index. Org Geochem, 20(8): 1303–1306
https://doi.org/10.1016/0146-6380(93)90016-5
47 S L Newberry, A Kahmen, P Dennis, A Grant (2015). n-Alkane biosynthetic hydrogen isotope fractionation is not constant throughout the growing season in the riparian tree Salix viminalis. Geochim Cosmochim Acta, 165: 75–85
https://doi.org/10.1016/j.gca.2015.05.001
48 J Nichols, R K Booth, S T Jackson, E G Pendall, Y Huang (2010). Differential hydrogen isotopic ratios of Sphagnum and vascular plant biomarkers in ombrotrophic peatlands as a quantitative proxy for precipitation-evaporation balance. Geochim Cosmochim Acta, 74(4): 1407–1416
https://doi.org/10.1016/j.gca.2009.11.012
49 J E Nichols, R K Booth, S T Jackson, E G Pendall, Y Huang (2006). Paleohydrologic reconstruction based on n-alkane distributions in ombrotrophic peat. Org Geochem, 37(11): 1505–1513
https://doi.org/10.1016/j.orggeochem.2006.06.020
50 J E Nichols, Y Huang (2012). Hydroclimate of the northeastern United States is highly sensitive to solar forcing. Geophys Res Lett, 39(4): L04707
https://doi.org/10.1029/2011GL050720
51 J E Nichols, D M Peteet, C M Moy, I S Castanêda, A McGeachy, M Perez (2014). Impacts of climate and vegetation change on carbon accumulation in a south-central Alaskan peatland assessed with novel organic chemical techniques. Holocene, 24(9): 1146–1155
https://doi.org/10.1177/0959683614540729
52 E Norström, C Katrantsiotis, R H Smittenberg, K Kouli (2017). Chemotaxonomy in some Mediterranean plants and implications for fossil biomarker records. Geochim Cosmochim Acta, 219: 96–110
https://doi.org/10.1016/j.gca.2017.09.029
53 C J Nott, S Xie, L A Avsejs, D Maddy, F M Chambers, R P Evershed (2000). n-Alkane distributions in ombrotrophic mires as indicators of vegetation change related to climatic variation. Org Geochem, 31(2-3): 231–235
https://doi.org/10.1016/S0146-6380(99)00153-9
54 J E Ortiz, J L R Gallego, T Torres, A Díaz-Bautista, C Sierra (2010). Palaeoenvironmental reconstruction of Northern Spain during the last 8000 calyr BP based on the biomarker content of the Roñanzas peat bog (Asturias). Org Geochem, 41(5): 454–466
https://doi.org/10.1016/j.orggeochem.2010.02.003
55 R D Pancost, M Baas, B van Geel, J S Sinninghe Damsté (2002). Biomarkers as proxies for plant inputs to peats: an example from a sub-boreal ombrotrophic bog. Org Geochem, 33(7): 675–690
https://doi.org/10.1016/S0146-6380(02)00048-7
56 N Pedentchouk, W Sumner, B Tipple, M Pagani (2008). δ13C and δD compositions of n-alkanes from modern angiosperms and conifers: an experimental set up in central Washington State, USA. Org Geochem, 39(8): 1066–1071
https://doi.org/10.1016/j.orggeochem.2008.02.005
57 J G Poynter, P Farnimond, N Robinson, G Eglinton (1989). Aeolian-derived higher plant lipids in the marine sedimentary record: links with palaeoclimate. Paleoclimatology and Paleometeorology. In: Leinen M, Sarnthein M, eds. Paleoclimatology and Paleometeoro-logy: Modern and Past Patterns of Global Atmospheric Transport: 435–462
58 Y Qin, R J Payne, Y Gu, X Huang, H Wang (2012). Ecology of testate amoebae in Dajiuhu peatland of Shennongjia Mountains, China, in relation to hydrology. Front Earth Sci, 6(1): 57–65
https://doi.org/10.1007/s11707-012-0307-1
59 Z Rao, Y Wu, Z Zhu, G Jia, A Henderson (2011). Is the maximum carbon number of long-chain n-alkanes an indicator of grassland or forest? Evidence from surface soils and modern plants. Chin Sci Bull, 56(16): 1714–1720
https://doi.org/10.1007/s11434-011-4418-y
60 Z Rao, Z Zhu, S Wang, G Jia, M Qiang, Y Wu (2009). CPI values of terrestrial higher plant-derived long-chain n-alkanes: a potential paleoclimatic proxy. Front Earth Sci, 3(3): 266–272
https://doi.org/10.1007/s11707-009-0037-1
61 H Rydin, J K Jeglum (2006). The Biology of Peatlands. New York: Oxford University Press
62 D Sachse, I Billault, G J Bowen, Y Chikaraishi, T Dawson, S J Feakins, K H Freeman, C R Magill, F A McInerney, M T J van der Meer, P Polissar, R Robins, J P Sachs, H L Schmidt, A L Sessions, J W C White, J B West, A Kahmen (2012). Molecular paleohydrology: interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms. Annu Rev Earth Planet Sci, 40(1): 221–249
https://doi.org/10.1146/annurev-earth-042711-105535
63 D Sachse, G Gleixner, H Wilkes, A Kahmen (2010). Leaf wax n-alkane δD values of field-grown barley reflect leaf water δD values at the time of leaf formation. Geochim Cosmochim Acta, 74(23): 6741–6750
https://doi.org/10.1016/j.gca.2010.08.033
64 D Sachse, A Kahmen, G Gleixner (2009). Significant seasonal variation in the hydrogen isotopic composition of leaf-wax lipids for two deciduous tree ecosystems (Fagus sylvativa and Acer pseudoplatanus). Org Geochem, 40(6): 732–742
https://doi.org/10.1016/j.orggeochem.2009.02.008
65 D Sachse, T E Dawson, A Kahmen (2015). Seasonal variation of leaf wax n-alkane production and δ2H values from the evergreen oak tree, Quercus agrifolia. Isotopes Environ Health Stud, 51(1): 124–142
https://doi.org/10.1080/10256016.2015.1011636 pmid: 25894428
66 E Schefuß, V Ratmeyer, J B W Stuut, J H Jansen, J S Sinninghe Damsté (2003). Carbon isotope analyses of n-alkanes in dust from the lower atmosphere over the Central Eastern Atlantic. Geochim Cosmochim Acta, 67(10): 1757–1767
https://doi.org/10.1016/S0016-7037(02)01414-X
67 O Seki, P A Meyers, K Kawamura, W Zhou, Y Zheng (2009). Hydrogen isotopic ratios of plant-wax n-alkanes in a peat bog deposited in northeastern China during the last 16 kyr. Org Geochem, 40(6): 671–677
https://doi.org/10.1016/j.orggeochem.2009.03.007
68 O Seki, P A Meyers, S Yamamoto, K Kawamura, T Nakatsuka, W Zhou, Y Zheng (2011). Plant-wax hydrogen isotopic evidence for postglacial variations in delivery of precipitation in the monsoon domain of China. Geology, 39(9): 875–878
https://doi.org/10.1130/G32117.1
69 A L Sessions (2006). Seasonal changes in D/H fractionation accompanying lipid biosynthesis in Spartina alterniflora. Geochim Cosmochim Acta, 70(9): 2153–2162
https://doi.org/10.1016/j.gca.2006.02.003
70 A L Sessions (2016). Factors controlling the deuterium contents of sedimentary hydrocarbons. Org Geochem, 96: 43–64
https://doi.org/10.1016/j.orggeochem.2016.02.012
71 R Shen, Z Lan, X Huang, Y Chen, Q Hu, C Fang, B Jin, J Chen (2020). Soil and plant characteristics during two hydrologically contrasting years at the lakeshore wetland of Poyang Lake, China. J Soils Sediments, 20(9): 3368–3379
https://doi.org/10.1007/s11368-020-02638-8
72 L Song, H Li, K Wang, D Wu, H Wu (2014). Ecology of testate amoebae and their potential use as palaeohydrologic indicators from peatland in Sanjiang Plain, northeast China. Front Earth Sci, 8(4): 564–572
https://doi.org/10.1007/s11707-014-0435-x
73 Y J Suh, A F Diefendorf (2018). Seasonal and canopy height variation in n-alkanes and their carbon isotopes in a temperate forest. Org Geochem, 116: 23–34
https://doi.org/10.1016/j.orggeochem.2017.10.015
74 B J Tipple, M A Berke, C E Doman, S Khachaturyan, J R Ehleringer (2013). Leaf-wax n-alkanes record the plant-water environment at leaf flush. Proc Natl Acad Sci USA, 110(7): 2659–2664
https://doi.org/10.1073/pnas.1213875110 pmid: 23359675
75 J Wang, Y Xu, L Zhou, M Shi, E Axia, Y Jia, Z Chen, J Li, G Wang (2018). Disentangling temperature effects on leaf wax n-alkane traits and carbon isotopic composition from phylogeny and precipitation. Org Geochem, 126: 13–22
https://doi.org/10.1016/j.orggeochem.2018.10.008
76 Z Xia, Y Zheng, J M Stelling, J Loisel, Y Huang, Z Yu (2020). Environmental controls on the carbon and water (H and O) isotopes in peatland Sphagnum mosses. Geochim Cosmochim Acta, 277: 265–284
https://doi.org/10.1016/j.gca.2020.03.034
77 S Xie, C J Nott, L A Avsejs, F Volders, D Maddy, F M Chambers, A Gledhill, J F Carter, R P Evershed (2000). Palaeoclimate records in compound-specific δD values of a lipid biomarker in ombrotrophic peat. Org Geochem, 31(10): 1053–1057
https://doi.org/10.1016/S0146-6380(00)00116-9
78 C Yan, Y Zhang, Y Zhang, Z Zhang, X Huang (2020). Habitat influence on the molecular, carbon and hydrogen isotope compositions of leaf wax n-Alkanes in a subalpine basin, central China. J Earth Sci, 31(4): 845–852
https://doi.org/10.1007/s12583-020-1322-x
79 X Yang, X Huang (2020). Different patterns of molecular, carbon and hydrogen isotope compositions of n-alkanes between heterotrophic plant and its hosts. Front Earth Sci, 14(4): 783–788
https://doi.org/10.1007/s11707-020-0829-x
80 S Yu, Z Kang, W Zhou (2012). Quantitative palaeoclimate reconstruction as an inverse problem: a bayesian inference of Late-Holocene climate on the Eastern Tibetan Plateau from a peat cellulose δ18O record. Holocene, 22(4): 405–412
https://doi.org/10.1177/0959683611425544
81 B Zhao, Y Zhang, X Huang, R Qiu, Z Zhang, P A Meyers (2018). Comparison of n-alkane molecular, carbon and hydrogen isotope compositions of different types of plants in the Dajiuhu peatland, central China. Org Geochem, 124: 1–11
https://doi.org/10.1016/j.orggeochem.2018.07.008
82 Y Zheng, J S Singarayer, P Cheng, X Yu, Z Liu, P J Valdes, R D Pancost (2014). Holocene variations in peatland methane cycling associated with the Asian summer monsoon system. Nat Commun, 5(1): 4631
https://doi.org/10.1038/ncomms5631 pmid: 25135106
83 W Zhou, S Xie, P A Meyers, Y Zheng (2005). Reconstruction of late glacial and Holocene climate evolution in southern China from geolipids and pollen in the Dingnan peat sequence. Org Geochem, 36(9): 1272–1284
https://doi.org/10.1016/j.orggeochem.2005.04.005
[1] Yang PU, Jihong JIA, Jicheng CAO. The aliphatic hydrocarbon distributions of terrestrial plants around an alpine lake: a pilot study from Lake Ximencuo, Eastern Qinghai-Tibet Plateau[J]. Front. Earth Sci., 2018, 12(3): 600-610.
[2] Sergey V. TROFIMENKO, Victor G. BYKOV, Nikolay V. SHESTAKOV, Nikolay N. GRIB, Hiroaki TAKAHASHI. A new insight into the nature of seasonal variations in coordinate time series of GPS sites located near active faults[J]. Front. Earth Sci., 2016, 10(3): 560-569.
[3] Djakanibé Désiré TRAORÉ,Yansheng GU,Humei LIU,Ceven SHEMSANGA,Jiwen GE. Vegetation types and climate conditions reflected by the modern phytolith assemblages in the subalpine Dalaoling Forest Reserve, central China[J]. Front. Earth Sci., 2015, 9(2): 268-275.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed