Controls on the facies and architecture evolution of a fan delta in Qinghai Lake, China
Di MA1, Xinghe YU1, Shunli LI1(), Zhijie ZHANG2, Chao FU1, Hongwei SUN1, Chun LIU2
. School of Energy, China University of Geosciences, Beijing 100083, China . Research Institute of Petroleum Exploration and Development, Hangzhou 310000, China
Deltaic sedimentary systems form the most favorable hydrocarbon reservoirs in continental faulted lacustrine basins, and their types and controlling factors directly affect the distribution of hydrocarbons. The systematic study of typical modern delta deposition provides significant guidance regarding the distribution of oil and gas reservoirs in the subsurface. For this reason, the Heima River delta in Qinghai Lake, which features multiple sediment sources and clear sedimentary evolution stages, was selected for this research. A detailed study of the sedimentology and architectural characteristics of the Heimahe delta in Qinghai Lake was conducted. A total of 4 types of gravel facies, 4 types of sand facies, and 2 types of mud facies were identified. This study also focuses on recognizing the architectural elements within channels and bars. The delta plain features debris-flow, switched, and migrated channels and vertical and bilateral aggradation bars. The delta front features migrated and filled channels and bilateral and lateral aggradation bars. Twenty-two representative outcrop sections were selected. Detailed observation and analysis of these sections revealed three stages: the progradation to aggradation (PA) stage, in which the deposits show evidence of sigmoid-type and coarse-grained sedimentation; the retrogradation (R) stage, which is characterized by imbricated regression; and the aggradation to progradation and degradation (APD) stage, which is characterized by a terraced-stepping, progression stacking pattern. Based on the integrated analysis of the sedimentary environment, outcrop lithofacies associations, architecture stacking patterns, fossils and bioclasts, we identified diverse depositional associations and constructed a sedimentary evolution model of the depositional system in this area. We suggest that the depositional system transitioned from an early single-provenance gravel-rich fan delta to a multi-provenance mud-rich delta and that two factors mainly controlled the transition: the southern boundary fault activity and lake level variations. The contemporaneous activity of the fault increased the accommodation in the low-stand systems tract, which resulted in continuous coarse-sediment deposition.
Online First Date: 03 July 2024Issue Date: 29 September 2024
Cite this article:
Di MA,Xinghe YU,Shunli LI, et al. Controls on the facies and architecture evolution of a fan delta in Qinghai Lake, China[J]. Front. Earth Sci.,
2024, 18(3): 488-508.
Fig.1 Regional maps. (a) A schematic map of faults of Qinghai Lake area (modified from Bian et al. (2000)); (b) the outcrops location of the study area on satellite image; (c) lithology diagram of the study area and its surrounding area; (d) schematic section of the structure and sedimentation in the fan-delta, whose location was on (b) and (c).
Fig.2 A brief stratigraphic table of the Nanshan tectonic belt, Qinghai.
Fig.3 Lithofacies of the Heimahe delta deposites.
Fig.4 Typical lithofacies associations of the Heimahe delta.
Fig.6 Characteristics of the architecture stacking pattern. (a) Debris-flow channel and interchannel (D); (b) Switched channels and vertical accretion bars (S); (c) Filled channels and bilateral accretion bars (F); (d) Migrated channels and unilateral accretion bars (M).
Fig.7 Panoramic photo, interpretation for outcrop profile 1(location in Fig. 1(c)) of the lower delta plain and cumulative probability curves of three deposition stages. (a) Panoramic photo of outcrop profile 1; (b) cumulative probability curve for firste-stage; (c) cumulative probability curve for second-stage; (d) cumulative probability curve for third-stage.
Fig.8 Panoramic photo, interpretation for outcrop profile 14 (location in Fig. 1(c)) of the lower delta plain and cumulative probability curves of three deposition stages. (a) Panoramic photo of outcrop profile 14; (b) cumulative probability curve for firste-stage; (c) cumulative probability curve for second-stage; (d) cumulative probability curve for third-stage.
Fig.9 Panoramic photo, interpretation for outcrop profile 7 (location in Fig. 1(c)) of the delta front and cumulative probability curves of three deposition stages. (a) Panoramic photo of outcrop profile 7; (b) cumulative probability curve for first-stage; (c) cumulative probability curve for second-stage; (d) cumulative probability curve for third-stage.
Fig.10 Deposional cycles and panoramic photo for outcrop profile 7 (location in Fig. 1(c)).
Fig.11 Partial enlarged detail of profile 7. (a) and (b) are gravelly sandstone deposits; (c) is debris flow to a traction flow; (d) and (e) are bioclastics; (f) is reed-related tufa; (g)and (i) are fossils; (j) and (k) are burrows with backfilling structures; (l) is root-lap structures.
Fig.12 Terraced trajectory. (a) Macroscopic characteristics of terraces in satellite image; (b) Panoramic photo of terrace; (c) enlarged red box in (a); (d) two lines elevation map in (a).
Fig.13 Comparative table of three depositional stage characteristics. (a) characteristics of stage PA; (b) characteristics of stage R; (c) characteristics of stage APD.
Fig.15 Climate fluctuate in Qinghai Lake area in recent 10 kyrs.
Fig.16 Recent 10 kyrs Qinghai lake level changes. (a) Altitude; (b) temperature and precipitation.
1
H Afuso, H Matsubara (2019). Development of rock outcrops inspection system using UAV and VR technology. ISRM Young Scholars Symposium on Rock Mechanics
2
J R L Allen (1983). Studies in fluviatile sedimentation: bars, bar-complexes and sandstone sheets (low-sinuosity braided streams) in the Brownstones (L. Devonian), Welsh Borders.Sediment Geol, 33: 237–293 https://doi.org/10.1016/0037-0738(83)90076-3
3
Z S, An P Z, Zhang E Q, Wang S M, Wang X K, Qiang L, Li Y G, Song H, Chang X D, Liu W J, Zhou W G, Liu J Y, Cao X Q, Li J, Shen Y, Liu L Ai (2006). Changes of the monsoom-arid environment in China and growth of the Tibetan Plateau since the Miocece.Quatern Res,, (5): 678–693
4
N, Backert M, Ford F Malartre (2010). Architecture and sedimentology of the kerinitis Gilbert-type fan delta, Corinth Rift, Greece.Sedimentology, 57(2): 543–586 https://doi.org/10.1111/j.1365-3091.2009.01105.x
5
S P, Bemis S, Micklethwaite D, Turner M R, James S, Akciz S T, Thiele H A Bangash (2014). Ground-based and UAV-based photogrammetry: a multi-scale, high-resolution mapping tool for structural geology and paleoseismology.J Struct Geol, 69: 163–178 https://doi.org/10.1016/j.jsg.2014.10.007
6
Q T, Bian J L, Liu X P and Xiao J L Luo (2000). Geotectonic setting, formation and evolution of the Qinghai Lake.Seismic Geol, 22(1): 20–26
7
P, Blistan L, Kovanic V, Zeliznakova J Palkova (2016). Using UAV photogrammetry to document rock outcrops.Acta Montan Slovaca, 21(2): 154–161
8
J S, Bridge G A, Jalfin S M Georgieff (2000). Geometry, lithofacies, and spatial distribution of cretaceous fluvial sandstone bodies, San Jorge Basin, Argentina: outcrop analog for the hydrocarbon-bearing Chubut Group.J Sediment Res, 70(2): 341–359 https://doi.org/10.1306/2DC40915-0E47-11D7-8643000102C1865D
9
B S, Burnham D Hodgetts (2019). Quantifying spatial and architectural relationships from fluvial outcrops.Geosphere, 15(1): 236–253 https://doi.org/10.1130/GES01574.1
10
R W H, Butler W D Mccaffrey (2010). Structural evolution and sediment entrainment in mass-transport complexes: outcrop studies from Italy.J Geol Soc London, 167(3): 617–631 https://doi.org/10.1144/0016-76492009-041
11
H, Chang Z S, An F Wu (2008). Major element records from the Qinghai Lake Basin—Gonghe Basin sediments indicating the Nanshan (Qinghai) uplift event.Quatern Res,, (5): 36–44
12
H, Chang Z, Jin Z An (2009). Sedimentary evidences of the uplift of the Qinghai Nanshan (the mountains south to Qinghai Lake) and its implication for structural evolution of the Lake Qinghai—Gonghe Basin.Geological Review, (1): 49–57
13
J (2016) Chen . The Study on Mordern Sedimentary System in the Qinghai Lake. Dissertation for Doctoral Degree. Beijing: China University of Geosciences
14
J, Chen Z X, Jiang W Y, Zhang C, Liu C Han (2020). The study on the modern sedimentary system of Buha River Delta in Qinghai Lake.Geol J, 55(7): 5216–5232 https://doi.org/10.1002/gj.3735
15
J, Chen Z, Jiang W, Zhang C, Liu W Xu (2018). The development model of modern eolian facies dominated by “source-sink” depositional system: a case study of the east coast of Qinghai Lake.China Desert, 38(5): 999–1008
16
B L, Cui X Y, Li X H Wei (2016). Isotope and hydrochemistry reveal evolutionary processes of lake water in Qinghai Lake.J Great Lakes Res, 42(3): 580–587 https://doi.org/10.1016/j.jglr.2016.02.007
17
M, Deynoux A, Çiner O, Monod M, Karabıyıkoglu G, Manatschal S Tuzcu (2005). Facies architecture and depositional evolution of alluvial fan to fan-delta complexes in the tectonically active Miocene Köprüçay Basin, Isparta Angle, Turkey.Sediment Geol, 173(1–4): 315–343 https://doi.org/10.1016/j.sedgeo.2003.12.013
18
Z Y, Ding R J, Lu Z Q, Lyu X K Liu (2019). Geochemical characteristics of Holocene aeolian deposits east of Qinghai Lake, China, and their paleoclimatic implications.Sci Total Environ, 692: 917–929 https://doi.org/10.1016/j.scitotenv.2019.07.099
19
R S, Eilertsen G D, Corner O, Aasheim L Hansen (2011). Facies characteristics and architecture related to palaeodepth of Holocene Fjord-delta sediments.Sedimentology, 58(7): 1784–1809 https://doi.org/10.1111/j.1365-3091.2011.01239.x
20
H D, Enge S J, Buckley A, Rotevatn J A Howell (2007). From outcrop to reservoir simulation model: workflow and procedures.Geosphere, 3(6): 469–490 https://doi.org/10.1130/GES00099.1
21
I, Fabuel-Perez D, Hodgetts J Redfern (2009). A new approach for outcrop characterization and geostatistical analysis of a low-sinuosity fluvial-dominated succession using digital outcrop models: Upper Triassic Oukaimeden Sandstone Formation, central High Atlas, Morocco.AAPG Bull, 93(6): 795–827 https://doi.org/10.1306/02230908102
22
Q S, Fan H Z, Ma H C, Wei F Y An (2014). Holocene lake-level changes of Hurleg Lake on Northeastern Qinghai-Tibetan Plateau and possible forcing mechanism.Holocene, 24(3): 274–283 https://doi.org/10.1177/0959683613517399
23
C R, Fielding J, Alexander J P Allen (2018). The role of discharge variability in the formation and preservation of alluvial sediment bodies.Sediment Geol, 365: 1–20 https://doi.org/10.1016/j.sedgeo.2017.12.022
24
B T, Freitas L H G, Silva R P, Almeida C P, Galeazzi H G, Figueiredo L N, Tamura L, Janikian F T, Figueiredo M L Assine (2021). Cross-strata palaeocurrent analysis using virtual outcrops.Sedimentology, 68(6): 2397–2421 https://doi.org/10.1111/sed.12855
25
C, Fu S L, Li S L, Li X, Fan J Y Xu (2020). Sedimentary characteristics, dispersal patterns, and pathway formation in Liaoxi Sag, Liaodong Bay Depression, north China: evolution of source-to-sink systems in strike-slip tectonics belt.Geol J, 55(7): 5119–5137 https://doi.org/10.1002/gj.3677
26
F, García-García H, Corbi J M, Soria C Viseras (2011). Architecture analysis of a river flood-dominated delta during an overall sea-level rise (early Pliocene, SE Spain).Sediment Geol, 237(1–2): 102–113 https://doi.org/10.1016/j.sedgeo.2011.02.010
27
F, García-García J, Fernández C, Viseras J M Soria (2006). Architecture and sedimentary facies evolution in a delta stack controlled by fault growth (Betic Cordillera, southern Spain, Late Tortonian).Sediment Geol, 185(1–2): 79–92 https://doi.org/10.1016/j.sedgeo.2005.10.010
28
R L, Gawthorpe A Calella (1990). Tectonic controls on coarse-grained delta depositional systems in rift basins.Sediment, 10: 113–127
29
S, Ghazi N P Mountney (2009). Facies and architectural element analysis of a meandering fluvial succession: the Permian Warchha Sandstone, Salt Range, Pakistan.Sediment Geol, 221(1–4): 99–126 https://doi.org/10.1016/j.sedgeo.2009.08.002
30
A C G, Henderson J A Holmes (2009). Palaeolimnological evidence for environmental change over the past millennium from Lake Qinghai sediments: a review and future research prospective.Quat Int, 194(1–2): 134–147 https://doi.org/10.1016/j.quaint.2008.09.008
P, Homewood P, Razin C, Grélaud H, Droste V, Vahrenkamp M, Mettraux J Mattner (2008). Outcrop sedimentology of the Natih Formation, northern Oman: a field guide to selected outcrops in the Adam Foothills and Al Jabal al Akhdar areas.Geo-Arabia, 13(3): 39–120 https://doi.org/10.2113/geoarabia130339
34
B K, Horton J G Schmitt (1996). Sedimentology of a lacustrine fan-delta system, Miocene horse camp formation, Nevada, USA.Sedimentology, 43(1): 133–155 https://doi.org/10.1111/j.1365-3091.1996.tb01464.x
35
J Z, Hou Y S, Huang J T, Zhao Z H, Liu S, Colman Z S An (2016). Large Holocene summer temperature oscillations and impact on the peopling of the Northeastern Tibetan plateau.Geophys Res Lett, 43(3): 1323–1330 https://doi.org/10.1002/2015GL067317
36
J, Janocha A, Smyrak-Sikora K, Senger T Birchall (2021). Seeing beyond the outcrop: integration of ground-penetrating radar with digital outcrop models of a paleokarst system.Mar Pet Geol, 125: 104833 https://doi.org/10.1016/j.marpetgeo.2020.104833
37
Lanzhou Institute of Geology CAS (1979). Comprehensive Survey Report of Qinghai Lake. Beijing: Science Press
38
B Y, Li S M, Wang L P, Zhu Y F Li (2001). 12 ka BP lake environment on the Tibetan Plateau.Sci China Ser D Earth Sci, 44(S1): 324–331 https://doi.org/10.1007/BF02912002
39
J Y, Li J, Dodson H, Yan B, Cheng X, Zhang Q, Xu J, Ni F Lu (2017). Quantitative precipitation estimates for the northeastern Qinghai-Tibetan plateau over the last 18000 years.J Geophys Res Atmos, 122(10): 5132–5143 https://doi.org/10.1002/2016JD026333
40
S L, Li Y Z, Ma X, Yu P, Jiang M, Li M Li (2014). Change of deltaic depositional environment and its impacts on reservoir properties—a braided delta in South China Sea.Mar Pet Geol, 58: 760–775 https://doi.org/10.1016/j.marpetgeo.2014.06.003
41
S L, Li X H, Yu B T, Chen S L Li (2015a). Quantitative characterization of architecture elements and their response to base-level change in a sandy braided fluvial system at a mountain front.J Sediment Res, 85(10): 1258–1274 https://doi.org/10.2110/jsr.2015.82
42
S L, Li X H, Yu B T, Chen S L Li (2015b). Quantitative characterization of architecture elements and their response to base-level change in a sandy braided fluvial system at a mountain front.J Sediment Res, 85(10): 1258–1274 https://doi.org/10.2110/jsr.2015.82
43
S L, Li X H, Yu R, Steel X M, Zhu S L, Li B, Cao G W Hou (2018). Change from tide-influenced deltas in a regression-dominated set of sequences to tide-dominated estuaries in a transgression-dominated sequence set, East China Sea Shelf Basin.Sedimentology, 65(7): 2312–2338 https://doi.org/10.1111/sed.12466
44
Y, Li N, Wang Z, Li N, Ma X, Zhou C Zhang (2013). Lake evaporation: a possible factor affecting lake level changes tested by modern observational data in arid and semi-arid China.J Geogr Sci, 23(1): 123–135 https://doi.org/10.1007/s11442-013-0998-6
45
B B, Liu C P, Tan X H, Yu J H, Qu X M, Zhao L Zhang (2019a). Sedimentary characteristics and controls of a retreating, coarse-grained fan-delta system in the lower Triassic, Mahu Depression, northwestern China.Geol J, 54(3): 1141–1159 https://doi.org/10.1002/gj.3215
46
F G, Liu Y, Zhang Z, Feng G, Hou Q, Zhou H Zhang (2010). The impacts of climate change on the neolithic cultures of Gansu-Qinghai region during the Late Holocene megathermal.J Geogr Sci, 20(3): 417–430 https://doi.org/10.1007/s11442-010-0417-1
47
X Liu (2002). A 16000-year pollen record of Qinghai Lake and its paleoclimate and paleoenvironment.Chin Sci Bull, 47(22): 1931–1936 https://doi.org/10.1360/02tb9421
48
X J, Liu L, Cong F Y, An X D, Miao C Y E (2019b). Downwind aeolian sediment accumulations associated with lake-level variations of the Qinghai lake during the Holocene, northeastern Qinghai-Tibetan Plateau.Environ Earth Sci, 78(1): 19 https://doi.org/10.1007/s12665-018-8025-y
49
X J, Liu Z P, Lai D, Madsen L P, Yu K, Liu J R Zhang (2011). Lake level variations of Qinghai lake in northeastern Qinghai-Tibetan Plateau since 3.7 ka based on OSL dating.Quat Int, 236(1–2): 57–64 https://doi.org/10.1016/j.quaint.2010.08.009
50
X J, Liu Z P, Lai F M, Zeng D B, Madsen C Y E (2013). Holocene lake level variations on the Qinghai-Tibetan Plateau.Int J Earth Sci, 102(7): 2007–2016 https://doi.org/10.1007/s00531-013-0896-2
51
X X, Liu J, Vandenberghe Z S, An Y, Li Z D, Jin J B, Dong Y B Sun (2016). Grain size of lake Qinghai sediments: implications for riverine input and Holocene monsoon variability.Palaeogeogr Palaeoclimatol Palaeoecol, 449: 41–51 https://doi.org/10.1016/j.palaeo.2016.02.005
52
H Y Lu (2004). Geomorphologic evidence of phased uplift of the northeastern Qinghai-Tibet Plateau since 14 million years ago.Sci China Ser D Earth Sci, 47(9): 822–833 https://doi.org/10.1360/03yd0315
53
H Y, Lu C F, Zhao J, Mason S W, Yi H, Zhao Y L, Zhou J F, Ji J, Swinehart C M Wang (2011). Holocene climatic changes revealed by aeolian deposits from the Qinghai Lake area (northeastern Qinghai-Tibetan Plateau) and possible forcing mechanisms.Holocene, 21(2): 297–304 https://doi.org/10.1177/0959683610378884
54
R J, Lu F F, Jia S Y, Gao Y, Shang J F, Li C Zhao (2015). Holocene aeolian activity and climatic change in Qinghai Lake Basin, northeastern Qinghai-Tibetan Plateau.Palaeogeogr Palaeoclimatol Palaeoecol, 430: 1–10 https://doi.org/10.1016/j.palaeo.2015.03.044
55
D Maddy (2002). An evaluation of climate, crustal movement and base level controls on the Middle-Late Pleistocene development of the River Severn, UK.Neth J Geosci, 81(3–4): 329–338 https://doi.org/10.1017/S0016774600022630
56
D B, Madsen M, Haizhou D, Rhode P J, Brantingham S L Forman (2008). Age constraints on the late Quaternary evolution of Qinghai Lake, Tibetan Plateau.Quat Res, 69(2): 316–325 https://doi.org/10.1016/j.yqres.2007.10.013
57
A Jr, Marques R K, Horota Souza E M, de L, Kupssinskü P, Rossa A S, Aires L, Bachi M R, Veronez L Jr, Gonzaga C L Cazarin (2020). Virtual and digital outcrops in the petroleum industry: a systematic review.Earth Sci Rev, 208: 103260 https://doi.org/10.1016/j.earscirev.2020.103260
58
W C, Meng Y B, Chen L J, Chen J X Li (2020). Study of sedimentary succession and its origin of gravel beach bar: a case from the modern beach bar in the southeastern Qinghai Lake.Northwestern Geol, 53(3): 56–65
59
A D Miall (1985). Architectural-element analysis - A new method of facies analysis applied to fluvial deposits.Earth Sci Rev, 22(4): 261–308 https://doi.org/10.1016/0012-8252(85)90001-7
60
A D Miall (2002). Architecture and sequence stratigraphy of Pleistocene fluvial systems in the Malay Basin, based on seismic time-slice analysis.AAPG Bull, 86(7): 1201–1216
61
A D, Miall B G Jones (2003). Fluvial architecture of the Hawkesbury Sandstone (Triassic), near Sydney, Australia.J Sediment Res, 73(4): 531–545 https://doi.org/10.1306/111502730531
62
A M, Morgan R A Craddock (2017). Depositional processes of alluvial fans along the Hilina Pali fault scarp, Island of Hawaii.Geomorphology, 296: 104–112 https://doi.org/10.1016/j.geomorph.2017.08.028
63
A Moscariello (2018). Alluvial fans and fluvial fans at the margins of continental sedimentary basins: geomorphic and sedimentological distinction for geo-energy exploration and development.Spec Publ Geol Soc Lond, 440(1): 215–243 https://doi.org/10.1144/SP440.11
64
R, Nagendra R, Raja A N, Reddy B C, Jaiprakash R Bhavani (2002). Outcrop sequence stratigraphy of the Maastrichtian Kallankurchchi Formation, Ariyalur group, Tamil Nadu.J Geol Soc India, 59(3): 243–248
65
and Abreu Neal (2009). Sequence stratigraphy hierarchy and the accommodation succession method.Geology, 37(9): 778–782
66
B W, Nocita D R Lowe (1990). Fan-delta sequence in the Archean Fig Tree Group, Barberton Greenstone-Belt, South-Africa.Precambrian Res, 48(4): 375–393 https://doi.org/10.1016/0301-9268(90)90049-V
67
C, Olariu J P Bhattacharya (2006). Terminal distributary channels and delta front architecture of river-dominated delta systems.J Sediment Res, 76(1–2): 212–233 https://doi.org/10.2110/jsr.2006.026
68
B L, Pan C, Yi T, Jiang G, Dong G, Hu Y Jin (2012). Holocene lake-level changes of Linggo Co in central Tibet.Quat Geochronol, 10: 117–122 https://doi.org/10.1016/j.quageo.2012.03.009
69
G A, Paterson D Heslop (2015). New methods for unmixing sediment grain size data.Geochem Geophys Geosyst, 16(12): 4494–4506 https://doi.org/10.1002/2015GC006070
70
A, Pickel J D, Frechette A, Comunian G S Weissmann (2015). Building a training image with digital outcrop models.J Hydrol (Amst), 531: 53–61 https://doi.org/10.1016/j.jhydrol.2015.08.049
71
P, Plink-Björklund R J Steel (2004). Initiation of turbidity currents: outcrop evidence for Eocene hyperpycnal flow turbidites.Sediment Geol, 165(1–2): 29–52 https://doi.org/10.1016/j.sedgeo.2003.10.013
72
M R, Qiang F H, Chen L, Song X X, Liu M Z, Li Q Wang (2013). Late Quaternary aeolian activity in Gonghe Basin, northeastern Qinghai-Tibetan Plateau, China.Quat Res, 79(3): 403–412 https://doi.org/10.1016/j.yqres.2013.03.003
73
Qinghai Bureau of Geology and Mineral Resources Q (1991). Regional Geology of Qinghai Province. Beijing: Geological Publishing House
74
H G, Reading M Richards (1994). Turbidite systems in deep-water basin margins classified by grain-size and feeder system.AAPG Bull, 78(5): 792–822
75
M, Rioult O, Dugue R J, Duchene C, Ponsot G, Fily J M, Moron P R Vail (1991). Outcrop sequence stratigraphy of the Anglo-Paris Basin, Middle to Upper Jurassic (Normandy, Maine, Dorset).Bull Cent Rech Explor Prod Elf-Aquitaine, 15(1): 101–194
76
S, Rohais R, Eschard F Guillocheau (2008). Depositional model and stratigraphic architecture of rift climax Gilbert-type fan deltas (Gulf of Corinth, Greece).Sediment Geol, 210(3–4): 132–145 https://doi.org/10.1016/j.sedgeo.2008.08.001
77
X, Shan S L, Li S L, Li X H, Yu L, Wan L N, Jin T Y Wang (2018). Sedimentology of a topset-dominated, braided river delta of Huangqihai Lake, north China: implications for formation mechanisms.J Paleolimnol, 59(2): 245–261 https://doi.org/10.1007/s10933-016-9929-8
78
X, Shan X F, Shi P D, Clift A A, Seddique S F, Liu C P, Tan J G, Liu R, Hasan J C, Li Z J Song (2021). Sedimentology of the modern seasonal lower Ganges river with low inter-annual peak discharge variance, Bangladesh.J Geol Soc London, 178(1): jgs2020–094 https://doi.org/10.1144/jgs2020-094
79
H, Sharifigaliuk S M, Mahmood M, Ahmad R Rezaee (2021). Use of outcrop as substitute for subsurface shale: current understanding of similarities, discrepancies, and associated challenges.Energy Fuels, 35(11): 9151–9164 https://doi.org/10.1021/acs.energyfuels.1c00598
80
J, Shen X Q, Liu S M, Wang R Matsumoto (2005). Palaeoclimatic changes in the Qinghai Lake area during the last 18000 years.Quat Int, 136(1): 131–140 https://doi.org/10.1016/j.quaint.2004.11.014
81
C H, Song X M, Fang Y M, Shi X M Wang (2000). Characteristics and genesis of eolian dunes on the west bank of Qinghai Lake.China Desert, 20(4): 443–446
82
C H, Song X M, Fang Y M, Shi X M Wang (2001). Sedimentary characteristics of modern lacustrine deltas in Qinghai Lake and their controlling factors.J Lanzhou U (Nat Sci), 37(3): 112–121
83
C P, Tan X H, Yu S L, Li X, Shan B T Chen (2016). Sedimentology and stratigraphic evolution of the fan delta at the Badaowan Formation (Lower Jurassic), Southern Junggar Basin, Northwest China.Arab J Geosci, 9(2): 115 https://doi.org/10.1007/s12517-015-2242-4
84
C P, Tan X H, Yu B B, Liu J H, Qu L, Zhang D J Huang (2017). Conglomerate categories in coarse-grained deltas and their controls on hydrocarbon reservoir distribution: a case study of the Triassic Baikouquan Formation, Mahu Depression, NW China.Petrol Geosci, 23(4): 403–414 https://doi.org/10.1144/petgeo2016-017
85
J, Tanaka W Maejima (1995). Fan-delta sedimentation on the basin margin slope of the cretaceous, strike-slip Izumi Basin, Southwestern Japan.Sediment Geol, 98(1–4): 205–213 https://doi.org/10.1016/0037-0738(95)00033-5
86
L Y, Tang X F, Duan F J, Kong F, Zhang Y F, Zheng Z, Li Y, Mei Y W, Zhao S J Hu (2018). Influences of climate change on area variation of Qinghai Lake on Qinghai-Tibetan Plateau since 1980s.Sci Rep, 8(1): 7331 https://doi.org/10.1038/s41598-018-25683-3
87
A M, Trendell S C, Atchley L C Nordt (2013). Facies analysis of a probable large-fluvial-fan depositional system: the Upper Triassic Chinle formation at petrified forest national park, Arizona, U. S. A.J Sediment Res, 83(10): 873–895 https://doi.org/10.2110/jsr.2013.55
88
I P Tunbridge (1981). Sandy high-energy flood sedimentation—Some criteria for recognition, with an example from the Devonian of SW England.Sediment Geol, 28(2): 79–95 https://doi.org/10.1016/0037-0738(81)90058-0
89
D Ulicny (2001). Depositional systems and sequence stratigraphy of coarse-grained deltas in a shallow-marine, strike-slip setting: the Bohemian Cretaceous Basin, Czech Republic.Sedimentology, 48(3): 599–628 https://doi.org/10.1046/j.1365-3091.2001.00381.x
90
O J W, Wakefield E, Hough A W Peatfield (2015). Architectural analysis of a Triassic fluvial system: the Sherwood Sandstone of the East Midlands Shelf, UK.Sediment Geol, 327: 1–13 https://doi.org/10.1016/j.sedgeo.2015.07.006
91
E C, Wang B C Burchfiel (2004). Late Cenozoic right-lateral movement along the Wenquan fault and associated deformation: implications for the kinematic history of the Qaidam Basin northeastern Tibetan Plateau.Int Geol Rev, 46(10): 861–879 https://doi.org/10.2747/0020-6814.46.10.861
92
J, Wang X B, Li H Q Liu (2019a). Study of the development and preservation of lacustrine beach and bar based on the modern sedimentary characteristics of Qinghai lake.J Sediment, 37(5): 1016–1030
93
Q, Wang Z, Sha J, Wang J, Du J, Hu Y Ma (2019b). Historical changes in the major and trace elements in the sedimentary records of Lake Qinghai, Qinghai-Tibet Plateau: implications for anthropogenic activities.Environ Geochem Health, 41(5): 2093–2111 https://doi.org/10.1007/s10653-019-00244-3
94
W, Wang Z D Feng (2013). Holocene moisture evolution across the Mongolian plateau and its surrounding areas: a synthesis of climatic records.Earth Sci Rev, 122: 38–57 https://doi.org/10.1016/j.earscirev.2013.03.005
J, Winsemann U, Asprion T, Meyer C Schramm (2007). Facies characteristics of Middle Pleistocene (Saalian) ice-margin subaqueous fan and delta deposits, glacial Lake Leine, NW Germany.Sediment Geol, 193(1–4): 105–129 https://doi.org/10.1016/j.sedgeo.2005.11.027
97
Y, Wu T, Zhang Z, Zhang H Cui (2010). Types and characteristics of depositional systems tract and its petroleum geological significance.Journal of Palaeogeography, 12(1): 69–81
98
X F, Xu L G, Yuan Z S, Jiang C F, Chen S Cheng (2020). Lake level changes determined by cryosat-2 altimetry data and water-induced loading deformation around lake Qinghai.Adv Space Res, 66(11): 2568–2582 https://doi.org/10.1016/j.asr.2020.08.029
99
H P, Xue F M Zeng (2021). Holocene environmental evolution in the Qinghai Lake area recorded by aeolian deposits.Quat Int, 580: 67–77 https://doi.org/10.1016/j.quaint.2020.12.032
100
Z J, Yin B, Zhang Y, Hu J, Zhu C, Guo G, Chen X, Hou J, Liu R Zhang (2020). The facies analysis of a fan delta by integrating multiple discipline data - A case study of the KL-A Oilfield, Bohai Bay Basin, China.Interpretation, 8(2): SF21–SF35 https://doi.org/10.1190/INT-2019-0083.1
101
R A, Young R M, Slatt J G Staggs (2003). Application of ground penetrating radar imaging to deepwater (turbidite) outcrops.Mar Pet Geol, 20(6–8): 809–821 https://doi.org/10.1016/j.marpetgeo.2003.01.005
102
X H, Yu S L, Li C P, Tan J H, Huo C, Zhang C F Zhao (2018b). Coarse coarse-grained deposits and the irreservoir characterizations: a look back to see forward and hot issues.J Palaeogeogr, 20(5): 713–726
103
X H, Yu S L, Li C P, Tan J, Xie B T, Chen F Yang (2013). The response of deltaic systems to climatic and hydrological changes in Daihai Lake rift basin, Inner Mongolia, northern China.J Palaeogeogr, 2(1): 41–55
104
X Yu, S Li, S Li (2018a). Clastic Hydrocarbon Reservoir Sedimentology. NewYork: Springer
105
B, Yuan K, Chen J M, Bowler S Ye (1990). The formation and evolution of the Qinghai lake.Quaterern Sci, 3: 233–243
106
Yuan D (2003). Tectonic deformation features and space-time evolution in Northeastern margin of the Qinghai-Tibetan Plateau since the Late Cenozoic time. Dissertation for Doctor Degree. Beijing: Institute of Geology, China Earthquake Administration
107
D Y, Yuan W P, Ge Z W, Chen C Y, Li Z C, Wang H P, Zhang P Z, Zhang D W, Zheng W J, Zheng W H, Craddock K E, Dayem A R, Duvall B G, Hough R O, Lease J D, Champagnac D W, Burbank M K, Clark K A, Farley C N, Garzione E, Kirby P, Molnar G H Roe (2013). The growth of northeastern Tibet and its relevance to large-scale continental geodynamics: a review of recent studies.Tectonics, 32(5): 1358–1370 https://doi.org/10.1002/tect.20081
108
C M, Zhang R, Zhu T J and Yin Y S Yin (2015). Advances in fan deltaic sedimentology.Xinjiang Petrol Geol, 36(3): 110–116
109
G Q, Zhang T D, Yao H J, Xie K, Yang L P, Zhu C K, Shum T, Bolch S, Yi S, Allen L G, Jiang W F, Chen C Q Ke (2020). Response of Tibetan plateau lakes to climate change: trends, patterns, and mechanisms.Earth Sci Rev, 208: 103269 https://doi.org/10.1016/j.earscirev.2020.103269
110
H F, Zhang Y L, Chen W C, Xu R, Liu H L, Yuan X M Liu (2006). Granitoids around Gonghe Basin in Qinghai province: petrogenesis and tectonic implications.Acta Petrol Sin, 22(12): 2910–2922
111
X N, Zhang A, Zhou X, Wang M, Song Y, Zhao H, Xie J M, Russell F Chen (2018a). Unmixing grain-size distributions in lake sediments: a new method of endmember modeling using hierarchical clustering.Quat Res, 89(1): 365–373 https://doi.org/10.1017/qua.2017.78
112
Y F, Zhang C L, Hu M, Wang M F, Ma X M, Wang Z X Jiang (2018b). A quantitative sedimentary model for the modern lacustrine beach bar (Qinghai Lake, northwest China).J Paleolimnol, 59(2): 279–296 https://doi.org/10.1007/s10933-016-9930-2
113
J F, Zhao N P, Mountney C Y, Liu H J, Qu J Y Lin (2015). Outcrop architecture of a fluvio-lacustrine succession: Upper Triassic Yanchang Formation, Ordos Basin, China.Mar Pet Geol, 68: 394–413 https://doi.org/10.1016/j.marpetgeo.2015.09.001
114
T, Zielinski J Gozdik (2001). Palaeoenvironmental interpretation of a Pleistocene alluvial succession in central Poland: sedimentary facies analysis as a tool for palaeoclimatic inferences.Boreas, 30(3): 240–253 https://doi.org/10.1080/030094801750424157