Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2024, Vol. 18 Issue (3) : 526-537    https://doi.org/10.1007/s11707-022-1070-6
Reconstruction of sedimentary paleoenvironment of Permian Lucaogou Formation and its implications for the organic matter enrichment in south-eastern Junggar Basin, China
Yong TANG1, Xiatian WANG1, Tao WANG1, Chenlu HEI2(), Shuang LIANG2, Hu CHENG2
. Research Institute of Exploration and Development, Xinjiang Oilfield Company, PetroChina, Karamay 834000, China
. School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China
 Download: PDF(3938 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The Permian Lucaogou Formation represents one of the most important hydrocarbon source rock intervals in the Junggar Basin, although the sedimentary paleoenvironment and organic matter enrichment mechanism of the Lucaogou Formation remain controversial. We studied the temporal evolution of the sedimentary paleoenvironment in the Lucaogou Formation by analyzing the elemental composition and total organic carbon content of 27 hydrocarbon source rock samples from the J305 well in the Jimsar Sag. Using these data, we found that the Lucaogou Formation overall was deposited in a semisaline to saline, reducing lake basin under an arid climate. We identified five organic matter-enriched intervals, which can be correlated with the parameters that indicate a wetter climate and a more anoxic lake environment. To compare sedimentary environments spatially, we compiled environmental indicators from 10 cores and outcrops in three sags around the Bogda Mountains. The compilation shows that the organic matter-enriched Jimsar Sag experienced a more arid climate and a more saline and anoxic lake environment during the deposition of the Lucaogou Formation, which was possibly controlled by the paleogeographic position. We conclude that the spatially arid climate and anoxic environment induced organic matter burial in the Jimsar Sag, while temporal events of a more humid climate and more anoxic environment triggered the enrichment of organic matter in some intervals of the Lucaogou Formation.

Keywords paleoenvironment      organic matter enrichment      Lucaogou Formation      Jimsar Sag      Junggar Basin     
Corresponding Author(s): Chenlu HEI   
Online First Date: 03 July 2024    Issue Date: 29 September 2024
 Cite this article:   
Yong TANG,Xiatian WANG,Tao WANG, et al. Reconstruction of sedimentary paleoenvironment of Permian Lucaogou Formation and its implications for the organic matter enrichment in south-eastern Junggar Basin, China[J]. Front. Earth Sci., 2024, 18(3): 526-537.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-022-1070-6
https://academic.hep.com.cn/fesci/EN/Y2024/V18/I3/526
Fig.1  Geological setting of the south-eastern Junggar Basin and the lithological profile of well J305. (a) Schematic diagram of secondary uplifts in the Junggar Basin; (b) location of well J305 in the Jimsar Sag and other wells/outcrops in adjacent sags compiled in this study; (c) lithological profile of well J305 (modified from Tao et al., 2022).
Fig.2  Comparison of the major (a) and trace (b) element contents of the Lucaogou Formation with those of the North American shale (NASC).
Fig.3  Normalized rare earth element concentrations of the Lucaogou Formation normalized to chondrites.
Fig.4  Plot of TOC contents and indicators of paleoclimate, water depth, redox conditions, and productivity versus depth in the Lucaogou Formation in the J305 well.
Fig.5  Relationships between Sr/Cu ratios and the TOC content (a), V/Cr ratios and the TOC content (b), Fe/Mn ratios and the TOC content (c), and Ba/Al ratios and the TOC content (d).
Fig.6  Comparison of paleoclimatic and paleoenvironmental indicators among the Chaiwopu, Fukang, and Jimsar Sags in the south-eastern Junggar Basin. Abbreviations along the x-axis indicate multiple cores and outcrop sections, as shown in Fig. 1 (data of well ZY3 are from Chen et al. (2017); QJG is the Qijiagou section, and the data are from Liu et al. (2022a); JJZG is the Jingjingzigou section, and the data are from Cheng et al. (2022) and Lin et al. (2019); SGH is the Sigonghe section, and the data are from Shi et al. (2018); BYH is the Baiyanghe section, and the data are from Zhao (2016); HSH is the Huangshanhe section, and the data are from Li et al. (2016); DLK is the Dalongkou section, and the data are from Cheng et al. (2022) and Lin et al. (2019); XLK is the Xiaolongkou section, and the data are from Liu et al. (2022a); well J174 is located in the Jimsar Sag, and the data are from Tao et al. (2022)).
1 T J, Algeo R J Twitchett (2010). Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences.Geology, 38(11): 1023–1026
https://doi.org/10.1130/G31203.1
2 M A, Arthur B B Sageman (1994). Marine black shales: depositional mechanisms and environments of ancient deposits.Annu Rev Earth Planet Sci, 22(1): 499–551
https://doi.org/10.1146/annurev.ea.22.050194.002435
3 W H, Bian J, Hornung Z H, Liu P J, Wang M Hinderer (2010). Sedimentary and palaeoenvironmental evolution of the Junggar Basin, Xinjiang, northwest China.Palaeobiodivers Palaeoenviron, 90(3): 175–186
https://doi.org/10.1007/s12549-010-0038-9
4 W V Boyton (1984). Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P, ed. Rare Earth Element Geochemistry (Volume 2). Elsevier: 63–114
5 S E, Calvert T F Pedersen (2007). Chapter fourteen elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: interpretation and application.Develop Marine Geo, 1: 567–644
6 Z, Cao G D, Liu Y H, Kong C Y, Wang Z C, Niu J Y, Zhang C B, Geng X, Shan Z P Wei (2016). Lacustrine tight oil accumulation characteristics: Permian Lucaogou Formation in Jimusaer Sag, Junggar Basin.Int J Coal Geol, 153: 37–51
https://doi.org/10.1016/j.coal.2015.11.004
7 A R, Carroll S A, Graham M E Smith (2010). Walled sedimentary basins of China.Basin Res, 22(1): 17–32
https://doi.org/10.1111/j.1365-2117.2009.00458.x
8 J P, Chen X L, Wang C P, Deng D G, Liang Y G, Zhang Z, Zhao Y Y, Ni D M, Zhi H B, Yang Y T Wang (2016). Geochemical features of source rocks and crude oil in the Junggar Basin northwest China.Acta Geol Sin, 90(1): 37–67
9 J, Chen X G, Zhuang C, Wu X F, Liu J B Zhou (2017). Geochemical features and sedimentary environment analysis of Lucaogou Formation Shale in southern Junggar Basin—a case study of Well ZY3.Coal Geo China, 29(08): 32–38
10 D W, Cheng C M, Zhou Z J, Zhang X J, Yuan Y H, Liu X Y Chen (2022). Paleo-environment reconstruction of the Middle Permian Lucaogou Formation, southeastern Junggar Basin, NW China: implications for the mechanism of organic matter enrichment in ancient lake.J Earth Sci, 33(4): 963–976
https://doi.org/10.1007/s12583-020-1073-8
11 G J, Demaison G T Moore (1980). Anoxic environments and oil source bed genesis.AAPG Bull, 64(8): 1179–1209
12 Y H, Fan H J, Qu H, Wang X C, Yang Y W Feng (2012). The application of trace elements analysis to identifying sedimentary media environment–a case study of Late Triassic strata in the middle part of western Ordos Basin.Geo China, 39(02): 382–389
13 X, Fang Z, Yang W P, Yan X G, Guo Y X, Wu J T Liu (2019). Classification evaluation criteria and exploration potential of tight oil resources in key basins of China.J Nat Gas Geosci, 4(6): 309–319
https://doi.org/10.1016/j.jnggs.2019.11.002
14 Y, Gao H, Huang H F, Tao A R, Carroll J M, Qin J Q, Chen X G, Yuan C S Wang (2020). Paleoenvironmental setting, mechanism and consequence of massive organic carbon burial in the Permian Junggar Basin, NW China.J Asian Earth Sci, 194: 104222
https://doi.org/10.1016/j.jseaes.2019.104222
15 W Getaneh (2002). Geochemistry provenance and depositional tectonic setting of the Adigrat Sandstone northern Ethiopia.J Afr Earth Sci, 35(2): 185–198
https://doi.org/10.1016/S0899-5362(02)00126-4
16 M A, Haskin L A Haskin (1966). Rare earths in European shales: a redetermination.Science, 154(3748): 507–509
https://doi.org/10.1126/science.154.3748.507
17 D F, He L, Zhang S T, Wu D, Li Y Zhen (2018). Tectonic evolution stages and features of the Junggar Basin.Oil Gas Geol, 39(5): 845–861
18 T, Hu X, Pang Q, Wang S, Jiang X, Wang C, Huang Y, Xu L, Li H Li (2018). Geochemical and geological characteristics of Permian Lucaogou Formation shale of the well Ji174, Jimusar Sag, Junggar Basin, China: implications for shale oil exploration.Geol J, 53(5): 2371–2385
https://doi.org/10.1002/gj.3073
19 Z F, Jiang X J, Ding Z Q, Wang X M Zhao (2020). Sedimentary paleoenvironment of source rocks of Permian Lucaogou Formation in Jimsar Sag.Lithologic Reservoirs, 32(6): 109–119
20 B, Jones D A C Manning (1994). Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones.Chem Geol, 111(1–4): 111–129
https://doi.org/10.1016/0009-2541(94)90085-X
21 L C, Kuang X T, Wang X G, Guo Q S, Chang X Y Jia (2015). Geological characteristics and exploration practice of tight oil of Lucaogou Formation in Jimsar Sag.Xinjiang Petrol Geo, 36(6): 629–634
22 C, Lézin B, Andreu P, Pellenard J L, Bouchez L, Emmanuel P, Fauré P Landrein (2013). Geochemical disturbance and paleoenvironmental changes during the Early Toarcian in NW Europe.Chem Geol, 341: 1–15
https://doi.org/10.1016/j.chemgeo.2013.01.003
23 B Q, Li X G, Zhuang X F, Liu C, Wu J B, Zhou X P Ma (2016). Mineralogical and geochemical composition of Middle Permian Lucaogou Formation in the southern Junggar Basin, China: implications for paleoenvironment, provenance, and tectonic setting.Arab J Geosci, 9(3): 174
https://doi.org/10.1007/s12517-015-2154-3
24 X H, Lin Z W, Zan Y R, Zou Y L, Cai T, Liang J Shi (2019). Elemental geochemical characteristics of the Lucaogou Formation oil shale in the southeastern Junggar Basin and its depositional environmental implications.Geochimica, 48(1): 67–78
25 C, Liu K Y, Liu X Q, Wang L Y, Wu Y C Fan (2019a). Chemostratigraphy and sedimentary facies analysis of the Permian Lucaogou Formation in the Jimusaer Sag, Junggar Basin, NW China: implications for tight oil exploration.J Asian Earth Sci, 178: 96–111
https://doi.org/10.1016/j.jseaes.2018.04.013
26 C, Liu K Y, Liu X Q, Wang R K, Zhu L Y, Wu X Y Xu (2019b). Chemo-sedimentary facies analysis of fine-grained sediment formations: an example from the Lucaogou Fm in the Jimusaer sag, Junggar Basin, NW China.Mar Pet Geol, 110: 388–402
https://doi.org/10.1016/j.marpetgeo.2019.06.043
27 D D, Liu Q Q, Fan C, Zhang Y, Gao W, Du Y, Song Z Y, Zhang Q, Luo Z X, Jiang Z X Huang (2022a). Paleoenvironment evolution of the Permian Lucaogou Formation in the southern Junggar Basin, NW China.Palaeogeogr Palaeoclimatol Palaeoecol, 603: 111198
https://doi.org/10.1016/j.palaeo.2022.111198
28 S J, Liu G, Gao J, Jin W Z, Gang B L Xiang (2022b). Source rock with high abundance of C28 regular sterane in typical brackish-saline lacustrine sediments: biogenic source, depositional environment and hydrocarbon generation potential in Junggar Basin, China.J Petrol Sci Eng, 208: 109670
https://doi.org/10.1016/j.petrol.2021.109670
29 J C, Luo J J, Tian J H, Ma J Q, Yan Y F, Liang Z H Hu (2022). Sedimentary environment and organic matter enrichment mechanism of Permian Lucaogou Formation in Jiye-1 well area, Jimsar Sag.Lithologic Reservoirs, 34(05): 73–85
30 X R, Luo Z M, Wang L Q, Zhang W, Yang L J Liu (2007). Overpressure generation and evolution in a compressional tectonic setting, the southern margin of Junggar Basin, northwestern China.AAPG Bull, 91(8): 1123–1139
https://doi.org/10.1306/02260706035
31 M, McCulloch M, Cappo J, Aumend W Müller (2005). Tracing the life history of individual barramundi using laser ablation MC-ICP-MS Sr-isotopic and Sr/Ba ratios in otoliths.Mar Freshw Res, 56(5): 637–644
https://doi.org/10.1071/MF04184
32 S M McLennan (1993). Weathering and global denudation.J Geol, 101(2): 295–303
https://doi.org/10.1086/648222
33 S M, McLennan S R, Hemming S R, Taylor K A Eriksson (1995). Early Proterozoic crustal evolution: geochemical and Nd−Pb isotopic evidence from metasedimentary rocks, southwestern North America.Geochim Cosmochim Acta, 59(6): 1153–1177
https://doi.org/10.1016/0016-7037(95)00032-U
34 Z, Qiu H F, Tao C N, Zou H Y, Wang H J, Ji S X Zhou (2016). Lithofacies and organic geochemistry of the middle Permian Lucaogou Formation in the Jimusar sag of the Junggar Basin, NW China.J Petrol Sci Eng, 140: 97–107
https://doi.org/10.1016/j.petrol.2016.01.014
35 J, Shi Y R, Zou J, Yu J J Liu (2018). Paleoenvironment of organic-rich shale from the Lucaogou Fromation in the Fukang Sag, Junggar Basin, China.Nat Gas Geosci, 29(08): 1138–1150
36 S Y, Shi H L, Wen B, Li H L, He C F Lv (2001). Determination of carbon and sulfur in geological samples by high frequency IR-absorption spectro metric method.Rock And Mineral Analysis, 20(4): 267–271
37 H F, Tao Z, Qiu Y Q, Qu J, Liu Z, Qin Z B, Xie J L, Qiu B Liu (2022). Geochemistry of Middle Permian lacustrine shales in the Jimusar Sag, Junggar Basin, NW China: implications for hydrothermal activity and organic matter enrichment.J Asian Earth Sci, 232: 105267
https://doi.org/10.1016/j.jseaes.2022.105267
38 J Tian (2021). The influence of tectonic evolution on hydrocarbon migration and accumulation: a case study of Permian in the western trough of Jimsar Sag, Junge Basin.Knowledge Petrol, (3): 60–62
39 N, Tribovillard T J, Algeo T, Lyons A Riboulleau (2006). Trace metals as paleoredox and paleoproductivity proxies: an update.Chem Geol, 232(1–2): 12–32
https://doi.org/10.1016/j.chemgeo.2006.02.012
40 T Tyrrell (1999). The relative influences of nitrogen and phosphorus on oceanic primary production.Nature, 400(6744): 525–531
https://doi.org/10.1038/22941
41 R V, Tyson T H Pearson (1991). Modern and ancient continental shelf anoxia: an overview.Spec Publ Geol Soc Lond, 58(1): 1–24
https://doi.org/10.1144/GSL.SP.1991.058.01.01
42 I, Unkel M, Fernandez S, Björck K, Ljung B Wohlfarth (2010). Records of environmental changes during the Holocene from Isla de los Estados (54.4 S), southeastern Tierra del Fuego.Global Planet Change, 74(3–4): 99–113
https://doi.org/10.1016/j.gloplacha.2010.07.003
43 C L, Wang C L, Liu H B, Hu J S, Mao L J, Shen H T Zhao (2012). Sedimentary characteristics and its environmental significance of salt-bearing strata of the Member 4 of Paleocene Shashi Formation in southern margin of Jiangling Sag, Jianghan Basin.J Palaeogeogr, 14(02): 165–175
44 F, Wang X C, Liu X Q, Deng Y H, Li J C, Tian S X, Li J Q You (2017). Geochemical characteristics and environmental implications of trace elements of Zhifang Formation in Ordos Basin.Acta Sediment Sin, 35(6): 1265–1273
45 H Wang, S Z Ma, D L Niu, Y Liu, R Bi, Z G Zhou (2022). Elemental geochemical characteristics of fine grained sedimentary rocks of the Lucaogou Formation in the western Jimusar Sag of the Junggar Basin and their paleo-environmental significances. Bull Mineral, Petro Geochem, 41(1): 143–150 (in Chinese)
46 Q Y, Wang C L, Mou X W, Chen J W Kang (2014). Palaeogeographic characteristics and basic geological conditions of petroleum of the Carboniferous in Junggar Basin and its adjacent areas.J Palaeogeogr, 16(5): 655–671
47 S, Westermann M, Stein V, Matera N, Fiet D, Fleitmann T, Adatte K B Föllmi (2013). Rapid changes in the redox conditions of the western Tethys Ocean during the early Aptian oceanic anoxic event.Geochim Cosmochim Acta, 121: 467–486
https://doi.org/10.1016/j.gca.2013.07.023
48 C, Wittkop J K, Bartley R, Krueger A, Bouvier R B, Georg A R, Knaeble Clair K, St. C, Piper A Breckenridge (2020). Influence of provenance and transport process on the geochemistry and radiogenic (Hf, Nd, and Sr) isotopic composition of Pleistocene glacial sediments, Minnesota, USA.Chem Geol, 532: 119390
https://doi.org/10.1016/j.chemgeo.2019.119390
49 H, Wu W X, Hu Y, Tang J, Cao X L, Wang Y C, Wang X Kang (2017). The impact of organic fluids on the carbon isotopic compositions of carbonate-rich reservoirs: case study of the Lucaogou Formation in the Jimusaer Sag, Junggar Basin, NW China.Mar Pet Geol, 85: 136–150
https://doi.org/10.1016/j.marpetgeo.2017.05.003
50 X W, Xu N, Jiang X H, Li C, Wu X, Qu G, Zhou L H Dong (2015). Spatial-temporal framework for the closure of the Junggar Ocean in central Asia: new SIMS zircon U-Pb ages of the ophiolitic mélange and collisional igneous rocks in the Zhifang area, East Junggar.J Asian Earth Sci, 111: 470–491
https://doi.org/10.1016/j.jseaes.2015.06.017
51 H F, Yang Y J, Huang C, Ma Z F, Zhang C S Wang (2020). Recognition of Milankovitch cycles in XRF core-scanning records of the Late Cretaceous Nenjiang Formation from the Songliao Basin (northeastern China) and their paleoclimate implications.J Asian Earth Sci, 194: 104183
https://doi.org/10.1016/j.jseaes.2019.104183
52 J Y, Zhang M L, Sun G D, Liu Z, Cao Y H Kong (2021a). Geochemical characteristics, hydrocarbon potential, and depositional environment evolution of fine-grained mixed source rocks in the Permian Lucaogou Formation, Jimusaer Sag, Junggar Basin.Energy Fuels, 35(1): 264–282
https://doi.org/10.1021/acs.energyfuels.0c02500
53 W W, Zhang C C, Han J J, Tian Z H, Zhang N, Zhang Z Q Li (2021b). Sequence stratigraphy division and evolutionary features of Permian Lucaogou Formation in Jimsar Sag.Lithologic Reservoirs, 33(5): 45–58
54 X, Zhang X G, Zhuang Q J, Tu S Q, Xu Y Zhang (2018). Depositional processand mechanism of organic matter accumulation of Lucaogou Shalein Southern Junggar Basin, Northwest.China Earth Sci, 43(2): 538–550
55 Y S, Zhang Y Q, Yang Z X, Qi Y D, Qiao H R Yuan (2003). Sedimentary characteristies and environments of the salt-beari Ng series of Qianjiang Formation of the Paleogene in Qianjiang Sag of Jianghan Basin.J Palaeogeogr, 5(1): 29–35
56 S H Zhao (2016). Geochemical characteristics of the Baiyanghe shale in the northern Bogda Mountain of Xinjiang and its geological significance.Acta Petrol et Miner, 35(2): 255–264
57 S J, Zhao S Z, Li X, Liu D, Lou Y H, Suo L M, Dai W J, Sun T, Li X B, Wang Z Yang (2014). Structures of the eastern Junggar Basin: intracontinental transition between the North Tianshan and the Altai Orogens.Scientia Sinica Terrae, 44(10): 2130–2141
https://doi.org/10.1360/zd-2014-44-10-2130
58 Z H Zhao (1992). Geochemistry of trace elements.Adv Earth Sci, 7(5): 65–66
59 R H, Zheng G L, Zhang Y S, Qu S Z, Wang X, Jin X, Chen Z H Zhang (2022). Oil-source correlation under the complex geological conditions: a case study of the Chaiwopu Sag, southern Junggar Basin, NW China.J Petrol Sci Eng, 210: 110056
https://doi.org/10.1016/j.petrol.2021.110056
60 D M, Zhi J Z, Li W, Zhang X J, Wang Q, Ma J T, Liu F Yang (2022). Exploration breakthrough and its significance of Jingjingzigou Formation in Shuangji tectonic zone of Jimsar sag in Junggar Basin.Acta Petrol Sin, 43(10): 1383–1394
61 D M, Zhi Y, Tang Z F, Yang X G, Guo M L, Zheng M, Wan L L Huang (2019). Geological characteristics and accumulation mechanism of continental shale oil in Jimusaer sag, Junggar Basin.Oil Gas Geol, 40(03): 524–534
62 C N, Zou R K, Zhu Z Q, Chen J G, Ogg S T, Wu D Z, Dong Z, Qiu Y M, Wang L, Wang S H, Lin J W, Cui L, Su Z Yang (2019). Organic-matter-rich shales of China.Earth Sci Rev, 189: 51–78
https://doi.org/10.1016/j.earscirev.2018.12.002
[1] Yang WANG, Hanyu ZHANG, Yanming ZHU, Shangbin CHEN, Qingshun CAO, Manli HUANG, Jinghui YANG, Yunsheng ZHANG. Sedimentary environment and major controlling factors of organic matter-rich shale from the Wufeng-Longmaxi formation in eastern Sichuan Basin, China[J]. Front. Earth Sci., 2024, 18(3): 649-670.
[2] Ying LI, Min WANG, Yu YAN, Xin WANG, Jinyou ZHANG, Xuefeng BAI, Yuchen ZHANG, Jiaheng XUE, Junsheng FEI, Lianbin ZHANG, Guojun WANG. Paleoenvironment evolution and organic matter enrichment mechanisms in the first member of the Qingshankou Formation, Songliao Basin, China[J]. Front. Earth Sci., 2024, 18(2): 364-383.
[3] Qianyang HE, Delu LI, Qiang SUN, Jianwen GAO, Haibin LI, Xinhu LI, Xiaochen ZHAO, Shaofei WANG, Gaozhe JI. Constraints of palaeoenvironment on organic matter of Benxi Formation shale and discussion on enrichment mechanism under different facies[J]. Front. Earth Sci., 2024, 18(1): 148-171.
[4] Sijian ZHENG, Shuxun SANG, Shiqi LIU, Meng WANG, Lutong CAO, Xin JIN, Guangjun FENG, Yi YANG. Measurement of CO2 adsorption capacity with respect to different pressure and temperature in sub-bituminous: implication for CO2 geological sequestration[J]. Front. Earth Sci., 2023, 17(3): 752-759.
[5] Qun ZHAO, Ze DENG, Meng ZHAO, Dexun LIU. CO2 geological sequestration potential of the low-rank coals in the southern margin of the Junggar Basin[J]. Front. Earth Sci., 2023, 17(3): 727-738.
[6] Liyan GUO, Liang XIAO, Ya LI, Xiangchuan LI, Qin LENG, Nan SUN, Junfeng GUO, Chaofeng FU, Jianan WANG, Deshuang JI. First Asian fossil record of Platydictya (Amblystegiaceae) from the lower Miocene and its paleoenvironmental significance[J]. Front. Earth Sci., 2023, 17(1): 351-360.
[7] Guangyuan MU, Haihai HOU, Jiaqiang ZHANG, Yue TANG, Ya-nan LI, Bin SUN, Yong LI, Tim JONES, Yuan YUAN, Longyi SHAO. Fractal characterization of pore structure and its influence on CH4 adsorption and seepage capacity of low-rank coals[J]. Front. Earth Sci., 2022, 16(4): 916-933.
[8] Hongping LIU, Changmin ZHANG, Li ZHANG, Yang LUO. Bedding-parallel fractures in ultradeep tight sandstone reservoirs in Jurassic and Cretaceous of Yongjin Oil Field, Junggar Basin, China[J]. Front. Earth Sci., 2022, 16(4): 975-988.
[9] Jianwei LV, Songhang ZHANG, Ning YANG, Chunbo FU, Xinlu YAN, Yang LI. Paleoenvironment controls on organic matter accumulation in transitional shales from the eastern Ordos Basin, China[J]. Front. Earth Sci., 2021, 15(4): 737-753.
[10] Wanchun ZHAO, Xin LI, Tingting WANG, Xuehai FU. Pore size distribution of high volatile bituminous coal of the southern Junggar Basin: a full-scale characterization applying multiple methods[J]. Front. Earth Sci., 2021, 15(2): 237-255.
[11] LIU Zhanhong, LI Sitian, XIN Renchen, XU Changgui, CHENG Jianchun. The paleoclimatic records and the relevance with the formation of hydrocarbon source rocks: A case study of Huanghekou depression, Bohaiwan basin[J]. Front. Earth Sci., 2008, 2(1): 73-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed